
1

PROGRAMMING IN HASKELL

Part 2 - Types and Classes

2

What is a Type?

A type is a name for a collection of related values.
For example, in Haskell the basic type

TrueFalse

Bool

contains the two logical values:

3

Type Errors

Applying a function to one or more arguments of the
wrong type is called a type error.

> 1 + False
Error

1 is a number and False is a logical
value, but + requires two numbers.

4

Types in Haskell

 If evaluating an expression e would produce a
value of type t, then e has type t, written

e :: t

 Every well formed expression has a type, which
can be automatically calculated at compile time
using a process called type inference.

5

 All type errors are found at compile time, which
makes programs safer and faster by removing the
need for type checks at run time.

 In GHCi, the :type command calculates the type of
an expression, without evaluating it:

> not False
True

> :type not False
not False :: Bool

6

Basic Types

Haskell has a number of basic types, including:

Bool - logical values

Char - single characters

Integer - arbitrary-precision integers

Float - floating-point numbers

String - strings of characters

Int - fixed-precision integers

7

List Types

[False,True,False] :: [Bool]

[’a’,’b’,’c’,’d’] :: [Char]

In general:

A list is sequence of values of the same type:

[t] is the type of lists with elements of type t.

8

 The type of a list says nothing about its length:

[False,True] :: [Bool]

[False,True,False] :: [Bool]

[[’a’],[’b’,’c’]] :: [[Char]]

Note:

 The type of the elements is unrestricted. For
example, we can have lists of lists:

9

Tuple Types

A tuple is a sequence of values of different types:

(False,True) :: (Bool,Bool)

(False,’a’,True) :: (Bool,Char,Bool)

In general:

(t1,t2,…,tn) is the type of n-tuples whose ith
components have type ti for any i in 1…n.

10

 The type of a tuple encodes its size:

(False,True) :: (Bool,Bool)

(False,True,False) :: (Bool,Bool,Bool)

(’a’,(False,’b’)) :: (Char,(Bool,Char))

(True,[’a’,’b’]) :: (Bool,[Char])

Note:

 The type of the components is unrestricted:

11

Function Types

not :: Bool → Bool

isDigit :: Char → Bool

In general:

A function is a mapping from values of one type to
values of another type:

t1 → t2 is the type of functions that map values
of type t1 to values to type t2.

12

 The arrow → is typed at the keyboard as ->.

 The argument and result types are unrestricted.
For example, functions with multiple arguments or
results are possible using lists or tuples:

Note:

add :: (Int,Int) → Int
add (x,y) = x+y

zeroto :: Int → [Int]
zeroto n = [0..n]

13

Functions with multiple arguments are also possible
by returning functions as results:

add’ :: Int → (Int → Int)
add’ x y = x+y

add’ takes an integer x and returns a function
add’ x. In turn, this function takes an integer

y and returns the result x+y.

Curried Functions

14

 add and add’ produce the same final result, but
add takes its two arguments at the same time,
whereas add’ takes them one at a time:

Note:

 Functions that take their arguments one at a time
are called curried functions, celebrating the work
of Haskell Curry on such functions.

add :: (Int,Int) → Int

add’ :: Int → (Int → Int)

15

 Functions with more than two arguments can be
curried by returning nested functions:

mult :: Int → (Int → (Int → Int))
mult x y z = x*y*z

mult takes an integer x and returns a function
mult x, which in turn takes an integer y and

returns a function mult x y, which finally takes
an integer z and returns the result x*y*z.

16

Why is Currying Useful?

Curried functions are more flexible than functions on
tuples, because useful functions can often be made
by partially applying a curried function.

For example:

add’ 1 :: Int → Int

take 5 :: [Int] → [Int]

drop 5 :: [Int] → [Int]

17

Currying Conventions

 The arrow → associates to the right.

Int → Int → Int → Int

To avoid excess parentheses when using curried
functions, two simple conventions are adopted:

Means Int → (Int → (Int → Int)).

18

 As a consequence, it is then natural for function
application to associate to the left.

mult x y z

Means ((mult x) y) z.

Unless tupling is explicitly required, all functions in
Haskell are normally defined in curried form.

19

Polymorphic Functions

A function is called polymorphic (“of many forms”)
if its type contains one or more type variables.

length :: [a] → Int

for any type a, length takes a list of
values of type a and returns an integer.

20

 Type variables can be instantiated to different
types in different circumstances:

Note:

 Type variables must begin with a lower-case letter,
and are usually named a, b, c, etc.

> length [False,True]
2

> length [1,2,3,4]
4

a = Bool

a = Int

21

 Many of the functions defined in the standard
prelude are polymorphic. For example:

fst :: (a,b) → a

head :: [a] → a

take :: Int → [a] → [a]

zip :: [a] → [b] → [(a,b)]

id :: a → a

22

Overloaded Functions

A polymorphic function is called overloaded if its
type contains one or more class constraints.

sum :: Num a ⇒ [a] → a

for any numeric type a, sum
takes a list of values of type a
and returns a value of type a.

23

 Constrained type variables can be instantiated to
any types that satisfy the constraints:

Note:

> sum [1,2,3]
6

> sum [1.1,2.2,3.3]
6.6

> sum [’a’,’b’,’c’]
ERROR

Char is not a
numeric type

a = Int

a = Float

24

Num - Numeric types

Eq - Equality types

Ord - Ordered types

 Haskell has a number of type classes, including:

 For example:

(+) :: Num a ⇒ a → a → a

(==) :: Eq a ⇒ a → a → Bool

(<) :: Ord a ⇒ a → a → Bool

25

Hints and Tips

 When defining a new function in Haskell, it is
useful to begin by writing down its type;

 Within a script, it is good practice to state the type
of every new function defined;

 When stating the types of polymorphic functions
that use numbers, equality or orderings, take care
to include the necessary class constraints.

