Lecture: Program analysis
 Exercise 8

http://proglang.informatik.uni-freiburg.de/teaching/programanalysis/2010ss/

Abstract interpretation

1 Widening operators

Show that the operator ∇ on Interval with

$$
\perp \nabla X=X \nabla \perp=X
$$

and

$$
\left[i_{1}, j_{1}\right] \nabla\left[i_{2}, j_{2}\right]=\left[\text { if } i_{2}<i_{1} \text { then }-\infty \text { else } i_{1}, \text { if } j_{2}>j_{1} \text { then } \infty \text { else } j_{1}\right]
$$

is a widening operator. First, state precisely what you need to show, and then show that these properties are indeed fulfilled.

Solution

- ∇ is an upperbound operator: Let $l_{1}=\left[i_{1}, j_{1}\right], l_{2}=\left[i_{2}, j_{2}\right]$.

$$
\begin{array}{ll}
i_{2}<i_{1}, j_{2}>j_{1}: & l_{1} \sqsubseteq[-\infty,+\infty] \sqsupseteq l_{2} \\
i_{2}<i_{1}, j_{2} \leq j_{1}: & l_{1} \sqsubseteq\left[-\infty, j_{1}\right] \sqsupseteq l_{2} \\
i_{2} \geq i_{1}, j_{2}>j_{1}: & l_{1} \sqsubseteq\left[i_{1},+\infty\right] \sqsupseteq l_{2} \\
i_{2} \geq i_{1}, j_{2} \leq j_{1}: & l_{1} \sqsubseteq\left[i_{1}, j_{1}\right] \sqsupseteq l_{2}
\end{array}
$$

- For all ascending chains $\left(l_{n}\right)_{n}$, the ascending chain $l_{0}, l_{0} \nabla l_{1},\left(l_{0} \nabla l_{1}\right) \nabla l_{2}, \ldots$ eventually stabilizes.
For an arbitrary element $l_{0}=[n, m]$, we have to consider the following cases for $l_{1}=[k, l]$:

$$
\begin{array}{ccc}
k<n, l>m & \Rightarrow & l_{0} \nabla l_{1}=[-\infty,+\infty] \\
k=n, l>m & \Rightarrow & l_{0} \nabla l_{1}=[n,+\infty] \\
k<n, l=m & \Rightarrow & l_{0} \nabla l_{1}=[-\infty, m] \\
k=n, l=m & \Rightarrow & l_{0} \nabla l_{1}=[n, m]
\end{array}
$$

Hence, if the chain $\left(l_{n}\right)_{n}$ eventually stabilizes, then so will the chain $\left(l_{i}^{\nabla}\right)_{i}$. Otherwise, it converges to the upper bound $[-\infty,+\infty]$.

2 Abstractions

Let S be the set of strings over a (finite) alphabet Σ. An abstraction of the string is the set of characters/symbols of which the string is built. Example: Program analysis is abstracted by $\{P, r, o, g, a, m, \quad ', n, l, y, s, i\}$.

Specify the details of the Galois connection $(\mathcal{P}(S), \alpha, \gamma, \mathcal{P}(\Sigma)$ formally. Is this Galois connection also a Galois insertion?

Solution

Let Σ_{s} be the set of all of the letters that occur in a particular string. We define the abstraction and concretisation function as follows:

$$
\begin{aligned}
\alpha(S) & =\bigcup\left\{\Sigma_{s} \mid s \in S\right\} \\
\gamma(\sigma) & =\left\{s \mid \Sigma_{s} \subseteq \sigma\right\}
\end{aligned}
$$

α and γ are clearly monotone. Further, for a set of strings $S=\left\{s_{1}, \ldots, s_{n}\right\}$:

$$
\gamma(\alpha(S))=\gamma\left(\cup\left\{\Sigma_{s} \mid s \in S\right\}\right)=\left\{s^{\prime} \mid \Sigma_{s^{\prime}} \subseteq \cup\left\{\Sigma_{s^{\prime}} \mid s \in S\right\}\right\} \supseteq S
$$

and

$$
\alpha(\gamma(\sigma))=\alpha\left(\left\{s \mid \Sigma_{s} \subseteq \sigma\right\}\right)=\bigcup\left\{\Sigma_{s} \mid s \in\left\{s \mid \Sigma_{s} \subseteq \sigma\right\}\right\}=\sigma
$$

Therefore, the Galois connection is also a Galois insertion.

3 Galois insertions

Let $\left(L_{1}, \alpha_{1}, \gamma_{1}, M_{1}\right)$ and $\left(L_{2}, \alpha_{2}, \gamma_{2}, M_{2}\right)$ be Galois insertions. First define

$$
\begin{aligned}
\alpha\left(l_{1}, l_{2}\right) & =\left(\alpha_{1}\left(l_{1}\right), \alpha_{2}\left(l_{2}\right)\right) \\
\gamma\left(m_{1}, m_{2}\right) & =\left(\gamma_{1}\left(m_{1}\right), \gamma_{2}\left(m_{2}\right)\right)
\end{aligned}
$$

and show that $\left(L_{1} \times L_{2}, \alpha, \gamma, M_{1} \times M_{2}\right)$ is a Galois insertion. Then define

$$
\begin{aligned}
\alpha(f) & =\alpha_{2} \circ f \circ \gamma_{1} \\
\gamma(g) & =\gamma_{2} \circ g \circ \alpha_{1}
\end{aligned}
$$

and show that $\left(L_{1} \rightarrow L_{2}, \alpha, \gamma, M_{1} \rightarrow M_{2}\right)$ is a Galois insertion.

