Definitions

1. A complete partial order (M, \leq) has a flat ordering iff
 \[\forall x, y \in M : x \leq y \Rightarrow x = \perp \]

2. A complete lattice (M, \leq) has a flat ordering iff
 \[\forall x, y \in M : x \leq y \Rightarrow x = \perp \lor x = y \]

3. Let (M, \leq) and (N, \leq) be complete partial orders, and $f : M \to N$. f is
 (a) monotone iff $x \leq y \Rightarrow f(x) \leq f(y)$;
 (b) strict iff $f(\perp) = \perp$.

4. Let (M, \leq) and (N, \leq) be complete lattices, and $f : M \to N$. f is continuous iff f preserves the least upper bound, i.e. for all chains it holds that
 \[f \left(\bigsqcup_{i \in I} x^{(i)} \right) = \bigsqcup_{i \in I} f(x^{(i)}) \]

Exercise 1

Given functions $f : M \to N$ and $g : N \to P$, which of the following statements are true? Give a proof or a counter example.

For complete partial orders (M, \leq) and (N, \leq):

1. If (N, \leq) has a flat ordering and f is monotone, then f is strict or constant.

2. If (M, \leq) has a flat ordering and f is strict, then f is monotone.

For complete lattices $(M, \leq), (N, \leq)$, and (P, \leq):

1. If in (M, \leq) every chain is stationary and f is monotone, then f is continuous.

2. If f is monotone, then f is strict.

3. If f and g are monotone (continuous, strict), then $f \circ g$ is monotone (continuous, strict).

4. If f is monotone and $(x^{(i)})_{i \in I}$ is a chain in M, then $\bigsqcup_{i \in I} f(x^{(i)}) \leq f(\bigsqcup_{i \in I} x^{(i)})$.

5. If f is continuous, then it is also monotone.

Definition

Let (M, \leq) be a complete lattice, and $P : M \to \mathbb{B} = \{true, false\}$ a predicate. P is continuous iff for every chain $(x^{(i)})_{i \in I}$ in M it holds that $P(x^{(i)}) = true$ for all $i \in I$ implies $P(\bigsqcup_{i \in I} x^{(i)}) = true$.

Exercise 2

Let (M, \leq) be a complete lattice, $f : M \to M$ a continuous function, and $P : M \to \mathbb{B}$ a continuous predicate. Prove that

\[P(\perp) = true \land \forall x \in M : (P(x) = true \Rightarrow P(f(x)) = true) \]

implies

\[P(lfp(f)) = true \]

where $lfp(f)$ is the smallest fixed point of f.
Exercise 3
Let \((A, \leq)\) and \((G, \leq)\) be partial orders, and \((\alpha, \gamma)\) be a Galois connection between \(A\) and \(G\), i.e. for \(X \in G\) and \(Y \in A\) it holds:

\[X \leq \gamma(Y) \iff \alpha(X) \leq Y \]

Which of the following statements are true? Give a proof or a counter example.
1. \(\alpha\) monotone
2. \(\gamma\) monotone
3. \(\alpha = \alpha \circ \gamma \circ \alpha\)
4. \(\gamma = \gamma \circ \alpha \circ \gamma\)

Exercise 4
Let \((L, \leq)\) be a complete lattice, and \(f : L \to L\) a monotone function. If \((L, \leq)\) satisfies the ascending chain condition (ACC), then

\[\text{lfp}(f) = \bigsqcup_n f^{(n)}(\bot) \]

Submission
- Deadline: 18.05.2010, 09:00, per mail to bieniusa@informatik.uni-freiburg.de, or on paper to Annette Bieniusa, Geb. 079, Room 000-14.
- Late submissions will not be marked.
- Do not forget to put your name on the exercise sheet.
- You might want to read up in Appendix A of *Principles of Program Analysis*.