PROGRAMMING IN HASKELL

Part 3 - Declaring Types and Classes



Type Declarations

In Haskell, a new name for an existing type can be
defined using a type declaration.

type String = [Char]

\/String/isagnym for the type [Char]. |




Type declarations can be used to make other types
easier to read. For example, given

we can define:




Like function definitions, type declarations can also
have parameters. For example, given

we can define:




Type declarations can be nested:

However, they cannot be recursive:
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Data Declarations

A completely new type can be defined by specifying
Its values using a data declaration.

data Bool = False | True

Bool is a new type, with two
new values False and True.




Note;

§ The two values False and True are called the
constructors for the type Bool.

I Type and constructor names must begin with an
upper-case letter.

§ Data declarations are similar to context free
grammars. The former specifies the values of a
type, the latter the sentences of a language.



Values of new types can be used in the same ways as
those of built in types. For example, given

we can define;




The constructors in a data declaration can also have
parameters. For example, given

we can define:




Note:

B Shape has values of the form Circle r where r is a
float, and Rect x y where x and y are floats.

# Circle and Rect can be viewed as functions that
construct values of type Shape:

Circle :: Float - Shape

Nla :: Float -~ Float - Shape
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Not surprisingly, data declarations themselves can
also have parameters. For example, given

we can define:
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Recursive Types

In Haskell, new types can be declared in terms of
themselves. That is, types can be recursive.

data Nat = Zero | Succ Nat

Nat is a new type, with constructors
Zero :: Nat and Succ :: Nat - Nat.
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Note:

§ A value of type Nat is either Zero, or of the form
Succ n where n :: Nat. That is, Nat contains the
following infinite sequence of values:

Zero
Succ Zero

Succ (Succ Zero)
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§ We can think of values of type Nat as natural
numbers, where Zero represents 0, and Succ
represents the successor function 1+,

§ For example, the value
Succ (Succ (Succ Zero))
represents the natural number

1+ @A+ @+0) = 3
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Using recursion, it is easy to define functions that
convert between values of type Nat and Int:
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Two naturals can be added by converting them to
Integers, adding, and then converting back:

add :: Nat - Nat - Nat
add m n = int2nat (nat2int m + nat2int n)

However, using recursion the function add can be
defined without the need for conversions:

add Zero n
add (Succ m) n

n
Succ (add m n)
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For example:

Note;

§ The recursive definition for add corresponds to the
laws 0+n = n and (1+m)+n = T+(m+n).
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Arithmetic Expressions

Consider a simple form of expressions built up from
Integers using addition and multiplication.

/\
/\
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Using recursion, a suitable new type to represent
such expressions can be declared by:

data Expr = Val Int
| Add Expr Expr

| Mul Expr Expr

For example, the expression on the previous slide
would be represented as follows:

Add (val 1) (Mul (val 2) (val 3))
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Using recursion, it is now easy to define functions
that process expressions. For example:

20



Note;

B The three constructors have types:

Val :: Int - Expr
Add :: Expr - Expr - Expr
Mul :: Expr - Expr - Expr

B Many functions on expressions can be defined by
replacing the constructors by other functions
using a suitable fold function (cf. exercises).

eval = fold 1d (+) (¥)

21



Class Declaration

A new class can be declared using the class
mechanism.

For example, the class Eg from the standard library
Is declared as:

22



Instance Declarations

Types can now be made into in a type that supports
equality by using the instance declaration.
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Note;

§ Only types declared via data can be made into
Instances of classes.

§ Default definitions can be overridden in instance
declarations.
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Classes can also be extended to form new classes.
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Declaring now an equality type as an ordered
type requires now only defining four operators:
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Deriving Instances

For the built-in classes £qg, Ord, Show and Read you
can automatically derive instances of types.

data Bool = False | True
deriving (Eq,Ord,Show,Read)

The ordering on the constructors Is then
determined by their position in its declaration.
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