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1 Introduction

We assume that the reader is familiar with the
ubiquity of information in the modern world and is
sympathetic with the need for restricting rights to
read, add, modify, or delete information in
specific contexts. This need is particularly acute
for systems having computers as significant
components.

This paper motivates and outlines a new approach to
secure systems with the following novel properties:

- It introduces a simple and general
automaton theoretic approach to modelling
secure systems.

- It shows how to use abstract capabilities
to model the dynamic security aspects of
such systems.

- The approach can be applied not only to
computer operating systems, but also to
secure message systems, and to data base
systems; it is not limited to systems
which are entirely computer based, but
applies just as well to systems that
contain manual components, and even to
entirely manual systems.

- It introduces a general concept of
security policy, such that allowed
policies Include multi-level security
(MLS), capability passing, confinement,
compartmentation, discretionary access,
multi-user/multi key access, automatic
distribution and authorization chains,
and downgrading.

— It does without the notion of "trusted
processes.”

- It provides a formalism for the
specification of security policies.

Ip "trusted process" is generally taken to be a
subsystem that is permitted to violate some global
security policy, usually MLS. However, it seems to
us unnecessarily dangerous to admit subsystems that
are permitted to perform arbitrary actions upon
system resources; rather, one should state precise
policies for the interaction of these subsystems
with the whole system, and then verify that those
policies are satisfied.
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- It supports a rigorous treatment of
intransitive information flow.

- It provides techniques for proving that a
given system satisfies a given policy.

- It supports use of a hierarchy of models
at various levels of detail, thus making
it easier to prove security properties by
factoring the difficulties, and by
letting them appear at their proper level
of abstraction.

However, our approach does not address the problems
of user authentication, of security breaches
arising through inference, either logical or
statistical, of unauthorized information from
information which is authorized (the so-called
aggregation problem), or of fault-tolerant secure
computing.

The literature on computer security provides many
different "security models," without saying what a
security model actually is. We propose to
distinguish sharply between a security policy,
which defines the security requirements for a given
system, and the system itself, which may be
represented by a model, for example, a high level
specification or an abstract machine description of
what the system does“. In general, security
policies are very simple, and should be easy to
state in an appropriate formalism. We provide a
very simple requirement language for stating
security policies, based on the concept of
noninterference, where

one group of users, using a certain
set of commands, is noninterferi
with another group of users if Ggat
the first group does with those

commands has no effect on what the
second group of users can see.

In this approach, security verification consists of
showing that a given policy isvsatisfied by a given
model. Taking this abstract view considerably
simplifies many aspects of the problem.

2gyen though such a model describes how some
system intends to achieve security, it probably
should not be called a "security model® unless it
has been proved to satisfy some security policy; in
particular, we should also be able to consider
models of insecure systems, in order to be able to
explore their flaws.



Information flow techniques attempt to analyze what
users (or processes, or variables) can potentially
interfere with others, whereas we begin oppositely,
by saying what users (or processes, or variables)
must not interfere with others in order that some
security policy hold. Information flow techniques
generally proceed to form the transitive closure of
a "potentially flows" relation, and thus end up
with a large number of cases that actually cannot
occur, but nonetheless must be analyzed. We hope
to avoid this bog by using a more refined analysis
based on noninterference and containing explicit
information about the operations invoked by users.

Our work was in part inspired by the approach of

[Feiertag 80] and [Feiertag, Levitt & Robinson
77]. Some differences are that we are more
explicit and rigorous about our framework and
assumptions, we treat the general dynamical case in
which capabilities may be passed between users, and
we consider arbitrary security policies, rather
than just MLS. Our approach is related to that of

[Rushby 8la] which also uses an automaton model.
Differences are that [Rushby 8la] only considers
the static case (no passing of capabilities) of a
policy that separates processes by pemmitting them
to communicate only through specified channels.

The reader who wants more background information on
computer security should consult [Denning 82], or
[Landwehr 811, [Rushby 81b] or [Turn 81].

