
Software Engineering
Lecture 06: Design — an Overview

Peter Thiemann

University of Freiburg, Germany

SS 2013

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 1 / 35



The Design Phase
Programming in the large

GOAL:
transform results of analysis (requirements specification, product model)
into a software architecture

Main Activities

I Decomposition into components

I Development of software architecture

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 2 / 35



Software Architecture

SW architecture =̂ components, connectors, topology

I Component
I Designated computational unit with specified interface
I Examples: client, server, filter, layer, database

I Connector
I Interaction point between components
I Examples: procedure call, event broadcast, pipe

I Topology
I Guidelines and restrictions on connecting components

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 3 / 35



Architectural Styles — Overview

Dataflow systems
Batch sequential, Pipes and filters

Call-and-return systems
Main program/subroutine, OO systems, Hierarchical layers

Independent components
Communicating processes, Event systems, Actors

Virtual machines
Interpreters, Rule-based systems

Data-centered systems (repositories)
Databases, Hypertext systems, Blackboards

(according to Shaw and Garlan, Software Architecture, Prentice Hall)

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 4 / 35



Classification of an Architectural Style

I design vocabulary—types of components and connectors

I allowable structural patterns

I underlying computational model (semantic model)

I essential invariants

I common examples of use

I advantages/disadvantages

I common specializations

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 5 / 35



Some Example Architectures

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 6 / 35



Architecture: Batch Sequential

I Separate, sequential passes

I Data passed linearly

I Each pass runs to completion before the next starts

I Example: traditional compiler architecture

Lex Syn Sem Opt Code
Text Code

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 7 / 35



Archtecture: Pipes and Filters

I Data passes continually through the system

I Each component (filter) transforms input streams to output streams
incrementally

I Buffered channels (pipes) connect inputs to outputs

I Filters are independent entities

I Common specializations: pipeline (linear sequence of filters), bounded
pipes, typed pipes

Filters

Pipes

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 8 / 35



Properties of Pipes and Filters

+ global understanding

+ reuse

+ easy to maintain and enhance

+ specialized analysis

+ potential for concurrent execution

– interactive applications

– correpondences between streams

– common format for data transmission

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 9 / 35



Architecture: Event-based, Implicit Invocation

I Also: reactive integration or selective broadcast
I Each component may

I announce events
I register an interest in certain events, associated with a callback

I When event occurs, the system invokes all registered callbacks

⇒ Announcer of event does not know which components are registered

I Order of callback invocation cannot be assumed

I Applications: integration of tools, maintaining consistency
constraints, incremental checking

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 10 / 35



Properties of Implicit Invocation

+ reuse

+ system evolution

– lack of control

– data passed through shared repository

– correctness?

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 11 / 35



Architecture: Layered Systems

I Hierarchy of system components, grouped in layers

I Inside of layer: arbitrary access between components
I Between layers

I access restricted to lower layers: linear, strict, treeshaped
I small interfaces

I Advantages: clarity, reusability, maintainability, testability

I Disadvantages: not always appropriate, loss of efficiency, no
restrictions inside layers

I Examples: communication protocols (OSI), database systems,
operating systems

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 12 / 35



Peter Thiemann (Univ. Freiburg) Software Engineering SWT 13 / 35



Typical Setup

I/O layer

dialogue

application

application

physical
data access

logical
data access

general

specific

layer

user interface

application

data management

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 14 / 35



Example: Three-Tier Architecture

UserInterface TransactionManagement AccountManagement

I Three kinds of subsystems
I user interface
I control — transaction management
I database — account management

I Enables consistent look-and-feel

I Useful with single data repository
I Web architecture

I each tier runs on different location
I browser, web server, application server

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 15 / 35



Architecture: Repository

I Central data structure (current state, blackboard)

I Independent components acting on it

I Example: architecture of modern compilers, theorem provers

Lex

Syn

Sem Opt1

Code

Opt2

Edit Syn

Tree

Sym tab

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 16 / 35



Architecture: Interpreter

I Virtual machine in software

I Bytecode program + interpretation engine

I Examples: programming language, malware packers

Simulated
Interpretation

Engine

Internal

Interpreter

State

being
interpreted

Program

Outputs

state)
(program

Data
Inputs

Selected
Instruction

Selected Data

Memory

(State Machine)
Computation

Data Access
(fetch/store)

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 17 / 35



Further Architectural Styles

I Distributed processes
I topological features
I interprocess protocols
I client-server organization

I Main program/subroutine: mirroring the programming language
I Domain specific SW architectures

I tailored to family of applications
I structured, e.g., according to hardware requirements
I Examples: avionics, vehicle management, . . .

I State transition systems
I Combinations of architectural styles

I hierarchically
I mixture of connectors

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 18 / 35



Developing a Software Architecture

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 19 / 35



Developing a Software Architecture

The choice of a software architecture is a far reaching
decision that can influence the effort required to change the
system later on.

I Criteria for decomposition

I A case study (David Lorge Parnas)

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 20 / 35



Criteria for Decomposition
Composing a Component

I Major processing activity: business rules, user interface, database
access, system dependencies

I Consistent abstraction

I Information hiding: encapsulate a design decision or hide complexity
e.g., input format, data layout, choice of algorithm, computed data
vs. stored data, . . .

