Softwaretechnik
Lecture 04: Object-Oriented Analysis

Peter Thiemann

University of Freiburg, Germany

SS 2012

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT

1/41

Object-Oriented Analysis

» After introduction of OOP: need for OOA and OOD
» Purpose: Building OO models of software systems

» No generally accepted methodology; many different approaches:
Booch, Rumbaugh (OMT), Coad/Yourdon, Jacobson (OOSE),
Wirfs-Brock, . ..

» Current approaches rely on UML (Unified Modeling Language,
Booch/Jacobson/Rumbaugh)

» UML supports many kinds of semi-formal modeling techniques
» use case diagrams
» class diagrams
» sequence diagrams
» statechart diagrams
» (activity diagrams)
» (deployment diagrams)

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 2/41

The Concept “Model”

(according to Herbert Stachowiak, 1973)

Representation
A model is a representation of an original object.

Abstraction
A model need not encompass all features of the original object.

Pragmatism
A model is always goal-oriented.

» Modeling creates a representation that only encompasses the relevant
features for a particular purpose.

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 3/41

Variations of Models

Informal models

» informal syntax, intuitive semantics

» ex: informal drawing on blackboard, colloquial description

Semi-formal models

» formally defined syntax (metamodel), intuitive semantics

» ex: many diagram types of UML

Formal models

» formally defined syntax and semantics

» ex: logical formulae, phrase structure grammars, programs

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT

4 /41

Class Diagram (UML)

» Data-oriented view, cf. ERD

v

Representation of classes and their static relationships

v

No information on dynamic behavior

v

Notation is graph with

» nodes: classes (rectangles)
» edges: various relationships between classes

v

May contain interfaces, packages, relationships, as well as instances
(objects, links)

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 5/41

Classes

A class box has compartments for
» Class name
Attributes (variables, fields)

v

v

Operations (methods)

v

only name compartment obligatory

v

additional compartments may be defined

\4

class (static) attributes / operations underlined

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 6 /41

Relations Between Classes

Binary Association

» indicates “collaboration” between two classes (possibly reflexive)
» solid line between two classes
» optional:
> association name
decoration with role names
navigation (Design)
multiplicities (Design)

v

v

v

Generalization

» indicates subclass relation

» solid line with open arrow towards super class

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT

7/ 41

Example Class Diagram

class

inheritance

-

Tw] [awme] [o
o ! " sz

association

role role

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 8 /41

Example Class Diagram

Company

P product manufacturer
art N .
partno
subpart order orderer
* * *
0.1
superpart

Peter Thiemann (Univ. Freiburg)

Softwaretechnik

SWT

9 /41

Aggregation and Composition

>
» Notation: edge with rhombus as arrow head
» Composition is stronger form of aggregation
>
>
>

Example

Aggregation is a particular association part-of

Meaning: object “belongs existentially” to other object

Object and its components live and die together

Notation: edge with black rhombus as arrow head

polygon

{ordered}

1

2.%

1

1

car

point

TJ

repr

Peter Thiemann (Univ. Freiburg)

color
line mode

wheel

Softwaretechnik

SWT

10 / 41

Ten Steps Towards an OOA Model

Heide Balzert

Data analysis: identify classes

Identify associations and compositions

Identify attributes and operations for each class
Construct object life cycle

Introduce inheritance

Identify internal operations

Specify operations

Check inheritance

© 0 N o kR W=

Check associations and compositions

,_.
©

Decompose in subsystems

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 11 / 41

Step: ldentify Classes

» identify tangible entities: physical objects (airplane), roles (manager),
events (request, form), interactions (meeting), locations (office),
organizational units (company)

» top-down: scan verbal requirements

> nouns — objects, attributes
> verbs — operations

bottom-up:
» collect attributes (data) and operations
» combine into classes

» name of class: concrete noun, singular, describes all objects (no roles)

> classes related via invariable 1:1 associations may be joined

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 12 / 41

Step: Identify Associations and Compositions

> permanent relations between objects

» scan verbal requirements for verbs

> technical subsidiarity: composition

» communication between objects — association
> determine roles

» snapshot / history required?

> constraints?

> are there attributes / operations for association?

