Softwaretechnik

Program verification

Albert-Ludwigs-Universität Freiburg

June 20, 2013
Road Map

- Program verification
- Automatic program verification
 - Programs with loops
 - Programs with recursive function calls
Proving Program Correctness: General Approach

Program annotation

- Annotation @\(F \) at program location \(L \) asserts that formula \(F \) is true whenever program control reaches \(L \)
- Special annotation: function specification
 - Precondition = specifies what should be true upon entering
 - Postcondition = specifies what must hold after executing

Proving Program Correctness

- Input: Program with annotations
- Translate input to first order formula \(f \)
- Validity of \(f \) implies program correctness
Outline

- Proving partial correctness
 - Programs with loops
Recall

A function f is **partially correct** if
when f’s precondition is satisfied on entry and f terminates,
then f’s postcondition is satisfied.
Proving Partial Correctness

Recall

A function f is **partially correct** if when f’s precondition is satisfied on entry and f terminates, then f’s postcondition is satisfied.

Automatic Verification

- Function + annotation is transformed to finite set of FOL formulae, the **verification conditions** (VCs)
- If all VCs are valid, then the function obeys its specification (partially correct)
Programs with Loops

Loop invariants

- Each loop must be annotated with a loop invariant, \mathcal{L}
- **while** loop: L must hold
 - at the beginning of each iteration before the loop condition is evaluated
- **for** loop: L must hold
 - after the loop initialization, and
 - before the loop condition is evaluated
Basic Paths: Loops

To handle loops, we break the function into basic paths.

Basic Path

@ ← precondition or loop invariant

finite sequence of instructions
(no loop invariants)

@ ← loop invariant, assertion, or postcondition
Basic Paths: Conditionals

Basic paths split at conditionals

Replace each path $BP[\text{if } B \text{ then } S_1 \text{ else } S_2]$ by two paths
- $BP[\text{assume } B; S_1]$
- $BP[\text{assume } \neg B; S_2]$

Semantics of “assume B”

Execution ends unless B holds
Example: LinearSearch

@pre 0 ≤ ℓ ∧ u < a.length
@post rv ↔ ∃i. ℓ ≤ i ≤ u ∧ a[i] = e

bool LinearSearch(int[] a, int ℓ, int u, int e) {
 for
 @L : ℓ ≤ i ∧ (∀j. ℓ ≤ j < i → a[j] ≠ e)
 (int i := ℓ; i ≤ u; i := i + 1) {
 if (a[i] = e) return true;
 }
 return false;
}
Example: Basic Paths of LinearSearch

\(\text{(1)} \)
\[
\begin{align*}
\text{@pre } & 0 \leq \ell \land u < a.length \\
& i := \ell; \\
\text{@L} : & \ell \leq i \land \forall j. \ell \leq j < i \rightarrow a[j] \neq e
\end{align*}
\]

\(\text{(2)} \)
\[
\begin{align*}
\text{@L} : & \ell \leq i \land \forall j. \ell \leq j < i \rightarrow a[j] \neq e \\
& \text{assume } i \leq u; \\
& \text{assume } a[i] = e; \\
& rv := true; \\
\text{@post } & rv \iff \exists j. \ell \leq j \leq u \land a[j] = e
\end{align*}
\]
Example: Basic Paths of LinearSearch

(3) \[\forall L : \ell \leq i \land \forall j. \ell \leq j < i \rightarrow a[j] \neq e \]
assume \(i \leq u \);
assume \(a[i] \neq e \);
\(i := i + 1 ; \)
\[\forall L : \ell \leq i \land \forall j. \ell \leq j < i \rightarrow a[j] \neq e \]

(4) \[\forall L : \ell \leq i \land \forall j. \ell \leq j < i \rightarrow a[j] \neq e \]
assume \(i > u \);
\(rv := false \);
\[\forall post \ rv \leftrightarrow \exists j. \ell \leq j \leq u \land a[j] = e \]
Example: Basic Paths of LinearSearch

Visualization of basic paths of LinearSearch

@pre

(1)

(3) L

(2),(4)

@post
Proving Partial Correctness

Goal

- Prove that annotated function \(f \) agrees with annotations
- Transform \(f \) to finite set of verification conditions VC
- Validity of VC implies that function behaviour agrees with annotations

Weakest precondition \(\text{wp}(F, S) \)

- Informally: What must hold before executing statement \(S \) to ensure that formula \(F \) holds afterwards?
- \(\text{wp}(F, S) = \) weakest formula such that executing \(S \) results in formula that satisfies \(F \)
- For all states \(\sigma \) such that \(\sigma \in \text{wp}(F, S) \): successor state \(S[S]\sigma \in F \).
Weakest preconditions for each statement

- **Assumption:** What must hold before statement `assume B` is executed to ensure that `F` holds afterward?

 \[\text{wp}(F, \text{assume } B) \iff B \rightarrow F \]

- **Assignment:** What must hold before statement `x := e` is executed to ensure that `F[x]` holds afterward?

 \[\text{wp}(F[x], x := e) \iff F[e] \]

 (“substitute `x` with `e`”)

- **Sequence of statements** `S_1; \ldots; S_n` (`n > 1`),

 \[\text{wp}(F, S_1; \ldots; S_n) \iff \text{wp}(\text{wp}(F, S_n), S_1; \ldots; S_{n-1}) \]
Verification condition of basic path

@ F
S_1;
...
S_n;
@ G

is defined as

F \rightarrow \text{wp}(G, S_1; \ldots; S_n)

