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Abstract. The ideal software contract is a full specification of the be-
havior of an operation. Often, in particular in the context of scripting
languages, a full specification can be cumbersome to state and may not
even be desired. In such cases, a partial specification, which describes
select aspects of the behavior, may be used to raise the confidence in an
implementation of the operation to a reasonable level.

We propose a novel style of contract for object-based languages that
permits the partial specification of side effects. Specifically, our contract
language attaches access permissions to functions and methods. An ac-
cess permission describes the side effects of a method using sets of access
paths that express read and write permissions for the properties of the
objects accessible from the method. We specify a monitoring semantics
for access permissions and implement this semantics as an extension of
an existing contract system for JavaScript. We find that adding access
permissions to contracts increases the effectiveness of error detection by
contract monitoring by 6-13%.

1 Introduction

Design by contract is a methodology for software development based on specifi-
cations (contracts) of operations [31, 32]. The correctness of an implementation
with respect to a contract may be statically guaranteed by program verification
or it may be dynamically checked with contract monitoring. As the latter variant
permits more expressive specifications and puts less demands on the skills of the
programmer, it is widely used in practice as evidenced by implementations of
contract checking in various forms and for many languages [1,16–18,24,26,27,37].

Originally, contracts were meant to provide full specifications. However, con-
tracts for partial specifications, which only specify certain aspects of an oper-
ation, also have their uses. For example, in a dynamically-typed language, a
contract could have the form of a type signature and impose restrictions like a
type system [2, 36]. Contract monitoring for such a system essentially detects
type errors at method boundaries.

In previous work [24], we proposed a contract system for JavaScript which
is based on type signatures. This contract system is value-oriented in the sense
that a contract specifies restrictions on the values that are passed to a method
and returned from it. However, a value-oriented contract misses an important



facet of the semantics of a method because a type signature does not specify its
side effects. In this work, we fix this omission by extending the contract language
and contract monitoring with access permissions.

An access permission explicitly states the set of paths (sequences of property
accesses) that a method may access from the objects in scope. Being able to
state such permissions is important in a language like JavaScript, where a side
effect is the raison d’être of many operations. A value-oriented contract does not
suffice in many cases. To support this claim, consider the following code:

function redirectTo (url) {
window.location = url;

}

A suitable type-signature contract for redirect would be (string) → undefined stat-
ing that the argument must be a string and that the undefined result value
should be returned.1 However, the interesting information about the function is
that it changes the location property of the window object, which has the further
effect of redirecting the web browser to a new page. To specify this effect, our
extended contract language enables us to extend the above contract with an
access permission:

... with [window.location]

This access permission lets the function access and modify the location property
of window but denies access to any other object. Contract monitoring for the
thus extended contract enforces the permission at run time. For example, if the
function’s implementation above were replaced by

function redirectTo (url) {
window.location = url;
myhistory.push (url);

}

while keeping the same type signature and access permission, then monitoring
would report a contract violation as soon as the function accesses myhistory.

We envision that access permissions are useful in a wide range of applications:

Security: Web browsers maintain a number of “magic properties” where an
assignment causes a significant change of the browser’s state (for example,
window.location). Wrapping a monitored contract around a suspicious piece
of code can easily reveal this kind of side effect.

Modularity: JavaScript programs typically rely on a number of libraries and
freely include third-party code (mash-ups) that may change arbitrarily be-
tween different program runs. Programmers do not want this code to corrupt
their global variables and to inflict arbitrary changes to their object struc-
tures. Wrapping a monitored contract around the third-party code again
confines these effects and guarantees the integrity of the program’s state.

1 undefined is a special value in JavaScript. Methods without an explicit return state-
ment return undefined.
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Test-driven development: Specifying contracts with access permissions sim-
plifies testing because it is always clear which functions are independent
from one another and thus need not be tested together. Breaches are, again,
detected by monitoring.

Contributions

1. Design of a contract framework with access permissions for object networks.
2. Specification of a formal semantics of access permissions and their dynamic

enforcement (monitoring).
3. Implementation of access permissions as an extension of an existing contract

and testing framework for JavaScript [24]. The implementation is based on
program rewriting and performs contract monitoring at run time. That is,
before performing a property access, the transformed program first asks for
permission and signals a contract violation unless permission is granted.

4. Assessment of the effectiveness of access permission contracts by observing
the impact of random code modifications on hand-annotated case studies.

5. Benchmark data on the performance of the transformed programs in different
browsers.

Overview

In Section 2, we motivate access permissions with examples. Section 3 contains
the formalization along with a soundness proof of monitoring and a discussion
of alternative designs. Section 4 describes the implementation. Section 5 reports
the two case studies that we performed and presents a performance evaluation.
Finally, Section 6 discusses related work and Section 7 concludes.

