
Prof. Dr. P. Thiemann, Dipl.-Math. A. Bieniusa Summer term 2010

Lecture: Program analysis
Exercise 8

http://proglang.informatik.uni-freiburg.de/teaching/programanalysis/2010ss/

Abstract interpretation

1 Widening operators

Show that the operator ∇ on Interval with

⊥∇X = X∇⊥ = X

and
[i1, j1]∇[i2, j2] = [if i2 < i1 then −∞ else i1, if j2 > j1 then ∞ else j1]

is a widening operator. First, state precisely what you need to show, and then show that these
properties are indeed fulfilled.

Solution

• ∇ is an upperbound operator: Let l1 = [i1, j1], l2 = [i2, j2].

i2 < i1, j2 > j1 : l1 v [−∞,+∞] w l2
i2 < i1, j2 ≤ j1 : l1 v [−∞, j1] w l2
i2 ≥ i1, j2 > j1 : l1 v [i1,+∞] w l2
i2 ≥ i1, j2 ≤ j1 : l1 v [i1, j1] w l2

• For all ascending chains (ln)n, the ascending chain l0, l0∇l1, (l0∇l1)∇l2, . . . eventually
stabilizes.
For an arbitrary element l0 = [n,m], we have to consider the following cases for l1 = [k, l]:

k < n, l > m ⇒ l0∇l1 = [−∞,+∞]

k = n, l > m ⇒ l0∇l1 = [n,+∞]

k < n, l = m ⇒ l0∇l1 = [−∞,m]

k = n, l = m ⇒ l0∇l1 = [n,m]

Hence, if the chain (ln)n eventually stabilizes, then so will the chain (l∇i)i. Otherwise, it
converges to the upper bound [−∞,+∞].

2 Abstractions

Let S be the set of strings over a (finite) alphabet Σ. An abstraction of the string is the set of
characters/symbols of which the string is built. Example: Program analysis is abstracted by
{P,r,o,g,a,m, ’ ’,n,l,y,s,i}.

Specify the details of the Galois connection (P(S), α, γ,P(Σ) formally. Is this Galois con-
nection also a Galois insertion?

Solution

Let Σs be the set of all of the letters that occur in a particular string. We define the abstraction
and concretisation function as follows:

α(S) =
⋃
{Σs | s ∈ S}

γ(σ) = {s |Σs ⊆ σ}

α and γ are clearly monotone. Further, for a set of strings S = {s1, . . . , sn}:

γ(α(S)) = γ(∪{Σs | s ∈ S}) = {s′ |Σs′ ⊆ ∪{Σs′ | s ∈ S}} ⊇ S

and
α(γ(σ)) = α({s |Σs ⊆ σ}) =

⋃
{Σs | s ∈ {s |Σs ⊆ σ}} = σ

Therefore, the Galois connection is also a Galois insertion.

3 Galois insertions

Let (L1, α1, γ1,M1) and (L2, α2, γ2,M2) be Galois insertions. First define

α(l1, l2) = (α1(l1), α2(l2))

γ(m1,m2) = (γ1(m1), γ2(m2))

and show that (L1 × L2, α, γ,M1 ×M2) is a Galois insertion. Then define

α(f) = α2 ◦ f ◦ γ1
γ(g) = γ2 ◦ g ◦ α1

and show that (L1 → L2, α, γ,M1 →M2) is a Galois insertion.

Solution

We have to show that α and γ are monotone, and that

γ ◦ α w λl.l

α ◦ γ = λm.m

1. α and γ are monotone, because α1, α2, γ1, and γ2 are monotone. Further, let l = (l1, l2) ∈
L1 × L2.

l v γ(α(l)) ⇔ l1 v γ(α(l1)) and l2 v γ(α(l2))

This holds because (L1, α1, γ1,M1) and (L2, α2, γ2,M2) are Galois insertions. Similarly,
for (m1,m2) ∈M1 ×M2, we have

m = α(γ(m)) ⇔ m1 = α(γ(m1)) and m2 = α(γ(m2))

2. For the first part, consider the Monotone Function Space in the book on p. 398. It
remains to show that α(γ(f)) = f for f ∈M1 →M2:

α(γ(f)) = α(γ2 ◦ f ◦ α1) = α2 ◦ γ2 ◦ f ◦ α1 ◦ γ1 = id ◦ f ◦ id = f

4 Types and Effects

Consider the following FUN program:

new_A x := 1 in

new_B y := 9 in

let f = fn z => x := !y in

let g = fn z => x := 8 in

let h = fn z => !x in

(fn w => w f + w h) (fn v => v 4)

What is the result of evaluating this program? What are the types and effects for the
functions in this program?

Solution

The program evaluates to 18.

fn z => x := !y int
{A:=,!B}−−−−−−→ int

fn z => x := 8 int
{A:=}−−−−→ int

fn z => !x int
{!A}−−−→ int

fn w => w f + w h (int
{A:=,!A,!B}−−−−−−−−→ int)

{A:=,!A,!B}−−−−−−−−→ int
fn v => v 4 (int→ int)→ int

5 Control Flow Analysis in a Type and Effect System

The type and effect system for Control Flow Analysis in Chapter 5.1. uses annotations φ to
denote the set of function definitions that can result in a function of a given type.

Extend the analysis with annotations for the base type bool to denote the set of constants
that may be the result of evaluating the expression of a respective type.

Solution

We extend the annotations to also include boolean constants:

φ ::= {tt}|{ff}| · · ·

And we now also annotate the boolean type with some effect:

τ̂ ::= boolφ| . . .

Then, we can adapt the rules for the Control Flow Analysis as shown:

[const1] Γ̂ ` true : bool{tt}

[const2] Γ̂ ` false : bool{ff}

[if1]
Γ̂ ` e0 : bool{tt} Γ̂ ` e1 : τ̂1 Γ̂ ` e2 : τ̂2 bτ̂1c = bτ̂2c

Γ̂ ` if e0 then e1 else e2 : τ̂1

[if2]
Γ̂ ` e0 : bool{ff} Γ̂ ` e1 : τ̂1 Γ̂ ` e2 : τ̂2 bτ̂1c = bτ̂2c

Γ̂ ` if e0 then e1 else e2 : τ̂2

[and1]
Γ̂ ` e1 : bool{tt} Γ̂ ` e2 : bool{tt}

Γ̂ ` e1 && e2 : bool{tt}

All other rules are adapted similarly or remain unchanged.