1.1 The Problem of Defining Security

The purpose of a so-called "security model" is to
provide a basis for determining whether or not a
system is secure, and if not, for detecting its
flaws. Most of the models given in the literature
are not mathematically rigorous enough to support
meaningful determinations of the kind needed; some
do not support a sufficiently general view of
security (for example, they may fail to handle
breaches of security by cooperating multiple
users); and some are restricted to specific kinds
of system, or even to just one system. These
models are often very complex, and thus obscure the
fundamental intuition which is usually very simple.

Many of the most complicated security problems
arise in connection with so-called capability
systems; for example, the passing of capabilities
among users can lead to situations in which it is
difficult to determine whether or not security can
be violated. The rigorous mathematical
verification of non-trivial security policies for
such systems seems not to have been previously
studied.

One assumption behind this paper is that security
is fundamentally a requirement for certain systems
» where we use the word "requirement” to refer to
the social context of a system, rather than to some

3Although we will often speak as if concerned
only with computer systems, in fact our aproach,
including general policies, capability models, and
verification can also be applied directly to manual
or mixed manual-computer systems, and our use of
the word "system" should be understood in this
sense.

pre—existing mathematical model. Most work in
computer security has ignored the social contexts
in which systems are actually used. However,
different organizations have different security
needs, and use their systems in different ways; in
general, they have different security policies.
Providing a model without understanding the needs
of the community involved is unlikely to yield the
most useful results. What is ultimately necessary
is that the actual community of users should be
satisfied that the system they are using is
sufficiently secure in a sense which is appropriate
for their particular purposes. Once the needs of a
community have been understood, it may be possible
to formalize those needs and to model their
information processing system; at this point it
will be meaningful and useful to provide proofs.

In this, we disagree with [DeMillo, Lipton & Perlis
77}, who seem to believe that the social process in
itself can be adequate for security verification;
see [Dijkstra 78] for related dialectics.

Thus, we envision a four stage approach: first,
determine the security needs of a given community;
second, express those needs as a formal
requirement; third, model the system which that
community is (or will be) using; and last, verify
that this model satisfies the requirement. Only
the last of these steps is purely mathematical,
although the other steps have mathematical aspects;
the remainder of this paper concentrates on such
aspects.

1.2 The Problem of Verifying Security

A great deal has been written about the
verification of allegedly secure systems. A basic
point is that it is necessary to verify not only
that some high level design specification, such as
might be implemented in PSOS [Neumann, Boyer,
Feiertag, Levitt & Robinson 8C], satisfies some
security policy, such as MLS, but one must also
verify that the code for the system actually
satisfies the design specification. In particular,
it will be necessary to check at some level that
such features as interrupts and memory maps are
handled correctly. It is here that work on
security kernels becomes relevant, as attempts to
simplify these verification problems.

In general, work on security kernels has not
addressed issues of security policy. For example,
[Popek & Farber 78] presents an automatorn—1like
model for a mechanism to enforce access control in
their kernel, but they do not attempt to show that
it satisfies any particular constraints on the flow
of information. Rather, they provide suggestions
on how to prove that some code satisfies their
model. Their model falls under our heading of
"dynamic capability systems," because they have a
"policy manager" process which can change the
protection data of the system. Unfortunately, they
fail to state any restrictions on this process.

[Rushby 8la] discusses the notion of a “separation
kernel," which it seems might be useful for
modelling and verifying the lower levels of an
abstract machine hierarchy, because it does permit
discussion of interrupts, memory maps, etc., and
also simplifies system structure by postulating
separation and channel control policies for
component processes.



1.3 Some Highlights of the Approach

In order to treat a sufficiently wide variety of
systems, we need a rather abstract notion of
system. This paper gives a set theoretic model
which is a sort of generalized automaton, called a
"capability system.®™ It has an ordinary state
machine component, and also a capability machine
component which keeps track of what actions are
permitted to what users. Systems which do not use
capabilities can be modelled with this notion,
simply by omitting the capability component.