2 Motivation

2.1 Modular Layout Computation

Suppose you are a JavaScript developer who has just been assigned a mainte-
nance task on a large AJAX application. In particular, you need to work on
the code that performs a layout computation for a bunch of view objects. To
start with, it would be advantageous to know which properties are modified by
the code. Using our framework, a developer can gradually specify access permis-
sions for the code until it runs without contract violation on a sufficiently large
number of test cases. For example, the final specification may be as follows:

/∗c {}.(int, int) → boolean with [this.x, this.y, this.w, this.h] ∗/
Frame.prototype.layout = function (width, height) { ... }

The special comment /∗c ... ∗/ specifies a contract for a method. The part
before with defines the type signature. In the subsequent access permission, this

refers to the receiver object of the method call. The access paths specify that
only properties named x,y, w, or h of the receiver object may be written.
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An access path starts with any variable name in scope followed by a sequence
of property names. It permits reading any property reachable by dereferencing
some prefix of the access path and writing the properties reachable by derefer-
encing the entire access path. The special variable names this, $1, $2, . . . refer to
the receiver object of a method call and to the first, second, and so on parameter.

2.2 Read-only Objects

Many libraries rely on a programming pattern to define JavaScript functions
with keyword parameters. The idea is to define a function with one parameter
which is always an object. The properties of this object play the role of keyword
parameters as in this example:

c = createCanvas({width: 100, height: 200, background: ”green”});

As it is generally considered bad programming style to assign to parameters, this
parameter object should not be changed, either. Such changes could be forbidden
with a contract:

/∗c ({}) → undefined with [$1.∗.@] ∗/

This specification uses two new features in the access permission: as in shell file
name patterns, the ∗ stands for any sequence of property names. The final @

stands for the empty set of property names. Thus, the first parameter must be
read-only. Read permission is granted for all properties reachable from $1, but
write permission is granted only for those access paths that end in a property
name that is contained in the empty set, that is, for no access path.

2.3 Observer

In an implementation of the observer pattern, the programmer would like to
make sure that an observer only reads and writes properties below the state

component of the subject. This restriction may be expressed with the contract

/∗c ({}) → any with [$1.state.∗.?] ∗/
Observer.prototype.update = function (subject) {

... subject.state.value = ...
}

With this access permission, any property below state is readable and writable
but state itself is read-only. The final ? stands for any property name.

2.4 Regular Expression Permissions

Let’s return to the example from the introduction, where we wanted to ensure
that a method only accesses and modifies the window.location property. In the
context of enforcement of security properties, it is more likely that we want to
forbid access to a few chosen properties, whereas we do not care about accesses
to the majority of properties. In such a situation, we might write an access
permission like the following:
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variable x ∈ Var
property name p ∈ Prop
access path π ∈ Path = Prop∗

path language L ∈ PLang = ℘(Path)
expression e ::= x | λx.e | e(e) | new | e.p | e.p := e | permitx : Lr, Lw in e

Fig. 1. Syntax.

... with [window./ˆ([ˆs].∗|.[ˆt].∗|..[ˆa].∗|...[ˆt].∗|.{4}[ˆu].∗|.{5}[ˆs].∗|.{7,})/]

It specifies an access path that accepts read and write accesses only to properties
of the window object that match the regular expression enclosed in slashes. The
particular regular expression in the example matches all property names different
from status.2

3 Designing the Framework

Before delving into the implementation of monitoring for access permissions, we
formally define their meaning using a suitable, minimalist core calculus. This
approach enables us to discuss potential pitfalls and alternative design choices.

Let’s fix some notation before we start. Let A and B be sets. We write ℘(A)
for the power set of A, A + B for the disjoint union of A and B, and A × B
for their Cartesian product. A ⇀ B denotes the set of finite (partial) functions
from A to B with ∅ standing for the empty mapping and if f ∈ A ⇀ B, then
f ↓A′ denotes the restriction of f to domain A′ ⊆ A and dom(f) ⊆ A denotes
the domain of f . The updated function f ′ = f [a 7→ b] is defined by f ′(a) = b and
f ′(a′) = f(a′), for all a′ 6= a. We also write [a 7→ b] = ∅[a 7→ b] for the singleton
map with domain {a}. If we write f(a) as part of a premise, this use implies the
additional premise a ∈ dom(f).

3.1 Syntax and Semantics

Figure 1 specifies the syntax of an imperative object calculus extended with
permissions. The calculus extends a call-by-value lambda calculus with object
construction (new creates a fresh object devoid of properties), reading of an ob-
ject’s property, and writing/defining an object’s property. The syntax is mostly
standard and close to that of existing JavaScript core languages [23,25].

The novel construct of the calculus is the expression permitx : Lr, Lw in e
that specifies an access permission. It enforces a restriction on accesses to vari-
able x during evaluation of e governed by the two languages Lr and Lw. Both
languages specify a set of access paths (sequences of properties) starting from

2 We plan a shorthand syntax for such cases, but we prefer to stick with the imple-
mented features in the examples.
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the object bound to x (which must be in scope). Read accesses to descendants
of x are limited to paths in Lr whereas write accesses are limited to paths in
Lw. Evaluation of e stops if it tries to perform any access that is not permitted.

Lr and Lw should not be arbitrary. The read language Lr should be pre-
fix closed, because it does not make sense to permit reading of x.a.b without
permitting to read x.a, too. Similarly, writing of x.a.b is not possible without
reading x.a, first. So, each path in the write language Lw should extend a path
in the read language by one property, that is, Lw ⊆ {π.p | π ∈ Lr, p ∈ Prop}.

