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Objects

When analyzing/proving programs we have to consider “objects”
that represent some part of the computation state, such as:

Values: booleans, integers, . . .V
Variable names: X
Environments: X→ V
Stacks: assigning values to variables in the context of
block-structured languages:

⋃
n≤0([1, n]→ (X⇀ V))
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b e g i n
new X, Y ;
X := 1 0 ; Y := 0 ;
b e g i n

new X ;
X := 2 0 ;
. . .

end ;
. . .

end ;

1: x 10 y 0

2: x 20

{1 7→ {x 7→ 10, y 7→ 0},
2 7→ {x 7→ 20}}

Heaps: dynamic allocation;

Control points: procedure names, labels, . . . ;

States: control & memory states.
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Finite prefix traces;

Maximal finite or infinite traces for deterministic programs);

Sets of maximal finite or infinite traces (for nondeterministic
programs);

. . .
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Properties

Properties are “sets of objects” (which have that property).
Examples:

odd naturals: {1, 3, 5, . . . , 2n + 1, . . . }
even integers: {2z | z ∈ Z}
values of integer variables: {z ∈ Z | minint ≤ z ≤ maxint}
values of maybe uninitialized integer variables:
{z ∈ Z | minint ≤ z ≤ maxint} ∪ {Ωm | m ∈M} where M
is a set of error messages
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Properties (continued)

equality of two variables x and y:
{ρ ∈ X⇀ V | x, y ∈ dom(ρ) ∧ ρ(x) = ρ(y)}
invariance property: (of a program with states in Σ):
I ∈ P(Σ)

trace property: T ∈ P(Σ
→∞)

trace semantics property: P ∈ P(P(Σ
→∞))

. . .
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The complete lattice of concrete properties

The set of properties P(Σ) of objects in Σ is a complete boolean
lattice:

〈P(Σ),⊆, ∅,Σ,∪,∩,¬〉

where

A property P ∈ P(Σ) is the set of objects which have the
property P.

⊆ is logical implication since P ⊆ Q means that all objects
with property P have property Q (o ∈ P =⇒ o ∈ Q)
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∅ is false

Σ is true

∪ is disjunction (objects which have property P or have
property Q belong to P ∪ Q)

∩ is conjunction (objects which have property P and have
property Q belong to P ∩ Q)

¬ is negation (objects not having property P are those in
Σ \ P )
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Abstraction, informal introduction

Abstraction replace someting “concrete” 1 by a schematic
description that account for some, and in general not all
properties, either known or inferred i.e. an “abstract” model
or concept

In practice, such an abstract model of a concrete object o

can describe some of the properties of the concrete object
cannot describe all properties of this concrete object 2

1
real, actual, material, corporeal, . . .

2
since otherwise this property would have to be “exactly that object” i.e. {o}
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So an abstraction of properties in P(Σ) of objects in Σ is
essentially a subset A ⊆ P(Σ) such that:

The properties in A are the concrete properties that can be
described exactly by the abstraction, without any loss of
information
The properties in P(Σ) \ A are the properties that cannot be
described exactly by the abstraction, and have to be referred
to by being approximated in some way or another by abstract
properties in A
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Intuitive example 1 of abstraction

Cars
α→ Color 3

A concrete property of cars is a set of cars

It can be abstracted by the set of their colors

A color is a set of cars

An abstract property of cars is a set of cars which, whenever
it contains one car of some color, also contains all cars of
that color

3Formally, if t ∈ Cars→ Color yields the color t(c) of a car c ∈ Cars then
the abstraction P ∈ P(Cars) is α(P) = {t(c) | c ∈ P} and the set of cars
described by an abstract property T ⊆ Colors is
γ(T ) = {c ∈ Cars | t(c) ∈ T}.
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Intuitive example 2 of abstraction

Scientific papers → set of keywords 4

A concrete property of scientific papers is a set of scientific
papers

Each scientific paper is abstracted by a list of keywords

A property of scientific papers can be abstracted by the list
of keywords appearing in all papers with that property

An abstract property of scientific papers is therefore a set of
papers which have all keywords belonging to the list

4Can be written formally as well.
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Abstraction, definition of concrete and abstract
properties

Abstraction is a reasoning/computation such that:

Only some properties A ⊆ P(Σ) of the objects in Σ can be
used;

The properties P ∈ A that can be used are called abstract;

The properties P ∈ P(Σ) are called concrete;
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Abstract reasonings/computations involve sound
approximations, in that:

The concrete properties that are also abstract can be used in
the abstract reasoning/computation “as is”, without any loss
of information;
The concrete properties P ∈ P(Σ) \ A which are not abstract
cannot be used in the reasoning/computation and therefore
must be approximated by some other abstract property
P ∈ A, which, since P 6= P, involves some form of
approximation.
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Direction of abstraction

When approximating a concrete property P ∈ P(Σ), by an
abstract property P ∈ A, with P 6= P, a relation must be
established between the concrete P and abstract property P
to estabblish that

“P ∈ A is an approximation/abstraction of
P ∈ P(Σ)”

so as to ensure the soundness of the reasoning in the
abstract with respect to the concrete, exact one.
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We consider essentially two cases:

Approximation from above: P ⊆ P
Approximation from below: P ⊇ P

Other relations can be considered (e.g. probabilistic
properties)

The two notions are dual so formally only one need to be
studied formally (approximation from above)

In practice, useful approximation from below are much
harder to discover
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Abstraction from below

x

x

x

x x

xx x

x

x

x

x: points which have the concrete property P
o: points which have the abstract property P

To answer the question “〈x , y〉 ∈ P?” using only P (such
that P ⊇ P):

If 〈x , y〉 6∈ P then “I don’t know”
If 〈x , y〉 ∈ P then “Yes”
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Abstraction from above

x

x

x

x x

xx x

x

x

x

x: points which have the concrete property P
o: points which have the abstract property P

To answer the question “〈x , y〉 ∈ P?” using only P (such
that P ⊆ P):

If 〈x , y〉 ∈ P then “I don’t know”
If 〈x , y〉 6∈ P then “Yes”
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Why can an abstraction from above be “simpler”
than the original concrete property?

The concrete property is a set of objects

The objects are complex
The set can be infinite
In general their exists no suitable computer repre- sentation
of the concrete property

The abstract property is a larger set of objects

Larger structures are in general even more expensive to store
in the computer memory/compute with than smaller ones
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but, well-chosen larger structures can have simpler encodings
which can be exploited for memorization and computation

Example:

Set of cars

→

Set of all cars of color
blue and red

→

Set of
colors
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What to do in absence of (upper) abstraction?

Assume a mechanized reasoning about a computer sys- tems
with objects/states Σ, we use an abstraction A ∈ P(Σ)

Assume concrete properties P ∈ P(Σ) which cannot be
expressed in the abstract, must be approximated from above
by P ∈ A : P ⊇ P

How should the mechanized reasoning proceed when some
property P has has no abstraction P ∈ A from above
(∀P ∈ A : P 6⊇ P)?

loop?
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block?
ash for help?
fail?
answer something sensible!

The only way to be always able to say something sensible for
all P ∈ P(Σ) is to assume that Σ ∈ A:

Any concrete property should be approximable by
“I don’t know” (i.e. Σ ∈ A,Σ meaning “true”)
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Minimal abstractions

Assume concrete properties P ∈ P(Σ) must be approximated
from above by P ∈ A ⊂ P(Σ) such that P ⊆ P

The smaller the abstract property P is, the most precise the
approximation will be

There might be no minimal abstract property at all in A

P

P

A P(Σ)
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If a concrete property P ∈ P(Σ) has minimal upper
approximations P ∈ A:

P ⊆ P
6 ∃P ′ : P ⊆ P ′ @ P

then such minimal approximations are more precise than the
non-minimal ones

So minimal abstract upper approximations, if any, should be
prefered

In particular, an abstract property P ∈ A is best
approximated by itself
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In absence of minimal abstraction

A classical example of absence of minimal abstract
upper-approximations is that of a disk with no minimal
convex polyhedral approximation

Σ = R× R
A = convex polyhedra

Absence of minimal approximation is shown by Euclide’s
construction:
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In absence of minimal approximations, the approximation
P ⊂ P1 can always be approximated by a better one
P ⊂ P2 ⊂ P1!

Some arbitrary choice has to be performed. This case will be
studied later. So, in the following, we assume the existence
of minimal approximations
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Example of minimal abstractions in absence of a
best approximation

x can be approximated by y = γ(y) and z = γ(z) but x and
z are not comparable
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The other possible upper approximations would be less
precise (than both y and z in that particular example)

Notice that γ cannot be the upper adjoint of a Galois
connection since it is not a complete meet morphism:

γ(y) ∧ γ(z) 6= γ(y u z)
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Which minimal abstraction to choose?

If there are several minimal possible abstract approximations
P1,P2, . . .

5

Example: rule of signs

In “1+0”, it is better to chose ’+’, because of the rule ’+’ +
’+’ = ’+’, while ’+’ + ’-’ yields no information (“I don’t
know”)
In “(-1)+0”, it is better to chose ’-’, because of the rule ’-’ +
’-’ = ’-’, while ’-’ + ’+’ yields no information (“I don’t
know”)
Both cases have to be tried (backtracking)

5There can even be infinitely many ones
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In absence of unicity of the minimal approximation, it may
be necessary to try all of them (at the cost of an exponential
blow up of the mechanical reasoning).

To start with, we will assume the existence of a best
approximation (i.e. a unique minimal upper approximation).
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Best abstraction

A very handy choice of the abstract properties A ⊆ P(Σ) is
when every concrete property P has a best approximation
P ∈ A:

P ⊆ P

∀P
′ ∈ A : (P ⊆ P

′
) =⇒ (P ⊆ P

′
)

It follows that P is the glb of the over-approximations of P
in A:

P =
⋂
{P ′ ∈ A | P ⊆ P

′} ∈ A
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Proof.

