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PROGRAMMING IN HASKELL

Part 3 - Declaring Types and Classes
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Type Declarations

In Haskell, a new name for an existing type can be 
defined using a type declaration.

type String = [Char]

String is a synonym for the type [Char].
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Type declarations can be used to make other types 
easier to read.  For example, given

origin    :: Pos
origin     = (0,0)

left      :: Pos → Pos
left (x,y) = (x-1,y)

type Pos = (Int,Int)

we can define:
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Like function definitions, type declarations can also 
have parameters.  For example, given

type Pair a = (a,a)

we can define:

mult      :: Pair Int → Int
mult (m,n) = m*n

copy      :: a → Pair a
copy x     = (x,x)
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Type declarations can be nested:

type Pos   = (Int,Int)

type Trans = Pos → Pos

However, they cannot be recursive:

type Tree = (Int,[Tree])
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Data Declarations

A completely new type can be defined by specifying 
its values using a data declaration.

data Bool = False | True

Bool is a new type, with two 
new values False and True.
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Note:

 The two values False and True are called the 
constructors for the type Bool.

 Type and constructor names must begin with an 
upper-case letter.

 Data declarations are similar to context free 
grammars.  The former specifies the values of a 
type, the latter the sentences of a language.
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answers     :: [Answer]
answers      = [Yes,No,Unknown]

flip        :: Answer → Answer
flip Yes     = No
flip No      = Yes
flip Unknown = Unknown

data Answer = Yes | No | Unknown

we can define:

Values of new types can be used in the same ways as 
those of built in types.  For example, given 
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The constructors in a data declaration can also have 
parameters.  For example, given

data Shape = Circle Float
           | Rect Float Float

square         :: Float → Shape
square n        = Rect n n

area           :: Shape → Float
area (Circle r) = pi * r^2
area (Rect x y) = x * y

we can define:
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Note:

 Shape has values of the form Circle r where r is a 
float, and Rect x y where x and y are floats.

 Circle and Rect can be viewed as functions that 
construct values of type Shape:

Circle :: Float → Shape

Rect   :: Float → Float → Shape
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Not surprisingly, data declarations themselves can 
also have parameters.  For example, given

data Maybe a = Nothing | Just a

safediv    :: Int → Int → Maybe Int
safediv _ 0 = Nothing
safediv m n = Just (m `div` n)

safehead   :: [a] → Maybe a
safehead [] = Nothing
safehead xs = Just (head xs)

we can define:
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Recursive Types

In Haskell, new types can be declared in terms of 
themselves.  That is, types can be recursive.

data Nat = Zero | Succ Nat

Nat is a new type, with constructors 
Zero :: Nat and Succ :: Nat → Nat.
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Note:

 A value of type Nat is either Zero, or of the form 
Succ n where n :: Nat.  That is, Nat contains the 
following infinite sequence of values:

Zero

Succ Zero

Succ (Succ Zero)

•
•
•
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 We can think of values of type Nat as natural 
numbers, where Zero represents 0, and Succ 
represents the successor function 1+.

 For example, the value

Succ (Succ (Succ Zero))

represents the natural number

1 + (1 + (1 + 0)) 3=
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Using recursion, it is easy to define functions that 
convert between values of type Nat and Int:

nat2int         :: Nat → Int

nat2int Zero     = 0

nat2int (Succ n) = 1 + nat2int n

int2nat         :: Int → Nat

int2nat 0        = Zero

int2nat (n+1)    = Succ (int2nat n)
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Two naturals can be added by converting them to 
integers, adding, and then converting back:

However, using recursion the function add can be 
defined without the need for conversions:

add    :: Nat → Nat → Nat

add m n = int2nat (nat2int m + nat2int n)

add Zero     n = n

add (Succ m) n = Succ (add m n) 
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For example:

add (Succ (Succ Zero)) (Succ Zero)

Succ (add (Succ Zero) (Succ Zero))
=

Succ (Succ (add Zero (Succ Zero))
=

Succ (Succ (Succ Zero))
=

Note:

 The recursive definition for add corresponds to the 
laws 0+n = n and (1+m)+n = 1+(m+n).
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Arithmetic Expressions

Consider a simple form of expressions built up from 
integers using addition and multiplication.

1

+

∗

32
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Using recursion, a suitable new type to represent 
such expressions can be declared by:

For example, the expression on the previous slide 
would be represented as follows:

data Expr = Val Int
          | Add Expr Expr
          | Mul Expr Expr

Add (Val 1) (Mul (Val 2) (Val 3))
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Using recursion, it is now easy to define functions 
that process expressions.  For example:

size          :: Expr → Int

size (Val n)   = 1

size (Add x y) = size x + size y

size (Mul x y) = size x + size y 

eval          :: Expr → Int

eval (Val n)   = n

eval (Add x y) = eval x + eval y

eval (Mul x y) = eval x * eval y
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Note:

 The three constructors have types:

Val :: Int → Expr
Add :: Expr → Expr → Expr
Mul :: Expr → Expr → Expr

 Many functions on expressions can be defined by 
replacing the constructors by other functions 
using a suitable fold function (cf. exercises).  

eval = fold id (+) (*)
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Class Declaration

A new class can be declared using the class 
mechanism.

For example, the class Eq  from the standard library 
is declared as:

class Eq a where
  (==),(/=) :: a -> a -> Bool
  x /= y     = not (x == y) 
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Instance Declarations

Types can now be made into in a type that supports 
equality by using the instance declaration.

instance Eq Bool where
  False == False = True
  True  == True  = True
  _ == _         = False
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Note:

 Only types declared via data can be made into 
instances of classes.

 Default definitions can be overridden in instance 
declarations.
 Default definitions can be overridden in instance 

declarations.
 Default definitions can be overridden in instance 

declarations.
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Classes can also be extended to form new classes.

class Eq a => Ord a where
  (<),(<=),(>),(>=) :: a -> a -> Bool
  min, max          :: a -> a -> a
  min x y | x<= y     = x
          | otherwise = y
  max x y | x <= y    = y
          | otherwise = x
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   Declaring now an equality type as an ordered 
type requires now only defining four operators:

instance Ord Bool where
  False < True = True
  _ < _        = False
  b <= c       = (b < c) || (b == c)
  b > c        = c < b
  b >= c       = c <= b
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Deriving Instances

For the built-in classes Eq, Ord, Show and Read you 
can automatically derive instances of types.

 data Bool = False | True
             deriving (Eq,Ord,Show,Read)

The ordering on the constructors is then 
determined by their position in its declaration. 