The only hard requirement on Lr and Lw is that the membership test (in
rule check permission) is decidable. A practical implementation would require
these languages to be regular to effectively perform the above sanity checks.

Figure 2 defines the validity of a big-step evaluation judgment of the form

ρ,R,W ` H;u; e ↪→ H ′;u′; v

This judgment declares that given a variable environment ρ and indexed col-
lections R and W of read and write permissions, the expression e transforms
the initial heap H to the final heap H ′ and returns value v. Furthermore, it
threads a serial number u ∈ Uid for the heap that is incremented at each prop-
erty write operation and at each permit expression. The permissions R and W
are indexed by the serial number of the heap for which the permissions were
granted. The indexing of the permissions uniquely identifies different executions
of permit expressions and determine their relative order with respect to heap
modifications.

A value v ∈ Val is either an integer, a reference, or a closure consisting of an
environment and a (lambda-) expression. The representation of a reference is a
pair of a heap address ` and a collection M of access paths, indexed by serial
numbers. The collection M records all permitted access paths that have been
traversed during evaluation so far to obtain this reference value. The indexing
plays the same role as before.

A heap maps a location to an object and an object maps a property name
to a pair of a serial number and a value. The serial number indicates the time
of the write operation that last assigned the property.

The evaluation rules var, lam, and app for variables, lambda abstraction,
and function application are standard. They do not depend on the permissions
R and W, but pass them unchanged on to their sub-evaluations. The serial
number is just threaded through.

The evaluation rule new creates a new object in the heap. This object has no
properties and its collection of access paths is empty. The latter indicates that
the newly created object is not accessible from any variable or already existing
object through a sequence of property accesses. For that reason, the new object
is completely unrestricted. Any of its properties may be written and read. The
serial number does not change because no object in the heap is modified.

The rule get defines the read operation of object properties. It relies on
some auxiliary operations defined in Figure 4. After computing the location `
and the collection M of already traversed access paths of the object, the premise
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Int set of integers
` ∈ Loc set of locations / addresses
u ∈ Uid = Int set of unique ids

H ∈ Heap = Loc ⇀ Obj
Obj = Prop ⇀ Uid ×Val

P,R,W ∈ Uid ⇀ PLang
M,N ∈ PMap = Uid ⇀ Path
(`, m) ∈ Ref = Loc × PMap

v ∈ Val = Int + Ref + Env × Expr
ρ ∈ Env = Var ⇀ Val

var
ρ,R,W ` H; u; x ↪→ H; u; ρ(x)

lam
ρ,R,W ` H; u; λx.e ↪→ H; u; (ρ ↓FV(λx.e), λx.e)

app
ρ,R,W ` H; u; e0 ↪→ H ′; u′; (ρ′, λx.e)

ρ,R,W ` H ′; u′; e1 ↪→ H ′′; u′′; v1 ρ′[x 7→ v1],R,W ` H ′′; u′′; e ↪→ H ′′′; u′′′; v

ρ,R,W ` H; u; e0(e1) ↪→ H ′′′; u′′′; v

new
` /∈ dom(H)

ρ,R,W ` H; u; new ↪→ H[` 7→ ∅]; u; (`, ∅)

get
ρ,R,W ` H; u; e ↪→ H ′; u′; (`,M) R `M M.p

ρ,R,W ` H; u; e.p ↪→ H ′; u′; H ′(`)(p) �M.p

put
ρ,R,W ` H; u; e1 ↪→ H ′; u′; (`,M)

ρ,R,W ` H ′; u′; e2 ↪→ H ′′; u′′; v W `M M.p

ρ,R,W ` H; u; e1.p := e2 ↪→ H ′′[` 7→ H ′′(`)[p 7→ (u′′, v)]]; u′′ + 1; v

permit
ρ[x 7→ ρ(x) � [u 7→ ε]],R[u 7→ Lr],W[u 7→ Lw] ` H; u + 1; e ↪→ H ′; u′; v

ρ,R,W ` H; u; permitx : Lr, Lw in e ↪→ H ′; u′; v

Fig. 2. Semantics.

check permission
∀u ∈ dom(P) ∩ dom(M) : M(u) ∈ P(u)

P `M M

Fig. 3. Checking permissions.
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(u, v) �M :=

(
(`,M<u N ) if v = (`,N )

v if v /∈ Ref

(M<u N )(u′) :=

8>>><>>>:
N (u′) if u′ ∈ dom(N )

M(u′) if u′ ∈ dom(M)\dom(N ) ∧ u < u′

undefined if u′ ∈ dom(M)\dom(N ) ∧ u ≥ u′

undefined if u′ /∈ dom(M) ∪ dom(N )

(M.p)(u) :=

(
M(u).p if u ∈ dom(M)

undefined if u /∈ dom(M)

Fig. 4. Auxiliary definitions.

R `M M.p checks the read permission for these paths extended with property
p. This check is specified by rule check permission (Fig. 3) which requires that,
for each currently active index u, the access path for u is contained in the set of
permitted access paths for u. As the returned value is located at the end of all
access paths in M.p, it is augmented with this information using the operator
�. It attaches the new access path to the location using the operator <u if the
returned value is a reference. Otherwise, the value is passed through as is.