We have ∀P ∈ {P ′ ∈ A | P ⊆ P
′} : P ⊆ P so

P ⊆
⋂
{P ′ ∈ A | P ⊆ P

′} by definition of glb

Moreover
∀P
′ ∈ A : (P ⊆ P

′
) =⇒ (

⋂
{P ′′ ∈ A | P ⊆ P

′′} ⊆ P
′
)

because from the premise we get P
′ ∈ {P ′′ ∈ A | P ⊆ P

′′}
and by definition of glb it holds

⋂
{P ′′ ∈ A | P ⊆ P

′′} ⊆ P
′
.

There can only be one such smallest abstraction of P.

It follows that P =
⋂
{P ′ ∈ A | P ⊆ P

′}

So
(
∃P : (P ⊆ P) ∧ (∀P

′ ∈ A : (P ⊆ P
′
) =⇒ (P ⊆ P

′
)
)

⇔ P =
⋂
{P ′ ∈ A | P ⊆ P

′} ∈ A
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The abstract domain is a Moore family

Theorem

The hypothesis that any concrete property P ∈ P(Σ) has a best
abstraction P ∈ A, implies that

The abstract domain A is a Moore family.

Proof.

Let X ⊆ A be a set of abstract properties. Its intersection
⋂

X has a
best approximation P ∈ A. We have therefore

P =
⋂
{P ′ ∈ A |

⋂
X ⊆ P

′}

But ∀P
′ ∈ X :

⋂
X ⊆ P

′
and X ⊆ A so X ⊆ {P ′ ∈ A |

⋂
X ⊆ P

′} and

therefore
⋂
{P ′ ∈ A |

⋂
X ⊆ P

′} ⊆
⋂

X by def. of glb. By
antisymmetry (P ⊆

⋂
X as P is an approximation),⋂

X =
⋂
{P ′ ∈ A |

⋂
X ⊆ P

′} = P ∈ A, proving A to be a Moore
family.
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In particular
⋂
∅ = Σ ∈ A, which is consistent with our

hypothesis that A should contain Σ to have the ability to express
“I don’t know”.
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Example and counter-example of Moore family based
abstraction

Example: rule of signs with best approximation of 0
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Counter-example: rule of signs without best approximation
of 0
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Counter-example: rule of sign without upper approximation
of “different from zero”
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Example: abstraction to 0 or different from 0

⊥

¬0 0

>
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A Moore family in a poset is a complete lattice

Theorem

Let 〈P,v〉 be a topped poset and M ⊆ P be a Moore family then
〈M,v〉 is a complete lattice 〈M,v,uM,>〉.

Proof.

Since 〈P,v〉 is a poset and M ⊆ P, 〈M,v〉 is a poset. Being a
Moore family it is topped and any subset S ⊆ M has uS ∈ M so
u is the meet in M. It follows that M is a complete lattice, which
lub is:

tS = u{y ∈ M | ∀x ∈ S : x v y} ∈ M

The infimum is uM ∈ M.
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Closure operator based abstraction

Assume that the abstract domain A is a Moore family of the
concrete domain 〈P(Σ),⊆, ∅,Σ,∪,∩,¬〉. The the abstraction
map is

ρ ∈P(Σ)→ A

ρ(P)
def
=
⋂
{P ∈ A | P ⊆ P}

Then ρ is an upper closure operator on P(Σ). That is ρ is

Extensive: P ⊆ ρ(P)

Increasing: P ⊆ P ′ ⇒ ρ(P) ⊆ ρ(P ′)

Idempotent: ρ(ρ(P)) = ρ(P)

Proof.

ρ is the closure operator induced by the Moore family, a result
simply depending on the fact that 〈P(Σ),⊆, ∅,Σ,∪,∩〉 is a
complete lattice.
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Example of abstraction map

Moore family

Abstraction map
(closure operator)
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Equivalent specification of an abstraction by a
Moore family and a closure operator

In case of existence of a best abstraction, it is equivalent to
specify the abstraction domain A

1 as a Moore family M
2 as a closure operator ρ

Proof.

Given M define ρ(P) = ∩{P ∈M | P ⊆ P} ∈ M so that
A =M = ρ(P(Σ))

Conversely, given a closure operator ρ, define
A = ρ(P(Σ)) = {ρ(P) | P ∈ P(Σ)} which is therefore the
set of fixpoints of ρ (because ρ is idempotent) whence a
Moore family since ρ operates on a complete lattice.
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Examples of specifications of an abstraction by a
Moore family and a closure operator

The most imprecise abstraction is “I don’t know”

M = {Σ}
ρ = λP.Σ

The most precise abstraction is “identity”

M = P(Σ)
ρ = λP.P
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Generalizing to complete lattices

The reasoning on abstractions of concrete properties
〈P(Σ),⊆, ∅,Σ,∪,∩,¬〉 to an abstract domain which, in case
of best abstraction is a Moore family, whence a complete
lattice, can be generalized to an arbitrary concrete complete
lattice 〈L,v,⊥,>,t,u〉
This allows a compositional approach where
〈L,v,⊥,>,t,u〉 is abstracted to 〈A1,v1,⊥1,>1,t1,u1〉
which itself can be further abstracted to
〈A2,v2,⊥2,>2,t2,u2〉, . . .
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