
R. Hinze, S. Franck Summer Semester 2005

Software Engineering
http://proglang.informatik.uni-freiburg.de/teaching/swt/2005/

Exercise Sheet 7

Deadline: June 7th, 2005

Exercise 1 – Trees in Z: (2 points)
The following type-definition models a Binary Tree.

BINTREE ::= Leaf | Node〈〈Z × BINTREE × BINTREE 〉〉

Give a schema for Heap, e.g. a Binary tree where the content of every node is greater than
or equal to the content of all his descendants.

Exercise 2 – Trees in Z (part II): (6 points)
Another way to define trees is analogous to the definition of sequences (which map numbers to
values): Trees may be seen as functions from sequences to nodes, where the sequence describes
the path from the root to the node.
Hence, trees can be defined as:

tree X = {t : seq N 7 7→ X | 〈〉 ∈ dom t ∧

∀π a σ ∈ dom t ⇒ π ∈ dom t ∧

∀π a 〈n〉 ∈ dom t ⇒ ∀ i < n • π a 〈i〉 ∈ dom t}

So t maps a sequence of numbers to nodes (elements of X ). The numbers represent the path
from the root to the respective node by indicating which son of the current node has to be
taken. A sequence 〈1, 2〉 describes for example the node which is the second son of the first
son of root. With every number of the sequence you descend one level in the tree.
The empty sequence maps to the root of the tree.

If we have a tree ex

F

A

B C D

E G

1 2 3

1 1 2

then

ex (〈〉) = A

ex (〈1〉) = B

ex (〈2, 1〉) = F

ex (〈3, 1〉) = undefined

Define the following functions:

1. content, which returns a set of all nodes in a tree.
Example:

content(ex ) = {A,B ,C ,D ,E ,F ,G}

2. subtree, which returns the subtree at a position specified by a sequence.
Example:

subtree(ex , 〈1〉) = {(〈〉,B), (〈1〉,E )}



3. appendtree, which appends a tree under a given position.
Example:

appendtree(ex , {(〈〉,H )}, 〈2〉) = ex ∪ {(〈2, 3〉,H )}

(a tree which only contained H was inserted under C).

4. prune, which removes a subtree from a specified position. The node reached by the
sequence shall be removed as well.
Example:

prune(ex , 〈2〉) = {(〈〉,A), (〈1〉,B), (〈2〉, D), (〈1, 1〉,E )}

prune cannot be called with the empty sequence, since any tree has to have a root (see
definition).

Exercise 3 – Refinement Relation: (2 points)
The following two schemata are given:

Abigail

x : N

x ′ : N

x ′ ≥ x

Baldwin

x : N

x ′ : N

x ′ = 2 · x

Show that Baldwin w Abigail .