In an application M<uN , the first argument M contains the newly discov-
ered access paths, the second argument N contains the access paths as they are
stored in the heap, and the subscript u is the serial number of the last write to
the property. The definition in Figure 4 distinguishes three cases depending on
when the property was last written and where the written value came from. Let
u′ be the serial number of an execution of a permit expression.

1. The object’s property value already has an access path for index u′ (in N ).
In that case, the property has been overwritten since the introduction of u′

and the existing access path is kept as it reflects an access path at the time
when the permission u′ was created.

2. The object’s property value has no access path for index u′ in N and it has
been written before the permission with index u′ was installed as can be seen
from u < u′. In this case, we attach the new u′-path to the value.

3. There is no access path for index u′ and the property has been written after
the permission with index u′ was installed (viz. u ≥ u′). In this case, no u′-
path is attached because this property was not linked to the data structure
when u′ was created.

The examples in Section 3.2 illustrate these three cases.
The rule put specifies the operation that writes and (if necessary) defines a

property. It first computes the location ` and the collection M of access paths of
the object and then checks the write permission to the object with the premise
W `M M.p. It overwrites the object’s property with the new value and assigns
it a new, incremented serial number.
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1 let x = new in
2 x.a = new;
3 x.b = new;
4 permit x :
5 {a,b,b.a},{a,b.a} in
6 x.a = x.b;
7 x.a.a = 42

(a) Valid access

1 let x = new in
2 x.a = new;
3 x.b = new;
4 x.a = x.b;
5 permit x :
6 {a,b,b.a},{a,b.a} in
7 x.a.a = 42

(b) Invalid access

1 let x = new in
2 let y = new in
3 x.a = new;
4 permit y : {a}, {a} in
5 permit x : {a}, {a} in
6 x.a = y;
7 x.a.a = 42

(c) Nested permissions

Fig. 5. Exercising the definition of <u.

The rule permit specifies the access permission operation. Each such per-
mission is bound to the serial number u of the heap in which the permission
is installed. It increments the serial number to avoid clashes with the next per-
mission. Then, evaluation proceeds with the body of the permit-expression, but
with an updated variable binding for x, which records the serial number u for
the heap reachable from the object bound to x (if any) by attaching [u 7→ ε] to
it, and updated read and write permissions, which record the stated permission
set Lr and Lw for the object network reachable from x.

An access permission is dynamically scoped because the access permissions
are propagated with the flow of execution and the rule check permission only
considers the entry points in the domain of the current access permission P. In
particular, access permissions are not captured by closures created while they are
in force: Closure creation (rule lam) ignores the access permissions and function
application (rule app) continues to use the current permissions with the body of
the invoked function. Hence, after evaluation of the body of an access permission
is complete, its entry point u could be garbage collected both from the value and
from the heap.

3.2 Examples

The code fragments in Figure 5 serve to illustrate the different cases of the <u

operator. For conciseness, we take the liberty of extending the language with a
let expression and sequential execution in the usual way.

The code fragments (a) and (b) differ only in the placement of the permit
expression. The code fragment (a) installs the permission before the assignment
x.a = x.b whereas version (b) installs the permission afterwards. In both cases,
let the permit expression be associated with serial number u′ and let x.b contain
a location `b paired with an empty map (according to rule new).

In version (a), the expression x.b returns the location `b paired with the
map [u′ 7→ b] (according to case 2 of <u: u < u′ because it was generated by
the preceding assignment x.b = new). This value is written to x.a. The following
access to x.a returns (`b, [u′ 7→ b]) according to case 1 of <u which governs that
the paths stored in the object take precedence. For the final write access, the
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extended access map [u′ 7→ b.a] is checked against the set of write permissions
and succeeds.

In version (b), x.a = x.b is executed before the permit expression. Hence, x.a

contains (`b, ∅) and the get rule makes it return (`b, [u′ 7→ a]) according to case 1
of <u. For the write operation, the extended access map [u′ 7→ a.a] is checked
against the set of write permissions and fails.

The code in Figure 5(c) is supposed to exercise case 3 of the definition of <u.
After establishing the two permissions, the environment ρ is: [x 7→ (`x, [u3 7→
ε]), y 7→ (`y, [u2 7→ ε])] where the ui are sorted according to their indexes.
After the assignment x.a = y (with serial number u4) the object in location `x

is: {a : (u4, (`y, [u2 7→ ε]))}. In line 7, x.a evaluates to

(u4, (`y, [u2 7→ ε])) � [u3 7→ a] = (`y, [u3 7→ a] <u4 [u2 7→ ε]) = (`y, [u2 7→ ε])

Observe that case 3 of <u applies because u4 ≥ u3. In consequence, u3 vanishes
from the domain of the map because the object that was reachable via x.a before
line 6 has become garbage. With this reasoning the update of x.a.a is permitted
because it is equivalent to y.a and realizable in the heap after line 5.