We define what it means for one set of users to be
"noninterfering with" another; this formalizes the
notion of information not flowing where it
shouldn't, without assuming that information flow
is necessarily transitive. We next provide a
general definition of "security policy" and discuss
what it means for a given capability system to
satisfy a given security policy, thus defining the
security verification problem. Finally, we suggest
some methods for actually carrying out such
verifications.

Recent work on abstract data types suggests that it
may be unnecessary and even harmful to separate a
data structure from the commands which create,
access, and modify it [Goguen, Thatcher & Wagner
78, Guttag 75]. Furthermore, experience with
applications suggests that it is necessary to take
account of less conventional commands, for example,
commands that "execute" data, or that "summarize"
it statistically. For this reason, we consider
"abilities," which are simply sets of commands.
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2 Security Models

This section presents our technique for modelling
secure systems, using standard structures from
automaton theory in a way that incorporates
capabilities.

2.1 Static Systems

We first discuss the classic case in which what
users are permitted to do does not change over
time. We may assume that all the information about
what users are permitted to do is sncoded in a
single abstract "capability table™®,

4o¢ course, in an actual implementation, this
information may be distributed among a number of
tables and algorithms. Exactly how this is done
does not concern us in this model; we only need an
abstract summary of what is permitted and what is
not. In this respect, our "capability tables" are
much like the "access matrices" of [Lampson 74].
Thus, our abstract capabilities should be carefully
distinguished from "concrete capabilities," which
might be, for example, very long machine words used
to actually implement abstract capabilities.

The system will also have information which is not
concerned with what is permitted; this will include
users' programs, data, messages, etc. We will call
a complete characterization of all such information
a state of the system, and we let S denote the set
of all such states. The system will provide
commands that change these states; their effect can
be described by a function

do: SxUXC->S8

where C is the set of state changing commands and U
is the set of users. It might be that if u is not
permitted to perform a command c, then do(s,u,c) =
s; such security restrictions can be implemented by
consulting the capability table, and are here
simply assumed to be built into the function do.

We will also assume that for a given state and
user, we know what output (if any) is sent to that
user. This aspect of the system can be described
by a function

out: Sx U ~-> Out ,

where Out is the set of all possible outputs (e.g.,
screen display states, listings, etc.). We will
assume that all information given to users by the
system is encoded in this function. (Presumably
users can also get information in other ways
outside the system, but we do not attempt to
describe that.) Note that the function out may
also consult the capability table in determining
its value.

Putting all this together, and adding an initial
state, we get a simplified version of our general
model to ge given later, which is just an ordinary
automaton” A significant advantage of having our
model based on a standard notion like the automaton
is that an extensive literature and well developed
intuition become immediately applicable to our
problem domain.

Definition 1:

A state machine M consists of the
following:

~ A set U whose elements are called
"users."

- A set S whose elements are called
"states."

A set C whose elements are called "state
commands."

A set Out whose elements are called
"outputs.”

together with

5Note that there is no assumption here that any
of the sets involved are finite. This convenient
fiction permits, for example, the state set S to
include a pushdown store, and allows the storage of
arbitrarily large integers and arbitrarily long
character strings.



- A function out: S x U -> Out which “tells
what a given user sees when the machine
is in a given state," called the output
function.

- A function do: S x U x C => S which
"tells how states are updated by
commands," called the state transition
function.

- A constant s0, the initial machine state,
an element of S.

[1

The connection with the standard form of the
definition of state machine is to take U x C to be
the set of inputs.

what we have called "users" could also be taken to

be "subjects" in the more general way in which that
word is sometimes used in operating systems theory.
Processes can be handled in this way.

2.2 Capability Systems

In order to handle the dynamic case, in which what
users are permitted to do can change with time, we
will assume that in addition to the state machine
features there are also "capability commands” that
can change the capability table. The effects of
such commands can be described by a function

cdo: Capt x U x CC -> Capt ,

where Capt is the set of all possible capability
tables, U is the set of all users, and CC is the
set of capability commands. (If a user u is not
allowed to perform the capability command c on the
table t, then cdo(t,u,c) may be just t again; as
before, this is determined by consulting the
capability table,) In order to distinguish
capability commands from state commands, in the
following we will denote the set of all state
commands by SC. So that the state transitions and
the outputs can be checked for security against the
capability table, we will add a capability table
component to the state transition function and to
the output function.

