PROGRAMMING IN HASKELL

Part 3 - Declaring Types and Classes



Type Declarations

In Haskell, a new name for an existing type can be
defined using a type declaration.

type String = [Char]

\/String/isagnym for the type [Char]. |




Type declarations can be used to make other types
easier to read. For example, given

we can define:




Like function definitions, type declarations can also
have parameters. For example, given

we can define:




Type declarations can be nested:

However, they cannot be recursive:

X




Data Declarations

A completely new type can be defined by specifying
Its values using a data declaration.

data Bool = False | True

Bool is a new type, with two
new values False and True.




Note;

§ The two values False and True are called the
constructors for the type Bool.

I Type and constructor names must begin with an
upper-case letter.

§ Data declarations are similar to context free
grammars. The former specifies the values of a
type, the latter the sentences of a language.



Values of new types can be used in the same ways as
those of built in types. For example, given

we can define;




The constructors in a data declaration can also have
parameters. For example, given

we can define:




Note:

B Shape has values of the form Circle r where r is a
float, and Rect x y where x and y are floats.

# Circle and Rect can be viewed as functions that
construct values of type Shape:

Circle :: Float - Shape

Nla :: Float -~ Float - Shape

10



Not surprisingly, data declarations themselves can
also have parameters. For example, given

we can define:

11



Recursive Types

In Haskell, new types can be declared in terms of
themselves. That is, types can be recursive.

data Nat = Zero | Succ Nat

Nat is a new type, with constructors
Zero :: Nat and Succ :: Nat - Nat.

12



Note:

§ A value of type Nat is either Zero, or of the form
Succ n where n :: Nat. That is, Nat contains the
following infinite sequence of values:

Zero
Succ Zero

Succ (Succ Zero)

13



§ We can think of values of type Nat as natural
numbers, where Zero represents 0, and Succ
represents the successor function 1+,

§ For example, the value
Succ (Succ (Succ Zero))
represents the natural number

1+ @A+ @+0) = 3

14



Using recursion, it is easy to define functions that
convert between values of type Nat and Int:

15



Two naturals can be added by converting them to
Integers, adding, and then converting back:

add :: Nat - Nat - Nat
add m n = int2nat (nat2int m + nat2int n)

However, using recursion the function add can be
defined without the need for conversions:

add Zero n
add (Succ m) n

n
Succ (add m n)

16



For example:

Note;

§ The recursive definition for add corresponds to the
laws 0+n = n and (1+m)+n = T+(m+n).

17



Arithmetic Expressions

Consider a simple form of expressions built up from
Integers using addition and multiplication.

/\
/\

18



Using recursion, a suitable new type to represent
such expressions can be declared by:

data Expr = Val Int
| Add Expr Expr

| Mul Expr Expr

For example, the expression on the previous slide
would be represented as follows:

Add (val 1) (Mul (val 2) (val 3))

19



Using recursion, it is now easy to define functions
that process expressions. For example:

20



Note;

B The three constructors have types:

Val :: Int - Expr
Add :: Expr - Expr - Expr
Mul :: Expr - Expr - Expr

B Many functions on expressions can be defined by
replacing the constructors by other functions
using a suitable fold function (cf. exercises).

eval = fold 1d (+) (¥)

21



Class Declaration

A new class can be declared using the class
mechanism.

For example, the class Eg from the standard library
Is declared as:

22



Instance Declarations

Types can now be made into in a type that supports
equality by using the instance declaration.

23



Note;

§ Only types declared via data can be made into
Instances of classes.

§ Default definitions can be overridden in instance
declarations.

24



Classes can also be extended to form new classes.

25



Declaring now an equality type as an ordered
type requires now only defining four operators:

26



Deriving Instances

For the built-in classes £qg, Ord, Show and Read you
can automatically derive instances of types.

data Bool = False | True
deriving (Eq,Ord,Show,Read)

The ordering on the constructors Is then
determined by their position in its declaration.

27