3.3 Properties

It is important to see that the semantics of access permissions has some subtle
implications. For instance, if x is bound to some object `, then the access per-
mission permitx : ∅, ∅ in e does not ensure that evaluation of e does not access
any property of `. To see this, consider the following example:

let y = new in letx = y in permitx : ∅, ∅ in y.a := 42 (1)

This code evaluates successfully to 42 because the access permission only applies
to property accesses that happen via x, whereas the binding of y is not aware of
the permission.

So what do access permissions actually enforce? The problem with exam-
ple (1) is that x and y are aliases of one another. A meaningful characterization
of the guarantees of an access permission must consider aliasing. To formulate a
precise statement, we extend the evaluation judgment to also trace all read and
write accesses in sets T r, Tw ⊆ Loc × Prop:

ρ,R,W ` H;u; e ↪→′ H ′;u′; v [T r, Tw]

Figure 6 shows the modified rules for property read and write; the remaining
rules just union the trace sets from the subcomputations as in the put’ rule.

We further need to refer to all heap locations reachable from a given object
location. This notion is formalized with a mapping reach : Heap×Val ⇀ ℘(Loc),
which returns the set of locations that are reachable from an input value v by
dereferencing along any path π ∈ Path, using the auxiliary function deref (see
Figure 7). The access function yields tuples of locations and property names for
all accessible properties along a path π ∈ Π.
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get’
ρ,R,W ` H; u; e ↪→′ H ′; u′; (`,M) [T r, T w] R `M M.p

ρ,R,W ` H; u; e.p ↪→′ H ′; u′; (H ′(`)(p) �M.p) [T r ∪ {(`, p)}, T w]

put’
ρ,R,W ` H; u; e1 ↪→′ H ′; u′; (`,M) [T r

1 , T w
1 ]

ρ,R,W ` H ′; u′; e2 ↪→′ H ′′; u′′; v [T r
2 , T w

2 ] W `M M.p

ρ,R,W ` H; u; e1.p := e2

↪→′ H ′′[` 7→ H ′′(`)[p 7→ (u′′, v)]]; u′′ + 1; v [T r
1 ∪ T r

2 , T w
1 ∪ T w

2 ∪ {(`, p)}]

Fig. 6. Tracing property read and write.

reach(H, {v1, . . . , vn}) =
S

i reach(H, vi)

reach(H, v) = deref (H, v,Path)

deref (H, v, Π) =
S
{deref (H, v, π) | π ∈ Π}

deref (H, (u, v), π) = deref (H, v, π)

deref (H, v, π) =

(
deref ′(H, `, π) v = (`, m)

∅ v /∈ Ref

deref ′(H, `, ε) = {`}

deref ′(H, `, p.π) =

(
deref (H, H(`)(p), π) p ∈ dom(H(`))

∅ otherwise

access(H, v, Π) =
S
{access(H, v, π) | π ∈ Π}

access(H, (`,M), π.p) = {(`′, p) | `′ ∈ deref ′(H, `, π)}
access(H, v, π) = ∅ if v /∈ Ref

Fig. 7. Heap traversal.

Theorem 1. Suppose that ρ,R,W ` H0; permitx : Lr, Lw in e ↪→′ H1; v [T r, Tw]
and that reach(H0, ρ(FV(e) \ {x})) ∩X = ∅ where X = reach(H0, ρ(x)).

Then T r ∩ (X × Prop) ⊆ access(H0, ρ(x), Lr) and Tw ∩ (X × Prop) ⊆
access(H0, ρ(x), Lw).

The second assumption just says that x does not share with the remaining
variables. The conclusion of the theorem says that for every access pair (`, p) ∈ Tr

where ` happens to be reachable from ρ(x) this access must be sanctioned by the
language Lr of read permissions. The latter is formalized via the access function:
It splits every access path in Lr in a prefix π and last property p, computes the
dereferenced locations from ρ(x) along path π and pairs the results (at most
one) with p.

To prove this theorem, we establish an invariant, which we formulate for
the judgment without the traces because they are not needed to prove it. The
assumption ρ,R,W ` H0;ux; permitx : Lr, Lw in e ↪→ H1;u1; v in the theorem
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can only hold (by inversion) if its premise also holds:

ρ[x 7→ ρ(x) � [ux 7→ ε]],R[ux 7→ Lr],W[ux 7→ Lw] ` H0;ux + 1; e ↪→ H1;u1; v
(2)

Let’s further assume that ρ(x) = (`x,mx) ∈ Ref —otherwise, the theorem is
trivially true because v /∈ Ref ⇒ deref (H0, v, π) = ∅, for all π, so that X = ∅.

Definition 1. A value v is primarily reachable (short: p.r.) from `x with index
ux in H0 if either

– v = (`,m) with ux ∈ dom(m) implies that ` ∈ deref ′(H0, `x,m(ux)),
– v = (ρ, λy.e′) with ρ primarily reachable, or
– v ∈ Int.

An environment ρ is p.r. if (∀y ∈ dom(ρ)) ρ(y) is p.r. A heap H is p.r. if
∀` ∈ dom(H) and ∀p ∈ dom(H(`)) H(`)(p) p.r. (All with respect to the same
fixed `x, ux, and H0.)

