Prof. Dr. Peter Thiemann
Manuel Geffken
Matthias Keil Summer Term 2012

Softwaretechnik
http://proglang.informatik.uni-freiburg.de/teaching/swt/2012/

Exercise Sheet 4

Exercise 1: Composite and Visitor

In this exercise, we will consider the organization of tours for bands. A concert is modelled
as an event with a certain duration. For simplicity, the duration is modelled as the difference
of two values start and end. A series of concerts is modelled as a class that contains several
concerts or series of concerts. The duration of a series of concerts is determined by the
difference of the earliest beginning of and the latest ending of a concert contained in the
series. The corresponding class diagram is defined as follows.

Event _
<
+getDuration()
1 1
Concert ConcertSeries

-start -events —
-end +getDuration()
+getDuration()

We consider the series of concerts World Tour. A world tour consists of the series of concerts
Europe Tour, Asia Tour, and America Tour. Each series of concerts consists of several
performances of type concert (e.g., “Live at Royal Albert Hall”, “One Night in Bangkok”,
“Live at Madison Square Garden”).

1. Familiarize yourself with the composite pattern. Based on this pattern, provide an
implementation that computes the duration for the World Tour series. Recall that the
duration of a series of concerts S is determined by the difference of the earliest starting
point and latest end point of a concert in S. Note that concerts may take place in
parallel. Test your implementation.

2. Apply the visitor pattern to provide an implementation that computes the duration
for the World Tour. Test your implementation.

3. Compare your solutions obtained with the composite and the visitor pattern. In this
case, which pattern should be preferred for the computation of the duration?



Exercise 2: Abstract Factory and Decorator

In this exercise, we will consider the ticketing of a concert. Assume that a ticketing system
that currently supports printed tickets only is supposed to be extended to also provide
electronic tickets.

Ticket
-event
Co T T T T 1
1 .
PrintedTicket ETicket
-datePrinted -eMail
-barcode

1. To model the above described extension of the ticketing system, consider indirection
as discussed in the lecture. Therefore, apply the abstract factory pattern to provide an
implementation of the ticket factory that creates the ticket objects. Use the singleton
pattern to implement the ticket factory. Test your implementation.

2. Assume that printed tickets can have different layouts. For instance:

e Gift tickets contain greetings from givers.

e Tickets for families show the name of the family.

Note that the layout of a gift ticket can also appear on tickets for families, and vice
versa. Provide an implementation of the decorator pattern that prints the ticket
layouts. Test your implementation.

Please send your solutions to your tutor by mail.