Adding all this to the definition of a state
machine, and also adding an initial capability
table, we get the following as our basic concept:

Definition 2: A capability system M consists of
the following:

A set U whose elements are called
"users."

A set S whose elements are called
"states."

A set SC whose elements are called "state
commands."

A set Out whose elements are called
"outputs.”

A set Capt whose elements are called
“capability tables."

- A set CC whose elements are called
“capability commands."

together with

- A function out: S x Capt x U -> Out which
"tells what a given user sees when the
machine, including its capability
component, is in a given state,” called
the output function.

- A function do: S x Capt x Ux SC -> S
which "tells how states are updated by
commands,” called the state transition
function.

-~ A function cdo: Capt x U x CC -> Capt
which "tells how capability tables are
updated,® called the capability transtion
function.

- Constants t0 and s0, the “"initial
capability table" and the "initial
machine state," respectively elements of
Capt and of S.

(1

For convenience in the following, let C = CC U SC,
the set of all commands.

As we have formulated capability systems, there are
no commands that change both the state and the
capability table; however, if it is desired to
accommodate such commands for some application, our
definition can be easily changed to do so.

The capability component of a capability system is
itself a state machine, with state set Capt and
input set U x CC; it models the way in which the
capability table is updated, and includes such
possibilities as passing and creating capabilities.
We will call it the capability sub-machine of the
capability system. The entire capability system is
a cascade connection (in the sense of automaton
theory, e.g. what is called "serial connection"

in [Hartmanis & Stearns 66]) of this machine with
another that models the processing of all the non-
capability information, such as user files. In the
following figure illustrating this cascade
connection, the function Check returns the
information from the capability table needed to
determine whether or not a given command is
authorized for a given user.

Let us call a subset of C = SC U CC an ability, and
let Ab denote the set of all such subsets. Then it
would make sense, for example, to let Capt = [U >
Ab], the set of all functions from U to Ab, so that
a capability table would tell us exactly what
ability each user actually has. However, our
abstract model does not require any such particular
representation. We will discuss later on some

State Commands

Command s Out

L

Figure 1: Cascade Connection
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particular models which use representations like
this to implement specific security policies.

Given a capability system M, we can define a system
transition function which describes the effect o
commands on the combined system state space, which
is 8 x Capt. This function

csdo: Sx Capt x Ux C -> S x Capt

is defined, for s in S, t in Capt and u in U by
csdo(s,t,u,c) = (do(s,t,u,c),t) if ¢ is in SC

and

csdo(s,t,u,c) (s,cdo(t,u,c)) if ¢ is in CC.

We can now view a capability system as a state
machine, with state space S x Capt, input space (U
x C) and output space Out. We can therefore extend
the system transition function in the classical way
to strings of inputs, by defining

csdo: S x Capt x (U x C)* -> S x Capt

with the equations

csdo(s,t,NIL) = (s,t)

and

csdo(s,t,w.(u,c)) = csdo(csdo(s,t,w),u,c)

for sinS, t inCapt, uinU, ¢ in C, and w in (U
x C)*, where NIL denotes the empty string and the
"dot" denotes string concatenation. We will use
the notation

[T wl] = csdo(t0,c0,w)

for the "denotation" or effect of the input string
w on states, starting from the initial state of the
whole system.

We now recall one more concept from classical
automaton theory, and then specialize it to the
case at hand. A state s of a state machine M is
reachable iff there is some w in C* such that

[[ w1] = s. But notice that the set of reachable
states of a capability system will not in general
be a Cartesian product of a set of (ordinary)
states and a set of capability tables. However,
the set of reachable states will always be the
state set of a reachable submachine, the reachable
capability subsystem of the given capability
system.

