
1

PROGRAMMING IN HASKELL

Part 3 - Declaring Types and Classes

2

Type Declarations

In Haskell, a new name for an existing type can be
defined using a type declaration.

type String = [Char]

String is a synonym for the type [Char].

3

Type declarations can be used to make other types
easier to read. For example, given

origin :: Pos
origin = (0,0)

left :: Pos → Pos
left (x,y) = (x-1,y)

type Pos = (Int,Int)

we can define:

4

Like function definitions, type declarations can also
have parameters. For example, given

type Pair a = (a,a)

we can define:

mult :: Pair Int → Int
mult (m,n) = m*n

copy :: a → Pair a
copy x = (x,x)

5

Type declarations can be nested:

type Pos = (Int,Int)

type Trans = Pos → Pos

However, they cannot be recursive:

type Tree = (Int,[Tree])

6

Data Declarations

A completely new type can be defined by specifying
its values using a data declaration.

data Bool = False | True

Bool is a new type, with two
new values False and True.

7

Note:

 The two values False and True are called the
constructors for the type Bool.

 Type and constructor names must begin with an
upper-case letter.

 Data declarations are similar to context free
grammars. The former specifies the values of a
type, the latter the sentences of a language.

8

answers :: [Answer]
answers = [Yes,No,Unknown]

flip :: Answer → Answer
flip Yes = No
flip No = Yes
flip Unknown = Unknown

data Answer = Yes | No | Unknown

we can define:

Values of new types can be used in the same ways as
those of built in types. For example, given

9

The constructors in a data declaration can also have
parameters. For example, given

data Shape = Circle Float
 | Rect Float Float

square :: Float → Shape
square n = Rect n n

area :: Shape → Float
area (Circle r) = pi * r^2
area (Rect x y) = x * y

we can define:

10

Note:

 Shape has values of the form Circle r where r is a
float, and Rect x y where x and y are floats.

 Circle and Rect can be viewed as functions that
construct values of type Shape:

Circle :: Float → Shape

Rect :: Float → Float → Shape

11

Not surprisingly, data declarations themselves can
also have parameters. For example, given

data Maybe a = Nothing | Just a

safediv :: Int → Int → Maybe Int
safediv _ 0 = Nothing
safediv m n = Just (m `div` n)

safehead :: [a] → Maybe a
safehead [] = Nothing
safehead xs = Just (head xs)

we can define:

12

Recursive Types

In Haskell, new types can be declared in terms of
themselves. That is, types can be recursive.

data Nat = Zero | Succ Nat

Nat is a new type, with constructors
Zero :: Nat and Succ :: Nat → Nat.

13

Note:

 A value of type Nat is either Zero, or of the form
Succ n where n :: Nat. That is, Nat contains the
following infinite sequence of values:

Zero

Succ Zero

Succ (Succ Zero)

•
•
•

14

 We can think of values of type Nat as natural
numbers, where Zero represents 0, and Succ
represents the successor function 1+.

 For example, the value

Succ (Succ (Succ Zero))

represents the natural number

1 + (1 + (1 + 0)) 3=

15

Using recursion, it is easy to define functions that
convert between values of type Nat and Int:

nat2int :: Nat → Int

nat2int Zero = 0

nat2int (Succ n) = 1 + nat2int n

int2nat :: Int → Nat

int2nat 0 = Zero

int2nat (n+1) = Succ (int2nat n)

16

Two naturals can be added by converting them to
integers, adding, and then converting back:

However, using recursion the function add can be
defined without the need for conversions:

add :: Nat → Nat → Nat

add m n = int2nat (nat2int m + nat2int n)

add Zero n = n

add (Succ m) n = Succ (add m n)

17

For example:

add (Succ (Succ Zero)) (Succ Zero)

Succ (add (Succ Zero) (Succ Zero))
=

Succ (Succ (add Zero (Succ Zero))
=

Succ (Succ (Succ Zero))
=

Note:

 The recursive definition for add corresponds to the
laws 0+n = n and (1+m)+n = 1+(m+n).

18

Arithmetic Expressions

Consider a simple form of expressions built up from
integers using addition and multiplication.

1

+

∗

32

19

Using recursion, a suitable new type to represent
such expressions can be declared by:

For example, the expression on the previous slide
would be represented as follows:

data Expr = Val Int
 | Add Expr Expr
 | Mul Expr Expr

Add (Val 1) (Mul (Val 2) (Val 3))

20

Using recursion, it is now easy to define functions
that process expressions. For example:

size :: Expr → Int

size (Val n) = 1

size (Add x y) = size x + size y

size (Mul x y) = size x + size y

eval :: Expr → Int

eval (Val n) = n

eval (Add x y) = eval x + eval y

eval (Mul x y) = eval x * eval y

21

Note:

 The three constructors have types:

Val :: Int → Expr
Add :: Expr → Expr → Expr
Mul :: Expr → Expr → Expr

 Many functions on expressions can be defined by
replacing the constructors by other functions
using a suitable fold function (cf. exercises).

eval = fold id (+) (*)

22

Class Declaration

A new class can be declared using the class
mechanism.

For example, the class Eq from the standard library
is declared as:

class Eq a where
 (==),(/=) :: a -> a -> Bool
 x /= y = not (x == y)

23

Instance Declarations

Types can now be made into in a type that supports
equality by using the instance declaration.

instance Eq Bool where
 False == False = True
 True == True = True
 _ == _ = False

24

Note:

 Only types declared via data can be made into
instances of classes.

 Default definitions can be overridden in instance
declarations.
 Default definitions can be overridden in instance

declarations.
 Default definitions can be overridden in instance

declarations.

25

Classes can also be extended to form new classes.

class Eq a => Ord a where
 (<),(<=),(>),(>=) :: a -> a -> Bool
 min, max :: a -> a -> a
 min x y | x<= y = x
 | otherwise = y
 max x y | x <= y = y
 | otherwise = x

26

 Declaring now an equality type as an ordered
type requires now only defining four operators:

instance Ord Bool where
 False < True = True
 _ < _ = False
 b <= c = (b < c) || (b == c)
 b > c = c < b
 b >= c = c <= b

27

Deriving Instances

For the built-in classes Eq, Ord, Show and Read you
can automatically derive instances of types.

 data Bool = False | True
 deriving (Eq,Ord,Show,Read)

The ordering on the constructors is then
determined by their position in its declaration.