Lemma 1. For each judgment ρ′,R′,W ′ ` H ′;u′; e′ ↪→ H ′′;u′′; v′′ occurring in
the derivation of (2) it holds that: if ρ′ and H ′ are p.r. from `x with index ux

in H0, then so are H ′′ and v′′.

Proof. By induction on the derivation. Each case refers to the variables used in
the respective rule in Figure 2.

Case var: obviously true.
Case lam: obviously true.
Case app: By the assumption on ρ and H, induction on e0 yields H ′ and ρ′

p.r. As now ρ and H ′ are p.r., induction yields that H ′′ and v1 p.r. As ρ′[x 7→ v1]
and H ′′ are p.r., induction yields H ′′′ and v p.r., which proves the result.

Case new: The heap H[` 7→ ∅] and the value (`, ∅) are both p.r.
Case get: By induction, H ′ and (`,M) are p.r. But that means, if ux ∈

dom(M) then ` ∈ deref ′(H0, `x,M(ux)). It remains to show that H ′(`)(p)�M.p
is p.r. The only interesting case occurs if H ′(`)(p) = (u, (`′,N )), in which case
the returned value is (u, (`′,N )) �M.p = (`′,M.p <u N ).

If ux ∈ dom(N ), then the heap location has changed its content since the
access permission associated with ux and it has been overwritten with a value
reachable in H0 from `x on path N (ux). This path annotation has to stay in
force to ensure p.r. of the result: (M.p <u N )(ux) = (N )(ux), for which p.r.
holds by the inductive assumption.

If ux /∈ dom(N ), then the contents of the heap location has not yet been
reached from `x. There are two cases, which can be distinguished by comparing
u and ux. If u ≤ ux, then the heap location has not changed since H0 and
the result can be marked as visited. This is expressed by (M.p <u N )(ux) =
(M.p)(ux) = M(ux).p. By the property read that happens in this rule, it is
clear that `′ ∈ deref ′(H0, `x,M(ux).p).

If, however, u > ux, then the heap location has changed since H0, but the
new value has not been reachable from `x in H0. For that reason, the value must
not receive a ux annotation. This is expressed by (M.p <u N )(ux) =undefined.
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1 /∗c ({x:int},{y:int}) → int with [$1.x, $2.y] ∗/
2 function f(p,q) {
3 q.y = 24;
4 q.x = 8;
5 };
6 var o = {x: 42, y: 3};
7 f(o,o);

Fig. 8. Calling a function with aliased parameters.

Case put: by induction H ′ and (`,M) are p.r. Hence, H ′′ and v are also p.r.
by induction. So is the final heap as the rule overwrites a value with a p.r. value.

Case permit: immediate by induction.

Towards the proof of Theorem 1, which is by induction on the evaluation
judgment with traces, we observe that the top-level judgment “seeds” the lemma
in a non-trivial way. The environment ρ[x 7→ ρ(x) � [ux 7→ ε]] is p.r. with
respect to ux, `x, and H0 (from (2)) because `x ∈ deref ′(H0, `x, ε) and no other
environment entry refers to ux. Similarly, the heap H0 is p.r. because does not
contain any reference to ux. Thus, the lemma tells us that H1 and v are also p.r.

3.4 Discussion

Our calculus is more general than the actually implemented contract language.
The main differences are that the implemented language only deals with access
languages defined by path strings and that access permissions can only be placed
on function definitions, which is equivalent to applying a permit expression to
the function body.

Our semantics of access permissions is not the only possible choice. To discuss
other choices, we consider the code in Figure 8. It illustrates that aliasing is the
main complication as already indicated in Section 3.3.

The annotation of function f specifies that the property x of the first param-
eter and the property y of the second parameter may be read and modified. Our
semantics guarantees that the access to q.x is rejected no matter whether p and
q are aliased.

The main alternative to our intensional definition would be an extensional
one, where permissions are not attached to specific values but to the underlying
object network. In the example, the permission $1.x would grant read/write
access to the x property of the object bound to p at the time of the call. Similarly,
$2.y grants access to the y property of the object bound to q.

However, this alternative semantics would be brittle in the presence of alias-
ing. If p and q were not aliased, then the alternative semantics would prohibit
the update q.x inside of f. If p and q were aliased as in the call f (o,o) in Figure 8,
then the alternative semantics would permit the update q.x as it in fact updates
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p.x, which is permitted by the access paths. We believe that this behavior is
counter-intuitive for the person that specifies the access permission.

To restore some order, the alternative semantics could be refined, for exam-
ple, by taking the union of the read permissions and the intersection of the write
permissions (or some other combination). However, this choice would also be-
have in a counter-intuitive way: Using the intersection of the write permissions,
already the assignment to q.y would provoke an effect violation.

Another reason to dismiss this choice is that it does not admit a compositional
definition. For a counterexample, consider the access permission [x.a, x.b, y.c].
Clearly, this permission should grant write permission for x.a, x.b, and y.c, so if
x and y were not aliased, then the definition would have to admit the union of
the effects. However, if x and y were aliased, then the definition would have to
union the effects of x.a and x.b and then take the intersection with the effects of
y.c, so that no writes were permitted.

