
R. Hinze, S. Franck Summer Semester 2005

Software Engineering

http://proglang.informatik.uni-freiburg.de/teaching/swt/2005/

Exercise Sheet 5 & 6

Deadline: May 31st, 2005

Exercise 1 – Activity Diagramm: (4 points)
Discribe the following recipe with an Activity Diagram:
Cut 400g chicken into small dices. Mix 30ml rice wine with 10ml soy sauce. Mix this sauce
with starch. If no starch is available, use flour. Mix the chicken with the sauce. Cut 10g ginger
and 50g field garlic. Sear 150g walnuts. Sear the meat, add ginger and field garlic and fry the
meat. Add the walnuts and 10ml soy sauce.

Solution:

Cook
and stir

add Flour

mix Soy Sauce
and Ricewine

Field Garlic
add Ginger and

Add Walnut and
and Soy Sauce

cut Chicken

roast Walnuts

and stir
add Starch

and Sauce
mix Meat

fry Meat

cut Ginger and
Field Garlic

[no Starch]

[Starch present]

Exercise 2 – Data Dictionnary: (3 points)
Write a Data Dictionnary for german adresses.
Regard the different possibilities, like P.O. box or street, additional roomnumbers, etc.

Solution:
〈adress〉 ::= {(c/o〈name〉) + 〈name〉 + [〈street〉 | 〈postbox 〉] + 〈town〉 + 〈country〉}
〈name〉 ::= [(〈forename〉) + 〈lastname〉 | 〈company name〉]
〈street〉 ::= 〈streetname〉 + 〈housenumber〉 + (〈roomnumber〉)

〈postbox 〉 ::= P.O.box +〈number〉
〈town〉 ::= 〈zipcode〉 + 〈town name〉

Exercise 3 – Class Diagram: (5 points)

Analyse the following class diagram, explaining in detail what it models. Are there any flaws
in this design?

School

Course

Room

Time

Person

TeacherPupil

attends

teaches

5..30

1

1

1..*

1

10..* *

*

*

1

*

Solution:

The diagram models a school. A school consists of at least 1 room. All rooms depend on the
school. A school has also at least 10 persons, who can be teachers or students. Every person
is in exactly one school. A person can teach or attend arbitrary many courses. Every course
is taught by exactly one person and can be attended by 5 to 30 persons. A course takes place
at a specified time. At any time arbitrary many courses may be held. Every course is taught
in exactly one room, but there may be arbitrary many courses situated in the room.

This design has some flaws. First of all it is possible for a student to hold courses. This flaw
can be resolved by connecting the teaches-association directly to the teacher:

Person

PupilTeacher

Course attends5..30 *

teaches 1

*

A second flaw is, that it is possible to have several students, teachers or rooms involved in
several courses at the same time. This can be resolved by using additional constraints, defined
for example in OCL.

Exercise 4 – Understanding Z: (4 points)

What is defined by the following (generic) axiomatic definitions and what are the missing
types?

walter :???

∀M : P N, x : N •
walter(∅) = 0
x ∈ M ⇒ walter(M) =

x + walter(M \ {x})

yolanda :???

∀m,n : N •
yolanda(m,n) = {i : N | m ≤ i ≤ n}

[X]

xaver :???

∀ s : FX ,n : N •
n = xaver ⇔ ∃ f : (1..n) �→ s • true

[X]

zoe :???

∀R : X ↔ X •

zoe(R) =
⋂

{T : X ↔ X |
(R ∪ idX) ⊆ T ∧
T o

9
T ⊆ T}

Solution:

type function

walter P N → N calculates the sum of all numbers in the argument set

xaver FX → N calculates the number of elements in a set

yolanda (N × N) → P N calculates the set of all numbers between its parame-
ters (inclusive)

zoe (X ↔ X) → (X ↔ X) calculates the reflexive transitive closure

Exercise 5 – Queue in Z: (4 points)

Specify a queue with Z-Schemata. The queue stores numbers. The functions Init, Add and
Next have to be implemented on the queue. Every function returns a variable result ! of type
REPORT , which may be OK , an error message or Return i where i is a number.

The functions work as follows:

Init instantiates an empty queue.

Add appends a given number to the end of the queue.

Next returns the first element of the queue and removes it.

Solution:

REPORT ::= Return〈〈Z〉〉 | OK | QueueUnderflow

Queue

content : seq Z

Add

∆Queue

input? : Z

result ! : REPORT

content ′ = content ∪
{(#content + 1 7→ input?)}

result ! = OK

NextFail

ΞQueue

result ! : REPORT

content /∈ seq
1
Z

result ! = QueueUnderflow

Init

Queue

result ! : Report

content = {}
result ! = OK

NextOK

∆Queue

result ! : REPORT

content ∈ seq
1
Z ∧

result ! = Return(head content)
content ′ = tail content

Next = NextOK ∨ NextFail