3 Security Policies

Whereas the previous section presented our approach
to modelling secure systems, this section presents
our approach to defining security policies. The
purpose of a security policy is to declare which
information flows are not to be permitted. Giving
such a security policy can be reduced to giving a
set of noninterference assertions. Each
noninterference assertion says that

what one group of users does using a
certain ability has no effect on what
some other group of users sees.

Section 3.1 first discusses static security
policies, which give a set of noninterference
assertions that are to hold independently of any
changes in the capability table. After that,
Section 3.1 considers dynamic security policies,
whose noninterference assetions may take account of
the state of the capability table. It should be
noted that one may wish to impose static security

policies (such as MLS) even for systems where
capabilities may be passed, and that it is possible
to consider both static and dynamic policies for a
single system.

3.1 Static Policies

Let us begin with some auxiliary notation. Given a
state machine M, let w be an element of (U x C)*
and let u be a user. We define [[ w 11, to be the
"output to u after doing w on M," i.e.,

[ w1l =out(llwllu .

It is the "denotation of w from the point of view
of user u." Note that M may have additional
structure as a capability system. In that case,
the state space has the form S x Capt, the set C of
commands is a disjoint union OC U SC of state and
capability table changing commands, and the state
transition function is csdo. Thus, all the general
definitions given below also apply to capability
systems., However, it is simpler to state them for
a arbitrary state transition system.

Qur second auxiliary notation has to do with the
selection of subsequences of user-command pairs.

Definition 3: Let G (C U be a "group" of users,
let A C C be an ability, and let w be in (U x C)*.
Then we let (w) denote the subsequence of w
obtained by S?iminating those pairs (u,c) with u in
G. Similarly, we let Pp(w) denote the subsequence
of w obtained by eliminating those pairs (u,c) with
¢ in A. Combining these two, we let Py »(w) denote
the subsequence of w obtained by elimihating the
pairs (u,c) with u in G and ¢ in A, []

For example, if G = {u,v} and A = {cl,c2}, then

Bg,al (u',c1) (u,c3) (u,e2) (v',cl) ) =
= (u',cl) (u,c3) (v',cl) ,

where u',v' are other users and c3 is another
command .

Now we are ready for the basic technical concept of
noninterference, which we give in three different
forms (we will later generalize all this to
conditional noninterference).



Definition 4: Given a state machine M and sets G,
G' of users, we say that G does not interfere with
(or is non-interfering with) G', written G ] G',

iff for all w in (U x C)* and all u in G',

(0 wil, = [[pgw 1], -

Similarly, given an ability A and a group G of
users, we say that A does not interfere with G,
written A :| G, iff fore«all w in (0 x C)¥* and u in
G,

(Lwlly=10paw) 11, .

More generally, users in G with ability A do not
interfere with users in G' written A,G :] GY 1ff
for allw in (U X C)* and u in G,

(w1, = [l pg A 11, -

f]

Although we have stated these definitions for state
machines, they apply immediately to capability
systems because we have shown that capability
systems are also state machines. In the following
we will generally be applying these definitions to
the case of dynamically changing capabilities as
covered by capability systems.

Example 1: It follows from the above definition
that if A :{ {u}, then the commands in A have no
effect whatsoever on the output seen by u. For
example, if A is the ability to create, write,
modify or delete a file F, then "A noninterfering
with u" means that the information read from F by u
cannot be changed by any commands in A. In
particular, if F did not originally exist, then u
will always be told that F doesn't exist,
independently of what commands in A may actually
have done. []

Notice that neither the "noninterfering with"
relation, nor its complement relation, "potentially
interfering with," are assumed to be transitive.
This means that we are able to consider the fully
general case of intransitive information flow.

This concept of noninterfering is similar to
concepts given in [Feiertag, Levitt & Robinson 77]
and [Feiertag 80], in that both consider isolating
the effects of sequences of commands; however, the
concept captured here is more general, as we can
treat arbitrary policies (not just MLS) and our
capability machine approach allows us to treat
dynamically changing capability tables.

