
Prof. A. Podelski, Prof. P. Thiemann,
M. Mehlmann and S. Wehr

Summer term 2008

Software Engineering

http://swt.informatik.uni-freiburg.de/node/94

http://proglang.informatik.uni-freiburg.de/teaching/swt/2008/

Exercise Sheet 3

2008-05-23

Exercise 1 (Merging of linksets; 2 Points)
Given the two linksets

L1 ≡ x : int | (b ≈ y : int ` x > y : bool), (y ≈ ∅ ` 5 : int)
L2 ≡ b : bool, z : int | (x ≈ ∅ ` if b then z else 0 : int)

Merge L1 and L2; that is, compute L1 + L2.

Exercise 2 (Linking; (3+3) Points)
(a) Link the following linkset L; that is, execute link steps as long as possible.

L ≡ z : int | (b ≈ y : bool, x : int ` if y then x else z : int)
(y ≈ x : int ` x > 5 : bool)
(x ≈ ∅ ` 6 : int)

(b) Show that the link step relation does not preserve the intra-checked property. That
is, find a linkset L with intra-checked (L), L L′, but not intra-checked (L′).

Exercise 3 (Interfaces for Featherweight Java; 12 points)
Extend Featherweight Java with interfaces. To help you getting started, here is the syntax of
the extended language:

CL ::= class C extends D implements E1, . . . {C1 f1; . . . K M1 . . . }
| interface C extends D1, . . . {S1; . . . }

S ::= C m(C1 x1, . . .)

(K, M , t, and v are defined as in the lecture.)
We use the metavariables C, D, and E to range over class and interface names. A class

declaration class C extends D implements E1, . . . {C1 f1; . . . K M1 . . . } specifies, in ad-
dition to the superclass C, the interfaces E1, . . . that C implements. It is possible that the
sequence E1, . . . is empty; in this case, C does not implement any interfaces.

An interface declaration interface C extends D1, . . . {S1; . . . } introduces a new interface
C. The sequence D1, . . . (which may be empty) specifies the superinterfaces of D.

The metavariable S ranges over method signatures. A method signature only gives the
return and the argument types of a method; it does not define the method body.

1

You must now extend the typing rules and, if necessary, the operational semantics of Feath-
erweight Java to support interfaces. Use your experience with interfaces in Java when de-
signing the extension. You should keep your extension as small as possible by reusing the
rules presented in the lecture. (Note: in these rules, class declarations do not specify the
interfaces that a class implements. Nevertheless, you can reuse these rules by assuming that
these interfaces are E1, . . . , where E1, . . . are names that are not used anywhere else in the
rule.)

Submission: 2008-05-30, 12pm before the exercise session in HS 00-036, building 101.

2