Solution

We have to show that α and γ are monotone, and that

$$
\begin{aligned}
\gamma \circ \alpha & \sqsupseteq \lambda l . l \\
\alpha \circ \gamma & =\lambda m . m
\end{aligned}
$$

1. α and γ are monotone, because $\alpha_{1}, \alpha_{2}, \gamma_{1}$, and γ_{2} are monotone. Further, let $l=\left(l_{1}, l_{2}\right) \in$ $L_{1} \times L 2$.

$$
l \sqsubseteq \gamma(\alpha(l)) \quad \Leftrightarrow \quad l_{1} \sqsubseteq \gamma\left(\alpha\left(l_{1}\right)\right) \text { and } l_{2} \sqsubseteq \gamma\left(\alpha\left(l_{2}\right)\right)
$$

This holds because ($L_{1}, \alpha_{1}, \gamma_{1}, M_{1}$) and ($L_{2}, \alpha_{2}, \gamma_{2}, M_{2}$) are Galois insertions. Similarly, for $\left(m_{1}, m_{2}\right) \in M_{1} \times M_{2}$, we have

$$
m=\alpha(\gamma(m)) \quad \Leftrightarrow \quad m_{1}=\alpha\left(\gamma\left(m_{1}\right)\right) \text { and } m_{2}=\alpha\left(\gamma\left(m_{2}\right)\right)
$$

2. For the first part, consider the Monotone Function Space in the book on p. 398. It remains to show that $\alpha(\gamma(f))=f$ for $f \in M_{1} \rightarrow M_{2}$:

$$
\alpha(\gamma(f))=\alpha\left(\gamma_{2} \circ f \circ \alpha_{1}\right)=\alpha_{2} \circ \gamma_{2} \circ f \circ \alpha_{1} \circ \gamma_{1}=i d \circ f \circ i d=f
$$

4 Types and Effects

Consider the following FUN program:

```
new_A x := 1 in
new_B y := 9 in
let f = fn z => x := !y in
let g = fn z => x := 8 in
let h = fn z => !x in
(fn w => w f + w h) (fn v => v 4)
```

What is the result of evaluating this program? What are the types and effects for the functions in this program?

Solution

The program evaluates to 18 .

$$
\begin{aligned}
& \text { fn z } \Rightarrow \text { x }:=!\mathrm{y} \quad \text { int } \xrightarrow{\{A:=,!B\}} \text { int } \\
& \text { fn } z \Rightarrow x:=8 \quad \text { int } \xrightarrow{\{A:=\}} \text { int } \\
& \text { fn } \mathrm{z} \Rightarrow \text { ! } \mathrm{x} \quad \text { int } \xrightarrow{\{!A\}} \text { int } \\
& \text { fn w } \Rightarrow \mathrm{w} f+\mathrm{wh} \quad(\text { int } \xrightarrow{\{A:=,!A,!B\}} \text { int } \xrightarrow{\{A:=,!A,!B\}} \text { int } \\
& \text { fn v => v } 4 \quad(\text { int } \rightarrow i n t) \rightarrow i n t
\end{aligned}
$$

5 Control Flow Analysis in a Type and Effect System

The type and effect system for Control Flow Analysis in Chapter 5.1. uses annotations ϕ to denote the set of function definitions that can result in a function of a given type.

Extend the analysis with annotations for the base type bool to denote the set of constants that may be the result of evaluating the expression of a respective type.

Solution

We extend the annotations to also include boolean constants:

$$
\phi::=\{t t\}|\{f f\}| \cdots
$$

And we now also annotate the boolean type with some effect:

$$
\hat{\tau}::=\mathrm{bool}_{\phi} \mid \ldots
$$

Then, we can adapt the rules for the Control Flow Analysis as shown:

$$
\begin{aligned}
& \text { [const } \left.{ }_{1}\right] \quad \hat{\Gamma} \vdash \text { true : } \text { bool }_{\{\mathrm{tt}\}} \\
& \text { [const } \left.{ }_{2}\right] \quad \hat{\Gamma} \vdash \text { false: } \text { bool }_{\{f f\}} \\
& {\left[i f_{1}\right] \quad \frac{\hat{\Gamma} \vdash e_{0}: \operatorname{bool}_{\{t \mathrm{tt}\}} \quad \hat{\Gamma} \vdash e_{1}: \hat{\tau}_{1}}{\hat{\Gamma} \vdash e_{2}: \hat{\tau}_{2}} \quad\left\lfloor\hat{\tau}_{1}\right\rfloor=\left\lfloor\hat{\tau}_{2}\right\rfloor ~\left(i f ~ e e_{0} \text { then } e_{1} \text { else } e_{2}: \hat{\tau}_{1}\right.} \\
& {\left[i f_{2}\right] \quad \frac{\hat{\Gamma} \vdash e_{0}: \operatorname{bool}_{\{\text {ff }\}} \quad \hat{\Gamma} \vdash e_{1}: \hat{\tau}_{1} \quad \hat{\Gamma} \vdash e_{2}: \hat{\tau}_{2}}{\hat{\Gamma} \vdash \text { if } e_{0} \text { then } e_{1} \text { else } e_{2}: \hat{\tau}_{2}}} \\
& {\left[\operatorname{and}_{1}\right] \quad \frac{\hat{\Gamma} \vdash e_{1}: \operatorname{bool}_{\{\mathrm{tt}\}} \hat{\Gamma} \vdash e_{2}: \operatorname{bool}_{\{\mathrm{tt}\}}}{\hat{\Gamma} \vdash e_{1} \& \& e_{2}: \operatorname{bool}_{\{\mathrm{tt}\}}}}
\end{aligned}
$$

All other rules are adapted similarly or remain unchanged.