We are now ready for the major concept of the
paper.

Definition 5: A security policy is a set of
noninterference assertions.

This definition seems to be fully general for
stating restrictions, or the lack of restrictions,
on information flow, once the generalization to
conditional noninterference has been given. 1In
particular, it can handle downgrading, multi-
user/multi-key access, compartmentation, and
channel control; it can easily and naturally

describe situations where passing information
across boundaries is permitted, for e)_zam?le when
information is declassified, or when it 1s
controlled by discretionary access.

Example 2: Multilevel Security. Let L be a simply
ordered set of "security levels," such as .
{unclassified, secret, top-secret}, with ordering
relation <, as in [Bell & LaPadula 74]. Assume
that we are given a function Level: U —-> L. We now
need a bit more notation. For x in L, let

{uin U | Level{u) < x}

U {~o00,X]

Ulx,400] = { u in U | Level(u) > x }

where we do not assume that there actually are
minimum and maximum elements (-ecand +°) in L Then
a capability system M is multilevel secure with
respect to the given level function 1E.E, for all x
> x' in L, the noninterference assertion

Uix,+ | U [~o0,x']
holds for M.

The function Level might be stored in the
capability component of the system, and it is not
assumed to be necessarily constant. Or the
capability component might be much more complex,
containing information on who is allowed to change
classifications, or to pass capabilities to change
classifications. This will be discussed below.

Let us call a group G of users invisible (relative
to other users) iff G :| -G ("invisible"™ seems
appropriate for these users because they can see
without being seen). It is very easy to express
MLS using this notion:

for every level x, U[x,+e] is invisible.

MLS easily generalizes to a partially ordered set L
of security levels, just by replacing "x > x'" by
"x is not < x'." This generalization permits MLS
to encompass compartments: if ¢ is a level such
that for all x in L, neither x > ¢ nor ¢ > x, then
¢ is completely isolated from all other levels, and
the users of level ¢ are a “compartment." It is
also easy to express this generalization in temms
of invisibility:

for every level x, U - U{-o,x] is invisible,
where "-" denotes set difference. []

Example 3: Security Officer. Suppose that the set A
consists of exactly those commands that can change
the capability table, and suppose that our desired
policy is that there is just one designated user,
"seco," the Security Officer, whose use of those
commands will have any effect. This policy is
simply expressed by the single noninterference
assertion

A,~{seco} :| U .
§]
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Example 4: Isolation. A group G of users is
isolated (or is separated, or is a compartment) iff
G =G and =G :| G. The isolation policy says that
nothing can flow in or out of the group G. A system
is completely isolated if every user is isolated.
This is a policy that [Rushby 8la] wishes to prove
for his separation kernels. []

Example 5: Channel Control. A very general notion
of channel Is just a set of commands, i.e., an
ability A (C O. Let G and G' be groups of users.
Then the policy saying that G and G' can
communicate only through the channel A is

-A,G :| G* and -A,G' :]1 G .

(This is our formalization of a concept in [Rushby
81bl). ]

Example 6: Information Flow. In order to show how
information flow can be included under our more
general concept of noninterference, let us suppose
that a, b, ¢ and d are "processes," and that Al, A2
and A3 are "channels," such that a, b, ¢, and d can
communicate only as indicated in the figure below,
in which information can flow only to the right

N
|
i

Figure 2: An Information Flow Diagram

The constraints implied by this picture include the
following noninterference assertions:

{b,c,a} :1 {a} -Al,{a} :| {b,c,d}

{cld} | {b} —AZ,{b} :l {C}
{c} :1 {d} -A3,{b} :| {d}
{a} :1 {c}

We will show in a future paper how to formally
produce a complete set of of noninterference
assertions from an information flow diagram like
that of Figure 2. For the moment, let us note that
the left group of assertions are purely
topological, while the right group encode
information about the specific abilities mentioned
in the graph. [}

3.2 Dynamic Policies

Dynamic policjes, i.e., policies which depend on
the state of the capability component of a system,
can be handled using conditional noninterference
assertions. For static policies, no conditioning
of the noninterference assertions is needed,
because the assertions are supposed to hold always.
But for dynamic policies, whether or not a given
user u can interfere with another user v, by using
an operation ¢ may vary with time. The conditions
that we attach to noninterference assertions will
be predicates defined over the sequences of
operations used to reach the current state.
basic definition follows. It gives only the
general case "mixed" noninterference, with both
users and operations involved. Further motivation
is provided with Examples 7 and 8 below.

