
1

PROGRAMMING IN HASKELL

Part 1 - Introduction

2

Starting GHCi

% ghci

> GHCi, version 6.8.2: http://www.haskell.org/ghc/ :? for help
Loading package base ... linking ... done.
Prelude>

On a Unix system, GHCi can be started from the %
prompt by simply typing ghci:

3

The GHCi > prompt means that the ghci system is
ready to evaluate an expression.

For example:

> 2+3*4
14

> (2+3)*4
20

> sqrt (3^2 + 4^2)
5.0

4

The Standard Prelude

The library file Prelude.hs provides a large number of
standard functions. In addition to the familiar
numeric functions such as + and *, the library also
provides many useful functions on lists.

 Select the first element of a list:

> head [1,2,3,4,5]
1

5

 Remove the first element from a list:

> tail [1,2,3,4,5]
[2,3,4,5]

 Select the nth element of a list:

> [1,2,3,4,5] !! 2
3

 Select the first n elements of a list:

> take 3 [1,2,3,4,5]
[1,2,3]

6

Haskell Scripts

 As well as the functions in the standard prelude,
you can also define your own functions;

 New functions are defined within a script, a text
file comprising a sequence of definitions;

 By convention, Haskell scripts usually have a .hs
suffix on their filename. This is not mandatory,
but is useful for identification purposes.

7

My First Script

double x = x + x

quadruple x = double (double x)

When developing a Haskell script, it is useful to keep
two windows open, one running an editor for the
script, and the other running GHCi.

Start an editor, type in the following two function
definitions, and save the script as test.hs:

8

% ghci test.hs

Leaving the editor open, in another window start up
ghci with the new script:

> quadruple 10
40

> take (double 2) [1,2,3,4,5,6]
[1,2,3,4]

Now both Prelude.hs and test.hs are loaded, and
functions from both scripts can be used:

9

Function Application

In mathematics, function application is denoted using
parentheses, and multiplication is often denoted
using juxtaposition or space.

f(a,b) + c d

Apply the function f to a and b, and add
the result to the product of c and d.

10

In Haskell, function application is denoted using
space, and multiplication is denoted using *.

f a b + c*d

As previously, but in Haskell syntax.

11

Moreover, function application is assumed to have
higher priority than all other operators.

f a + b

Means (f a) + b, rather than f (a +b).

12

Examples

Mathematics Haskell

f(x)

f(x,y)

f(g(x))

f(x,g(y))

f(x)g(y)

f x

f x y

f (g x)

f x (g y)

f x * g y

13

Naming Requirements

 Function and argument names must begin with a
lower-case letter. For example:

myFun fun1 arg_2 x’

 By convention, list arguments usually have an s
suffix on their name. For example:

xs ns nss

14

The Layout Rule

In a sequence of definitions, each definition must
begin in precisely the same column:

a = 10

b = 20

c = 30

a = 10

 b = 20

c = 30

 a = 10

b = 20

 c = 30

15

means

The layout rule avoids the need for explicit syntax to
indicate the grouping of definitions.

a = b + c
 where
 b = 1
 c = 2
d = a * 2

a = b + c
 where
 {b = 1;
 c = 2}
d = a * 2

implicit grouping explicit grouping

16

Conditional Expressions

As in most programming languages, functions can
be defined using conditional expressions.

abs n = if n ≥ 0 then n else -n

abs takes an integer n and returns n if
it is non-negative and -n otherwise.

17

Conditional expressions can be nested:

signum n = if n < 0 then -1 else
 if n == 0 then 0 else 1

 In Haskell, conditional expressions must always
have an else branch.

18

Guarded Equations

As an alternative to conditionals, functions can also
be defined using guarded equations.

abs n | n ≥ 0 = n
 | otherwise = -n

As previously, but using guarded equations.

19

Guarded equations make definitions involving
multiple conditions easier to read:

 The catch-all condition otherwise is defined in the
prelude by otherwise = True.

signum n | n < 0 = -1
 | n == 0 = 0
 | otherwise = 1

20

Pattern Matching

Many functions have a particularly clear definition
using pattern matching on their arguments.

not False = True
not True = False

not maps False to True, and True to
False.

21

Functions can often be defined in many different
ways using pattern matching. For example

True && True = True
True && False = False
False && True = False
False && False = False

True && True = True
_ && _ = False

can be defined more compactly by

22

True && b = b
False && _ = False

However, the following definition is more efficient,
because it avoids evaluating the second argument if
the first argument is False:

 The underscore symbol _ is a wildcard pattern that
matches any argument value.

23

 Patterns may not repeat variables. For example,
the following definition gives an error:

b && b = b
_ && _ = False

 Patterns are matched in order. For example, the
following definition always returns False:

_ && _ = False
True && True = True

24

List Patterns

Internally, every non-empty list is constructed by
repeated use of an operator (:) called “cons” that
adds an element to the start of a list.

[1,2,3,4]

Means 1:(2:(3:(4:[]))).

25

Functions on lists can be defined using x:xs patterns.

head (x:_) = x

tail (_:xs) = xs

head and tail map any non-empty list to
its first and remaining elements.

26

Note:

 x:xs patterns must be parenthesised, because
application has priority over (:). For example, the
following definition gives an error:

 x:xs patterns only match non-empty lists:

> head []
*** Exception: Prelude.head:
empty list

head x:_ = x

