Prof. Dr. P. Thiemann, Dipl.-Math. A. Bieniusa Summer term 2010

Lecture: Program analysis
Exercise 8
http://proglang.informatik.uni-freiburg.de/teaching/programanalysis/2010ss/

Abstract interpretation

1 Widening operators
Show that the operator V on Interval with
1VX =XVLl=X

and
[il7j1]V[i2,j2] = [if 49 < i1 then — oo else i1, if Jo > then oo else]1]

is a widening operator. First, state precisely what you need to show, and then show that these
properties are indeed fulfilled.

Solution

e V is an upperbound operator: Let 1 = [i1,j1],l2 = [i2, ja].

19 < 11,72 > J1: l1 C [—o0,4+00] J
i < 11,J2 < 1t Ih E[~o00,j1] D 1o
19 > 11,72 > j1 ¢ 1 C [i1,+00] Do
ig > 91,52 < J1 I C i, 1] 3o

e For all ascending chains (l,,),, the ascending chain ly,lyVi1, (10VI1)Vlis, ... eventually
stabilizes.
For an arbitrary element lo = [n, m], we have to consider the following cases for I = [k,]:

kE<n,d>m = 1)V =[-00,+x]
E=n,l>m = [Vl =[n,+o0]
k<nil=m = I[yVI} =[—00,m]
k=n,l=m = [,V =]n,]

Hence, if the chain (), eventually stabilizes, then so will the chain (IY);. Otherwise, it
converges to the upper bound [—o0, +00].

2 Abstractions

Let S be the set of strings over a (finite) alphabet ¥. An abstraction of the string is the set of
characters/symbols of which the string is built. Example: Program analysis is abstracted by
{P,r,0,g,a,m, > ’,n,1l,y,s,i}.

Specify the details of the Galois connection (P(S), a, vy, P(X) formally. Is this Galois con-
nection also a Galois insertion?

Solution

Let 3 be the set of all of the letters that occur in a particular string. We define the abstraction
and concretisation function as follows:

a(8) = Ui lses)
’7(0) = {8 | Zs C 0}

« and v are clearly monotone. Further, for a set of strings S = {s1,...,s,}:
Y(a(9)) =v(U{Ss[s €5} ={s'|Zy CU{Zy[s€5}} 28

and
a(y(0)) =a({s|Z Co}) = J{Selse{s|S Col} =0

Therefore, the Galois connection is also a Galois insertion.

3 Galois insertions
Let (L1, 1,71, My) and (Lg, s, v2, M3) be Galois insertions. First define

a(li,lz) = (aa(l), az2(l2))
y(mi,me) = (y1(m1),v2(m2))

and show that (L; X Lo, a7y, My x M) is a Galois insertion. Then define

a(f) = azofom
v(g) = "eogom

and show that (L; — Lo, v, 7y, M1 — M>) is a Galois insertion.

Solution

We have to show that o and are monotone, and that

yoa I ALl

aoy = Amm

1. «a and ~y are monotone, because as, as,v1, and 7, are monotone. Further, let I = (I1,12) €
L1 x L2.

ICH(a() & L Cry(a(l) and b Cy(a(l))

This holds because (L1, 1,71, M) and (Lo, s, 7v2, M) are Galois insertions. Similarly,
for (my,me) € My x M, we have

m=a(y(m)) & mi=a(y(m)) and my = a(y(m2))

2. For the first part, consider the Monotone Function Space in the book on p. 398. It
remains to show that a(v(f)) = f for f € My — My:

a(y(f)) =alyeofoar)=azoyofoajoy =ido foid=f

4 Types and Effects

Consider the following FUN program:

new_A x := 1 in

new_ B y := 9 in

let £ = fn z => x := !y in
let g = fn z => x := 8 in
let h = fn z => Ix in

(fnw=>wf+wh) (fn v => v 4)

What is the result of evaluating this program? What are the types and effects for the
functions in this program?

Solution

The program evaluates to 18.

., {A=B} .
fn z => x = ly mt ——— wnt
A=
fn z => x := 8 intum'nt
1A
fn z => Ix mnt u> mnt
. {A:=AB} {A:=14,'B} .
fnow=>wf+wh (int int) int
fnv=>v4 (int — int) — int

5 Control Flow Analysis in a Type and Effect System

The type and effect system for Control Flow Analysis in Chapter 5.1. uses annotations ¢ to
denote the set of function definitions that can result in a function of a given type.

Extend the analysis with annotations for the base type bool to denote the set of constants
that may be the result of evaluating the expression of a respective type.

Solution

We extend the annotations to also include boolean constants:
o 1= {se}{££)] -
And we now also annotate the boolean type with some effect:
7 1= booly|...

Then, we can adapt the rules for the Control Flow Analysis as shown:

[consty] [+ true : b0l ¢4}
[consts] [+ false : boolsey
3 f‘l— €o bOOl{tt} f‘l— er : 7A'1 f H €g 722 |_7A'1J = |_7A'2J
[i f1] S N
I' if ey then e else ey : T3
) I €o : boolyesy I e1: 71 I+ ey 1 Ty |71] = |72]
[f2] S -
I' if ey then e; else ey : Ty
I'Fe; : bool 'k es : bool
[andl] 1 {tt} 2 {tt}

IFe &&es boolyiy

All other rules are adapted similarly or remain unchanged.