The

Definition 6: Let G and G' be sets of users, let A
be a set of commands, and let P be a predicate
defined over (U x C)*. Then G using A is
noninterfering with G' under condition P, written

G,A :| G' if P

iff for all u' in G' and for all w in (U x C)%,

[Lwily = [0 p) 1y o

where p is defined by

PO =\

where ), is the empty string, and

p(ol...0n) = o'l...0'n
where

o'y =\ if P(o'y...0"; 1) and o; = (u,a)
withu inG and a in A,
and

o'i =03 otherwise .

The reason for giving such a complex definition of

the projection function p is to take account of the
fact that there may be some subsequences in a lorg

sequence of commands that are noninterfering, while
others may be interfering.

The examples below give several conditional
noninterference assertions and show how they apply
to command sequences.

Example 7: Discretionary Access. In this example,
we assume the existence of a function CHECK(w,u,c),
which looks at the capability table in state [[ w
11 to see whether or not u is authorized to do
command c; it returns true if he is, and false if
not. We can then regard CHECK(u,c) as a predicate
on command sequences W. One general policy that we
wish to enforce for all users u and all commands ¢
is

(*) {u},{c} :1 U if not CHECK(u,c) ,



where U is the set of all users. This just says
that u cannot interfere using c if he does not have
the capability to use ¢ in that state.

Now let us consider the case where for each user u
and command ¢, there is another command, Qe?oted
pass(u,c), which says to pass to u the ability to
do c; of course, the user issuing this command may
or may not be authorized to do so. We need a bit
more notation. If w is a command sequence of the
form w'.0, let previousiw) = w' and let last{w) =
o. Then let us write CHECK(previous,u,c) for the
predicate CHECK (previous(w),u,C) of w. Now the
policy that we wish to enforce regarding use of the
pass command is

(**) {u},{c} :] U if(not cugcx(previousm.c)]
an

[if CHECK (previous,u',pass(u,c))
then not last = (u',pass(u,c))]

This says that u using c cannot interfere if in the
previous state he didn't have the capability to use
¢, unless some user u' having the capability in the
previous state to pass u the ability to use c, in
fact did so.

The corresponding assertion for the revocation
operation, which we shall denote unpass(u,c), is

fu},{c} :| U ifCHECK(previous,u*,unpass(u,c})
and last = (u’,unpass{u,c))

This says that u can't interfere using c if in the
state previous to trying to use ¢, some user u' who
had the capability to revoke u's capability to use
¢ in fact did so.

Let us see how Definition 6 applies to a particular
sequence of commands and the assertion (**). Let
us suppose that user u' has capability to use the
comnand pass(u,c), i.e., that for all strings w of
commands,

CHECK (w,u’',pass{u,c)) = T
and

CHECK (w. (u',pass(u,c)),u,c) =T .

Further suppose that u does not initially have
capability for ¢, and that (u'',d) is
noninterfering with the capability of u to use c,
i.e.,
CHECK (NIL,u,c) = T
and for each w,
CHECK (w. (u'"',d) ,u,c) = CHECK(w,u,c) .
Then, for example, (**) says that for any user v,
(L (u,e) (u',pass(u,c)) (u'',d) (u,0) 11, =