I Anticipate change

I Maximize cohesion: all elements of a component should contribute to
accomplish a single functionality

I Minimize coupling: component only gains access to data essential for
accomplishing its functionality

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 21 / 35



Cohesion
Qualitative measure of dependency of items within a single component

Kinds of cohesion

I Coincidental Cohesion: (Worst) Component performs multiple unrelated
actions

I Logical Cohesion: Elements perform similar activities as selected from
outside component

I Temporal Cohesion: Elements are related in time (e.g. initialization()

or FatalErrorShutdown())

I Procedural Cohesion: Elements involved in different but sequential activities

I Communicational Cohesion: Elements involved in different activities based
on same input info

I Sequential Cohesion: output from one function is input to next (pipeline)

I Informational Cohesion: independent actions on same data structure

I Functional Cohesion: all elements contribute to a single, well-defined task

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 22 / 35



Coupling
Qualitative measure of interdependence of a collection of components

Kinds of coupling

I Content Coupling: (worst) component directly references data in another

I Control Coupling: two components communicating with a control flag

I Common Coupling: two components communicating via global data

I Stamp Coupling: Communicating via a data structure passed as a parameter.
The data structure holds more information than the recipient needs.

I Data Coupling: (best) Communicating via parameter passing. The
parameters passed are only those that the recipient needs.

I No coupling: independent components.

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 23 / 35



Case Study

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 24 / 35



Example: Key Word in Context [KWIC]

The KWIC index system accepts an ordered set of lines, each line is an
ordered set of words, and each word is an ordered set of characters. Any
line may be “circularly shifted” by repeatedly removing the first word and
appending it at the end of the line. The KWIC index system outputs a
listing of all circular shifts of all lines in alphabetical order.

David L. Parnas.
On the criteria to be used in decomposing systems into modules.
Communications of the ACM, 15(12):1053-1058, December 1972

I Classical problem with practical applications

I Four different designs

I Assessment

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 25 / 35



Guidelines for Assessment

Is the architecure amenable to . . .

I Changes in processing algorithm
Example: line shifting

I Changes in data representation

I Enhancement to system function
Example: noise words, interactive

I Reuse

I Good performance

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 26 / 35



Solution 1: Main program/subroutine with shared data

I Four basic functions: input, shift, alphabetize, and output

I Subroutines coordinated by main program

I Shared storage with unconstrained access
(why does this work?)

Input
Circular

shift
Alphabetizer Output

Master control

Index
Index

AlphabetizedCharacters
Input

medium
Output

medium

Subprogram call

System I/O

Direct Memory Access

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 27 / 35



Solution 1: Assessment

+ efficient data representation

+ distinct computational aspects are isolated in different modules

but serious drawbacks in terms of its ability to handle changes

– change in data storage format will affect almost all of the modules

– similarly: changes in algorithm and enhancements to system function

– reuse is not well-supported because each module of the system is tied
tightly to this particular application

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 28 / 35



Solution 2: Abstract data types

I decomposition into five modules

I data no longer shared

I access through procedural interfaces

Input

Master control

Output

Characters Circular shift Alphabetic shifts

se
tc

ha
r

ch
ar

w
or

d

se
tc

ha
r

ch
ar

w
or

d

se
tu

p

al
ph

i
th

Input
medium

Output
medium

Subprogram call

System I/O

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 29 / 35



Solution 2: Assessment

Same processing modules as the first solution, but better amenable to
change.

+ algorithms and data representations can be changed in individual
modules without affecting others

+ reuse is better supported because modules make fewer assumptions
about the others with which they interact

– not well suited to enhancements: to add new functionality
I modify the existing modules—compromising their simplicity and

integrity—or
I add new modules that lead to performance penalties.

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 30 / 35



Solution 3: Implicit Invocation

I component integration based on shared data

I but abstract access to data

I operations invoked implicitly as data is modified

Input
Circular

shift
Alphabetizer Output

Master control

Lines

in
se

rt

de
le

te

i
th

Lines

in
se

rt

de
le

te

i
th

Input
medium

Subprogram call

Implicit invocation

System I/O

Output
medium

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 31 / 35



Solution 3: Assessment

+ functional enhancements easy: register additional modules

+ computations insulated from changes in data representation

+ supports reuse since modules only rely on externally triggered events

– processing order difficult to control

– requires more space than previous decompositions

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 32 / 35



Solution 4: Pipes and Filters

I four filters: input, shift, alphabetize, output

I distributed control

I data sharing limited to pipes

Alphabetizer Output medium
Output

System I/O

Pipe

medium
Input

Input
Circular

shift

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 33 / 35



Solution 4: Assessment

+ intuitive flow of processing

+ supports reuse: each filter usable in isolation

+ supports enhancements: new filters are easily incorporated

+ amenable to modification: each filter is independent of the others

– hard to support an interactive system

– potentially inefficient use of space

– overhead for parsing and unparsing data

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 34 / 35



Summary

Abstract Implicit
Shared Data Data Type Invocation Pipes and Filters

Change in Algorithm – – + +
Change in Data Rep – + – –
Change in Function + – + +
Performance + o – –
Reuse – + + +

Peter Thiemann (Univ. Freiburg) Software Engineering SWT 35 / 35