Yet another choice would be to leave the semantics of an access permission
unspecified in the case that the read permissions for two different parameters
overlap. Again, we dismissed this choice because it has no compositional speci-
fication and is obviously unsatisfactory.

4 Implementation

The implementation of the framework for monitoring access permissions consists
of two parts. The first part is an off-line JavaScript compiler which is written
in OCaml. The second part is a JavaScript library that handles the dynamic
aspects of enforcing access permissions. It is available as part of JSConTest3, a
JavaScript framework for contract-based testing [24].

The implementation supports the full JavaScript language according to the
standard [13]. In contrast to the formalization in Section 3.1, we do not extend
the syntax of JavaScript with an additional permit expression. Instead, contracts
can be specified as a special kind of comment /∗c ... ∗/ for each function and
method. This approach simplifies the annotation process because it does not
require any restructuring or rewriting of the user code. Also, the annotations do
not change the semantics of the original code.

4.1 Transformation

The annotated user code is then compiled to a version which monitors access
permissions at run time. Figure 9 shows a sample of the transformation steps
that are performed by the off-line compiler. All operations that involve heap
accesses, like reading and writing of properties, are redirected to JSConTest
library calls that handle the access management dynamically.

As an example of the transformation of a function definition, consider the
code in Figure 10. The function declaration is replaced by a variable assignment

3 http://proglang.informatik.uni-freiburg.de/jscontest/
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J e1[e2] K = pRead(Je1K,Je2K)
J e1[e2] = e3 K = pAssign(Je1K,Je2K ,Je3K)
J f(x1,...,xn) K = fCall(f,[Jx1K,...,JxnK])
J o.m(x1,...,xn) K = mCall(o,m,[Jx1K,..., JxnK])
J new O(x1,...,xn) K = cCall(O,[Jx1K,..., JxnK])
J for (var i in o) { e } K = for (var i in o) { if (mCall(o,”hP”,[i])) { J e K} }
J function f() { s } K = var f = (function () {

function f’() { J s K }
return JsConTest.effects.enableWrapper(f’);

}());

Fig. 9. Some select rewrite rules for code under test.

/∗∗ (any) → any
with [ $1.a.f ] ∗/

function f(x) {
var z = x.a;
return z.f;

};

 

TESTS.c1 = ... // contract
var f = (function () {

function f’(x) {
var z = JSConTest.effects.pRead(x,”a”);
return JSConTest.effects.pRead(z,”f”);

}
return JSConTest.effects.enableWrapper(f’);

}());

Fig. 10. Example of a transformation.

which uses an anonymous function that is invoked directly as the right hand
side. This standard JavaScript pattern creates a new private scope and avoids
name space pollution. Because function declarations are evaluated when loading
the source code, the compiler also has to reorder the source elements to ensure
semantically equivalent initialization. The wrapper of the function f marks the
parameters with the corresponding access path information at run time such
that during the execution pRead can check if it has permission to read $1.a.
The library call to pRead also creates a wrapper with the access path $1.a for
z. Reading the property f of z uses the access path stored in the wrapper of z,
extends it to $1.a.f, and checks if reading this path is permitted. The permission
is granted because the effect of f is $1.a.f. No access violation is reported. The
library function enableWrapper generates a fresh unique identifier each time a
function is called (cf. serial numbers in the formalization and Section 4.2).

Similar to the formal system, each reference stores additional information
about the access path that has been used to reach the corresponding object. To
this end, each object is replaced by a wrapper that contains a reference to the
actual object and a map with access path information.

Calls to native or non-transformed code would fail if wrapped objects were
passed. Because it is not possible to decide statically which function is applied
at a call side, the framework strips parameter objects of the access meta data
before passing them to the function. However, it conserves the meta data by
storing the wrappers on a global stack that is used to re-wrap the objects if the
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/∗∗ (any) → any
with [ x.n./n|v/.@ ] ∗/

function f(x) {
if (x.n) return f(x.n);
if (x) return x.v;
return x;

};

 

TESTS.c1 = ... // contract
var f = (function () {

function f’(x) {
if (pRead(x,”n”)) return fCall(f,[pRead(x,”n”)]);
if (x) return pRead(x,”v”);
return x;

}
return enableWrapper(f’);

}());

Fig. 11. Example of a transformation with recursive function call.

callee itself is a transformed function. This approach is compatible with uses of
eval, although monitoring does not extend to eval-generated code.

For inter-operability with non-transformed code, it is also necessary to re-
move wrappers when storing object properties. To this end, an additional map
( infos ) is attached to each object. This map stores the wrappers for each of
the properties. The function pRead uses this map to lookup the wrappers that
belong to an object and return the wrapped object.

As the library stores the access path information in the infos property of
the objects, this property must not become accessible to user code. Therefore,
we provide a substitute for hasOwnProperty (hoP) that masks out the infos

property. We also transform the statement for (var i in o) { e } to ensure that
internal properties used by the implementation do not leak out to the program.
Technically, this protection is achieved by changing the body e to if (hP(o,i) { e }.
The functions pRead and pAssign also safeguard the special property infos .