» determine cardinalities

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 13 / 41

Attributes and Operations by Form Analysis

Upload new Good Good
Namel name
icture
F'icturel Browse. .. | sescription
Description Gl
status
display()
edit()
Category | Choose Onel ~|

Auction off? & wag

Mo Subrmit |

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 14 / 41

Step: Identify Attributes and Operations

CRC Cards (Wirfs-Brock)

» CRC = Class-Responsibility-Collaboration
» initially, a class is assigned responsibilities and collaborators
» collaborator is a class cooperating to fulfil responsibilities

v

three-four responsibilities per card (class); otherwise: split class

v

developed iteratively through series of meetings

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 15 / 41

Example CRC Card

classname

responsibilities collaborators

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 16 / 41

Classes From Use Cases

Use Case: buy product

» Locate product in catalogue

» Browse features of product

» Place product in shopping cart
» Proceed to checkout

» Enter payment info

» Enter shipping info

» Confirm sale

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 17 / 41

Notation for Designing Datatypes (F#)

type sale = { cart: shoppingCart;
shipment: shipmentInfo;
payment: paymentInfo }
{ contents: product list }
{ name: string;
address: string }
and paymentInfo = { accountNr: string;
bankingCode: string }
{ name: string;
price: int;
features: feature list }
{ name: string }

and shoppingCart
and shipmentInfo

and product

and feature

» Named record types

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT

18 / 41

Classes from Requirements

A graphics program should draw different geometric shapes in
a coordinate system. There are four kinds of shapes:
» Rectangles given by upper left corner, width, and height

» Disks given by center point and radius
» Points

» Overlays composed of two shapes

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 19 / 41

Classes from Requirements

type cartPt = { x: int; y: int }
and shape =
Rectangle of rectangle

| Disk of disk

| Point of point

| Overlay of overlay
and rectangle = { loc: cartPt; width: int; height: int }
and disk = { loc: cartPt; radius: int }
and point = { loc: cartPt }
and overlay = { lower: shape; upper: shape }

» Sum type (shape) for alternatives

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 20 / 41

Mapping from F# Types to Class Diagrams
Mapping a type definition

[type tdefy and ... and tdef] = [tdef1] U --- U [tdef]

Mapping a record type

tname
[tname = {x; : tj,yj : tnj ¢;}] = it
y_1 y_n
[list] =% Tein | N e
[option] =0,1 Lot . tn

[1] -1 T LT |

Mapping a sum type

[tname =Ty of t1 |-+ | T, of tp] =

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT

21/ 41

Applied to Example Code

Class Diagram

Peter Thiemann (Univ. Freiburg)

Softwaretechnik

Shape
Point Rectangle Disk Overlay
width : int radius : int
height : int
CartPt
X o int
y @ int

SWT

22 /41

Operations

A graphics program should draw different geometric shapes

» Each class should have a draw() operation
» Shape should also have draw() operation

» Discovered the “"Composite Pattern”!

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 23 /41

Example Code with Draw Method

Class Diagram

Peter Thiemann (Univ. Freiburg)

Softwaretechnik

Shape fop
bot
draw()
N
Point Rectangle Disk Overlay
width : int radius : int
draw(height : Int araw(draw) ,
jdraw() -
top.draw()
bot.draw()
CartPt
X o int
y @ int

SWT

24 /41

Step: Construct Object Life Cycle

Object Life Cycle

» Object creation

Initialization

v

Finalization

v

v

Object destruction

Life Cycle — Type State

» operations can only be executed in particular state

» idea: incoming message (in class diagram) = event (in a statechart
diagram) that triggers the operation

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 25 /41

Example: Java lterator — Statechart Diagram

interface Iterator<E> {
/** Returns true if the iteration has more elements. */
public boolean hasNext();
/** Returns the next element in the iteration. */
public E next();
/** Removes from the underlying collection the last element

returned by the iterator (optional operation). */

public void remove();

hasNext()=false

hasNext()

hasNext()

Exhausted

HadNext

hasNext()=false

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT

26 / 41

Statechart Diagram

» Modeling the evolving state of an object

» Based on deterministic finite automaton (FSA)
A=(Q,%,J, qo, F) where
Q: finite set of states
2. finite input alphabet
0: Q@ X ¥ — @ transition function
go € Q initial state
F C Q set of final states