This verification condition is often denoted by the Hoare triple

\{F\}S_1; \ldots; S_n\{G\}
Proving Partial Correctness

Approach

- Input: Annotated program
- Compute the set P of all basic paths (finite)
- For all $p \in P$: generate verification condition $VC(p)$
- Check validity of $\bigwedge_{p \in P} VC(p)$

Theorem

If $\bigwedge_{p \in P} VC(p)$ is valid, then each function agrees with its annotation.
Example 1: VC of basic path

\[(1) \]
\[
\begin{align*}
\@ F : & \quad x \geq 0 \\
S_1 : & \quad x := x + 1; \\
\@ G : & \quad x \geq 1
\end{align*}
\]

The VC is
\[F \rightarrow \text{wp}(G, S_1) \]

That is,
\[\text{wp}(G, S_1) \]
\[\iff \text{wp}(x \geq 1, x := x + 1) \]
\[\iff (x \geq 1)\{x \Rightarrow x + 1\} \]
\[\iff x + 1 \geq 1 \]
\[\iff x \geq 0 \]

Therefore the VC of path (1)
\[x \geq 0 \rightarrow x \geq 0, \]
which is valid.
Example 2: VC of basic path (2) of LinearSearch

[@L :] \(F : \ell \leq i \land \forall j. \ell \leq j < i \rightarrow a[j] \neq e \)

\(S_1 \) : assume \(i \leq u \);

\(S_2 \) : assume \(a[i] = e \);

\(S_3 \) : \(rv := true \);

@post \(G : \) \(rv \leftrightarrow \exists j. \ell \leq j \leq u \land a[j] = e \)

The VC is: \(F \rightarrow wp(G, S_1; S_2; S_3) \)

\(wp(G, S_1; S_2; S_3) \)

\(\leftrightarrow wp(wp(rv \leftrightarrow \exists j. \ell \leq j \leq u \land a[j] = e, rv := true), S_1; S_2) \)

\(\leftrightarrow wp(true \leftrightarrow \exists j. \ell \leq j \leq u \land a[j] = e, S_1; S_2) \)

\(\leftrightarrow wp(\exists j. \ell \leq j \leq u \land a[j] = e, S_1; S_2) \)

\(\leftrightarrow wp(wp(\exists j. \ell \leq j \leq u \land a[j] = e, assume a[i] = e), S_1) \)

\(\leftrightarrow wp(a[i] = e \rightarrow \exists j. \ell \leq j \leq u \land a[j] = e, S_1) \)

\(\leftrightarrow wp(a[i] = e \rightarrow \exists j. \ell \leq j \leq u \land a[j] = e, assume i \leq u) \)

\(\leftrightarrow i \leq u \rightarrow (a[i] = e \rightarrow \exists j. \ell \leq j \leq u \land a[j] = e) \)
Outline

- Proving partial correctness
 - Programs with recursive function calls
Basic Paths: Recursive Function Calls

- **Loops** produce unbounded number of paths
 - *loop invariants* cut loops to produce
 - finite number of basic paths

- **Recursive calls** produce unbounded number of paths
 - *function specifications* cut function calls

Function specification

- Add *function summary* for each function call
- Instantiate pre- and postcondition with parameters of recursive call
Example: BinarySearch

The recursive function **BinarySearch** searches subarray of sorted array a of integers for specified value e.

sorted: weakly increasing order, i.e.

$$\text{sorted}(a, \ell, u) \iff \forall i, j. \ \ell \leq i \leq j \leq u \rightarrow a[i] \leq a[j]$$

Function specifications

- **Function postcondition (@post)**
 It returns `true` iff a contains the value e in the range $[\ell, u]$

- **Function precondition (@pre)**
 It behaves correctly only if $0 \leq \ell$ and $u < a.length$
Example: BinarySearch

@pre $0 \leq \ell \land u < a.length \land \text{sorted}(a, \ell, u)$
@post $\text{rv} \leftrightarrow \exists i. \ell \leq i \leq u \land a[i] = e$

```cpp
bool BinarySearch(int[] a, int \ell, int u, int e) {
    if ($\ell > u$) return false;
    else {
        int m := (\ell + u) \div 2;
        if ($a[m] = e$) return true;
        else if ($a[m] < e$) return BinarySearch(a, m + 1, u, e);
        else return BinarySearch(a, \ell, m - 1, e);
    }
}
```
Example: Binary Search with Function Call Assertions

@pre $0 \leq \ell \land u < a.length \land \text{sorted}(a, \ell, u)$
@post $rv \leftrightarrow \exists i. \ell \leq i \leq u \land a[i] = e$

bool BinarySearch(int[] a, int ℓ, int u, int e) {
 if ($\ell > u$) return false;
 else {
 int $m := (\ell + u) \div 2$;
 if ($a[m] = e$) return true;
 else if ($a[m] < e$) {
 @pre $0 \leq m + 1 \land u < a.length \land \text{sorted}(a, m + 1, u)$;
 bool tmp := BinarySearch(a, $m + 1$, u, e);
 @post tmp $\leftrightarrow \exists i. m + 1 \leq i \leq u \land a[i] = e$; return tmp;
 } else {
 @pre $0 \leq \ell \land m - 1 < a.length \land \text{sorted}(a, \ell, m - 1)$;
 bool tmp := BinarySearch(a, ℓ, $m - 1$, e);
 @post tmp $\leftrightarrow \exists i. \ell \leq i \leq m - 1 \land a[i] = e$;
 return tmp;
 }
 }
}

Softwaretechnik June 20, 2013 23 / 24
Summary

Automatic verification of sequential programs

- **Goal:** Proof of partial correctness
- **Program specification**
 - Pre- and postconditions
 - Loop invariants
- **Tools**
 - Basic paths
 - Weakest precondition
 - Verification conditions
 - Function summaries