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PROGRAMMING IN HASKELL

Part 3 - Declaring Types and Classes
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Type Declarations

In Haskell, a new name for an existing type can be 
defined using a type declaration.

type String = [Char]

String is a synonym for the type [Char].
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Type declarations can be used to make other types 
easier to read.  For example, given

origin    :: Pos
origin     = (0,0)

left      :: Pos → Pos
left (x,y) = (x-1,y)

type Pos = (Int,Int)

we can define:
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Like function definitions, type declarations can also 
have parameters.  For example, given

type Pair a = (a,a)

we can define:

mult      :: Pair Int → Int
mult (m,n) = m*n

copy      :: a → Pair a
copy x     = (x,x)
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Type declarations can be nested:

type Pos   = (Int,Int)

type Trans = Pos → Pos

However, they cannot be recursive:

type Tree = (Int,[Tree])
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Data Declarations

A completely new type can be defined by specifying 
its values using a data declaration.

data Bool = False | True

Bool is a new type, with two 
new values False and True.
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Note:

 The two values False and True are called the 
constructors for the type Bool.

 Type and constructor names must begin with an 
upper-case letter.

 Data declarations are similar to context free 
grammars.  The former specifies the values of a 
type, the latter the sentences of a language.
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answers     :: [Answer]
answers      = [Yes,No,Unknown]

flip        :: Answer → Answer
flip Yes     = No
flip No      = Yes
flip Unknown = Unknown

data Answer = Yes | No | Unknown

we can define:

Values of new types can be used in the same ways as 
those of built in types.  For example, given 
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The constructors in a data declaration can also have 
parameters.  For example, given

data Shape = Circle Float
           | Rect Float Float

square         :: Float → Shape
square n        = Rect n n

area           :: Shape → Float
area (Circle r) = pi * r^2
area (Rect x y) = x * y

we can define:
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Note:

 Shape has values of the form Circle r where r is a 
float, and Rect x y where x and y are floats.

 Circle and Rect can be viewed as functions that 
construct values of type Shape:

Circle :: Float → Shape

Rect   :: Float → Float → Shape



11

Not surprisingly, data declarations themselves can 
also have parameters.  For example, given

data Maybe a = Nothing | Just a

safediv    :: Int → Int → Maybe Int
safediv _ 0 = Nothing
safediv m n = Just (m `div` n)

safehead   :: [a] → Maybe a
safehead [] = Nothing
safehead xs = Just (head xs)

we can define:
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Recursive Types

In Haskell, new types can be declared in terms of 
themselves.  That is, types can be recursive.

data Nat = Zero | Succ Nat

Nat is a new type, with constructors 
Zero :: Nat and Succ :: Nat → Nat.
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Note:

 A value of type Nat is either Zero, or of the form 
Succ n where n :: Nat.  That is, Nat contains the 
following infinite sequence of values:

Zero

Succ Zero

Succ (Succ Zero)

•
•
•
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 We can think of values of type Nat as natural 
numbers, where Zero represents 0, and Succ 
represents the successor function 1+.

 For example, the value

Succ (Succ (Succ Zero))

represents the natural number

1 + (1 + (1 + 0)) 3=
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Using recursion, it is easy to define functions that 
convert between values of type Nat and Int:

nat2int         :: Nat → Int

nat2int Zero     = 0

nat2int (Succ n) = 1 + nat2int n

int2nat         :: Int → Nat

int2nat 0        = Zero

int2nat (n+1)    = Succ (int2nat n)
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Two naturals can be added by converting them to 
integers, adding, and then converting back:

However, using recursion the function add can be 
defined without the need for conversions:

add    :: Nat → Nat → Nat

add m n = int2nat (nat2int m + nat2int n)

add Zero     n = n

add (Succ m) n = Succ (add m n) 
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For example:

add (Succ (Succ Zero)) (Succ Zero)

Succ (add (Succ Zero) (Succ Zero))
=

Succ (Succ (add Zero (Succ Zero))
=

Succ (Succ (Succ Zero))
=

Note:

 The recursive definition for add corresponds to the 
laws 0+n = n and (1+m)+n = 1+(m+n).
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Arithmetic Expressions

Consider a simple form of expressions built up from 
integers using addition and multiplication.

1

+

∗

32
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Using recursion, a suitable new type to represent 
such expressions can be declared by:

For example, the expression on the previous slide 
would be represented as follows:

data Expr = Val Int
          | Add Expr Expr
          | Mul Expr Expr

Add (Val 1) (Mul (Val 2) (Val 3))
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Using recursion, it is now easy to define functions 
that process expressions.  For example:

size          :: Expr → Int

size (Val n)   = 1

size (Add x y) = size x + size y

size (Mul x y) = size x + size y 

eval          :: Expr → Int

eval (Val n)   = n

eval (Add x y) = eval x + eval y

eval (Mul x y) = eval x * eval y
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Note:

 The three constructors have types:

Val :: Int → Expr
Add :: Expr → Expr → Expr
Mul :: Expr → Expr → Expr

 Many functions on expressions can be defined by 
replacing the constructors by other functions 
using a suitable fold function (cf. exercises).  

eval = fold id (+) (*)



22

Class Declaration

A new class can be declared using the class 
mechanism.

For example, the class Eq  from the standard library 
is declared as:

class Eq a where
  (==),(/=) :: a -> a -> Bool
  x /= y     = not (x == y) 
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Instance Declarations

Types can now be made into in a type that supports 
equality by using the instance declaration.

instance Eq Bool where
  False == False = True
  True  == True  = True
  _ == _         = False
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Note:

 Only types declared via data can be made into 
instances of classes.

 Default definitions can be overridden in instance 
declarations.
 Default definitions can be overridden in instance 

declarations.
 Default definitions can be overridden in instance 

declarations.
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Classes can also be extended to form new classes.

class Eq a => Ord a where
  (<),(<=),(>),(>=) :: a -> a -> Bool
  min, max          :: a -> a -> a
  min x y | x<= y     = x
          | otherwise = y
  max x y | x <= y    = y
          | otherwise = x
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   Declaring now an equality type as an ordered 
type requires now only defining four operators:

instance Ord Bool where
  False < True = True
  _ < _        = False
  b <= c       = (b < c) || (b == c)
  b > c        = c < b
  b >= c       = c <= b
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Deriving Instances

For the built-in classes Eq, Ord, Show and Read you 
can automatically derive instances of types.

 data Bool = False | True
             deriving (Eq,Ord,Show,Read)

The ordering on the constructors is then 
determined by their position in its declaration. 