[ (u (pass(u,c)) (u*',d) (u,c) ]]V ’

i.e., that the first instance of {u,c) in the
command sequence has no observable effect. ]
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Example 8: Bailout Function. We now express a
dynamic policy having one function that dlffers.
from standard MLS; the purpose of this example is

of course to illustrate the use of our conditional
noninterference assertion formalism, rather to
argue for or against any particular security
policy. In this policy, there is a command B that
when executed changes the level of the user to the
lowest security level in an irrevocable manner.
Thus, we assume a simply ordered set L of security
levels, with bottom level "Unc" say, and with a
function Level from users to levels. Then the
policy is stated with the following noninterference
assertions for each user u

{u} :| Ul-ooLevel(u)) if CHECK(u,B) ,
where U[-oo, x) = { u' | Level(u') < x }, and

U(Unc,+eo] :| {u} if not CHECK(u,B) ,

where U(Unc,+<] = { u' | Level(u') > Unc } ,
assuming the following about the function CHECK,
for every sequence w of commands, user u, and
operation o,

CHECK (w.0,u,B) = CHECK(w,u,B) 1if not o=(u,B)
CHECK (w. (u,B) ,u,B) = false ,
and

CHECK (\,u,B) = true .

3.3 Security Policy Definition Language

Our definition of security policy suggests that a
specialized requirement language can be given for
stating security policies, such that the basic
statements of this language are noninterference
assertions. Notice that each such assertion can be
seen as an infinite set of equalities of sequences
of commands; this set can also be expressed as one
equation having one second order quantifier over
command sequences. We believe that the very simple
form that these assertions have will permit us to
construct a special purpose verification tool,
rather like the MLS tool of [Feiertag 80}, but
applicable to any policy that can be formulated in
the language. Two steps in the operation of such a
tool are to eliminate all explicit induction, and
then to translate into the simpler logical
formalism of a mechanical theorem prover. We hope
to discuss this in future work.

4 Less Abstract Models of Capability Systems

Specific systems, such as PSOS, can be modelled in
our framework, by instantiating the various sets
and functions involved in Definition 2. This can
be done in many different specification formalisms,
including the state machine approach of SPECIAL
[Levitt, Robinson & Silverberg 79); the first
order logic decision procedure approach of STP
{Shostak, Schwartz & Melliar-Smith 81]; the
inductive definition over lists and numbers
approach of [Boyer & Moore 80]; the parameterized
pro;edure approach of CLEAR [Burstall & Goguen 77]
or in a more usable form, ORDINARY [Goguen &
Burstall 80]; and the executable abstract data

%gge/rewrite rule approach of OBJ [Goguen & Tardo



Another possibility is the formalism surveyed in

[Snyder 81], one of the few which considers the
passing of capabilities. We observe that this is a
graph grammar formalism in the gense of [Ehrig,
Kreowski, Rosen & Winkowski 78]°. Unfortunately,
it seems to be difficult to verify policies in this
formalism.

5 Verification of Security Policies

How can we verify that a security policy P is
satisfied by a capability system M? For example,
how can we verify that MLS has been correctly
implemented in some version of PSOS? From a
general point of view, this is a matter of
verifying that the noninterference assertions in
the policy are true of some particular abstract
machine. This can be done by induction over the
commands of the system. We have some hope that a
great deal can be accomplished with purely
syntactic checking of specifications for the
operating system, as with the Feiertag MLS tool
{Feiertag 80], because of the simple form of the
assertions occurring in the security policy

definitions. More detailed discussion of this will
be the subject of a future report.

But, you may ask, how can we verify that some given
code running on a given machine actually satisfies
some policy? One approach is just to verify the
policy for a high level specification, and then to
verify that a lower level machine correctly
implements the specification, perhaps through a
sequence of intermediate abstract machines; this is
essentially the approach of HDM [Levitt, Robinson &
Silverberg 79].

6 Summary

This paper has described an approach to security
which is based on:

1. Modelling the information processing
system by an automaton of the form that
we call a capability system.

2. Defining security policies as sets of
noninterference assertions.

3. Verifying that a given system satisfies
a given policy.

bThis observation seems to be new, and might be
of some use for the further development of the
formalism described in [Snyder 81], because of the
existence of a considerable body of results on
graph grammars, including pumping lemmas,
decidability results, and normal forms.
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