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT

27 /41

Graphical Representation of FSA

» nodes: states of the automaton (circles or rectangles)
» arrow pointing to qg

» final states indicated by double circle

v

edges: if §(g,a) = ¢ then transition labeled a from ¢ to ¢’

FSA with output specifies a translation X* — A*
> M = (szuA567)‘7 CIO)
> replace final states F by output alphabet A and output function A

» Mealy-automaton: A: Q@ x X — A
edge from g to (g, a) additionally carries \(q, a)

» Moore-automaton: \A: Q — A
state g labeled with A(q)

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 28 / 41

Example: Digital Clock as a Mealy-automaton

button 1 pressed/ button 1 pressed/

hours flashing display time

button 2 pressed/
increase hours

button 2 pressed/
reset seconds

button 1 pressed/ button 1 pressed/

adjust seconds flashing

minutes flashing

minutes

button 2 pressed/
increase minutes

Drawback: FSAs get big too quickly — structuring required

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT

20 / 41

Statechart Diagram (Harel, UML)

\4

hybrid automata (“Moore + Mealy")
> each state may have

» entry action: executed on entry to state
2 |abeling all incoming edges

> exit action: executed on exit of state
2 labeling all outgoing edges

» do activity:
executed while in state

> composite states
> states with history
> concurrent states

» optional: conditional state transitions

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 30/ 41

Example: Statechart Diagram

event 1/

action 1
sta state 2

event 3
event 2(condition 2)/
‘ state 3 action 2
entry / action 3
exit / action 4 o
do / activity 4 event 4
include / submachine_invocation
idle
ticket inserted/ timeout /
display amount release coins

waiting for
coin

coin inserted (enough)/ coin inserted (not enough)/

print card display remaining amount

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 31 /41

Composite States

> states can be grouped into a composite state with designated start
node (— hierarchy)

» edges may start and end at any level

> transition from a composite state =2
set of transitions with identical labels from all members of the
composite state

> transition to a composite state leads to its initial state

> transitions may be “stubbed”

=2

B
e

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 32 /41

States with History

» composite state with history — marked (H) — remembers the

internal state on exit and resumes in that internal state on the next

entry
b a
(=)
®

> the history state indicator may be target of transitions from the
outside and it may indicate a default “previous state”

» “deep history” (H*) remembers nested state

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT

33/41

Concurrent States

» composite state may contain concurrent state regions
(separated by dashed lines)

» all components execute concurrently

> transitions may depend on state of another component
(synchronisation)

» explicit synchronization points

» concurrent transitions
G

sequence of states on input abcb:
(A, €), (B, D), (B, D), (B, C), (A, C)

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 34 /41

Alternative: Sequence Diagram

» description of the sequence of messages

» — communications protocols

lass1 obj3: Class3
[l
. Class20 1 opia: Class2 |
—— I
I
I

time

10
L ge2()
recursive
message
responsel
lqo - o ROIES

I
3() I

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT

35/ 41

Alternative: Object and Collaboration Diagrams (UML)

» notation for objects and their links
» UML notation:

» nodes: objects (rectangles), labeled with object name:type
» edges: links between objects
“objects that know each other”

Properties of object diagrams

» snapshot of a system state

» configuration of a specific group of objects

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 36 / 41

Example: Object Diagram

attribute2 = value2

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 37 /41

Dynamic properties — collaboration diagrams

» objects — object roles

» object notation stands for “any object of that class”

» object roles and links may be labeled with constraints
> {new}
» {transient}
> {destroyed}

» labeling links with numbered operations

» numbering implies sequence of execution

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT

38 /41

Example: Collaboration Diagram

1: display() :Hammer

1.1: display()

:Account | 1:1-1: display(

1.1.2: listOwnGoods()

Internet
User

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 39 /41

Step: Introduce Inheritance

> Use sparingly!
» Use inheritance for abstracting common patterns:
Collect common attributes and operations in abstract superclass

> Alternative: collect in separate class and use composition

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT

40 / 41

Step: Specify Operations

v

Data-driven development: [Jackson]
Derive structure of operation from data it operates on

\4

Test-driven development: [Beck]
Specify a set of meaningful test cases

v

Design by contract: [Meyer|

» Define class invariants
» Specify operations by pre- and postconditions

Pseudocode Programming Process (PPP): [McConnell]

» Start with high-level pseudocode
> Refine pseudocode until implementation obvious

v

Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 41 / 41