If native code or non-transformed code iterates over all properties of an ob-
ject, then it is not possible to detect the access and prohibit it by hiding the

infos property. We are not aware of any solution short of modifying the un-
derlying JavaScript engine. However, in the case studies that we performed the
special properties caused no problem.

4.2 Function calls

This example section considers a code fragment with a recursive function (Fig-
ure 11). It demonstrates the interplay of wrapping, unwrapping, and access per-
missions. Given a linked list, the function returns the value (v) of the last node
after recursively following the references to the next pointers (n). For expository
purposes, the function’s implementation does not abide by its contract.

Suppose that the code under test contains the following call to f:

var x = { n: { n: { n: undefined, v: 24 }, v: 11}, v: 5 };
f(x);

To enable the framework to locate the permissions that need to be respected
by read and write operations in the function body, the access permission for f
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is stored under uid 0 in a global effect store when the function is called. At this
point, the effect store contains { 0: x.n./n|v/.@ }.

Then, the object wrappers for the parameters are created. For parameter x,
the wrapper is given by

{ ref: { n: { n: { n: undefined, v: 24 }, v: 11}, v: 5 }, pmap: { 0: x } }

The pmap property stores the information that in the (outermost) function
call which is given the uid 0, the access path for the object is x.

Now the execution of the actual function body commences with the expres-
sion pRead(x,”n”). Comparing the actual access path x.n with the permission
x.n./n|v/.@ yields no violation, so the property access is granted, yielding a ref-
erence to {n: { n: undefined, v: 24}, v: 11} which is returned in a wrapper as

{ ref: { n: { n: undefined, v: 24 }, v: 11}, pmap: { 0: x.n } }

Performing the recursive call with this object as parameter creates a fresh
uid 1, and extends the wrapper for the parameter to

{ ref: { n: { n: undefined, v: 24 }, v: 11}, pmap: { 0: x.n, 1: x } }

Additionally, the global effect store is extended to { 0,1: x.n./n|v/.@ }.
When reading the property n again, the read access is admitted, and the

wrappers are again extended similar to the previous case when calling the re-
cursive function again. The parameter x is now wrapped as

{ ref: {n: undefined, v: 24}, pmap: { 0: x.n.n, 1: x.n, 2: x }}

Finally, when f tries to read n this time, the access to the property is not
granted because the access path for uid 0 only grants access to {x.n./n|v/.@ },
but the read operation tries to dereference {x.n.n.n }. This leads to an access
violation.

5 Evaluation

To evaluate the feasibility of monitoring for access permissions we measure its
effectiveness and performance on several libraries and applications. To this end,
we hand-annotated the code with function and method contracts and ran it with
monitoring enabled. We also applied random code modifications [9] to check
to what extent the enforcement of access permissions detects changes in the
program’s behavior.

5.1 Case Study: Linked Lists

The first case study concerns a small third-party library (200 LOC) which imple-
ments a singly-linked list data structure.4 Its interface comprises one constructor
for list nodes and six methods to operate on the list: add, remove, find, indexOf,
size, and toString.

For each method we developed contracts with access permissions. For exam-
ple, the toString method was annotated with the contract:
4 https://github.com/nzakas/computer-science-in-javascript
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int, no effects int, with effects top, with effects

fulfilled contracts 1011 18.0 % 711 12.7 % 1055 18.4 %
rejected contracts 4607 82.0 % 4907 87.3 % 4721 81.6 %

reasons for reject (one mutant may be counted multiple times)

contract failure 2020 43.9 % 1643 33.5 % 1096 19.0 %
signaled error 2034 44.1 % 2136 43.5 % 2243 38.8 %
browser timeout 553 12.0 % 243 5.0 % 369 6.4 %
read violation - 0.0 % 1018 20.7 % 1004 17.4 %
write violation - 0.0 % 1606 32.7 % 1593 27.6 %
read/write violation - 0.0 % 1842 37.5 % 1823 31.6 %

Table 1. Testing random mutations of the singly-linked list case study.

/∗c js:ll.() → string with [this.head.∗.@] ∗/
List.prototype.stringOf = function () { ... }

This contract permits reading of all properties that are reachable from head. js:ll

is a custom contract developed for this case study. It defines an “instance-of”
test and a random generator for linked lists (16 LOC). Annotating the code
and implementing the custom contract took about one hour. The contracts for
the six functions and the code defining the custom contract is presented in the
appendix A.

From the implementation we derived about 5600 random mutations and
tested each mutant against the original contracts. The mutation operations were
renaming of variables and properties, replacing an integer constant by another,
swapping null and undefined, removing a return statement, and exchanging a bi-
nary operator (e.g., + with −, || with &&). Each of the six functions was tested
with 1000 randomly generated test cases.

We ran the code under test in several configurations:

– contracts specifying integer lists without effects: only violations of the type
contracts are detected (int, no effects),

– contracts specifying integer lists with effects: type and access path violations
are detected (int, with effect), and

– contracts for arbitrary lists with effects: list elements are unrestricted and
access path violations are detected (top, with effects).

Table 1 shows the results of the test cases. The rows of the table have the
following meaning:

– fulfilled: mutation not detected because the mutant fulfills all six contracts.
– rejected: the mutant fails at least one of the six tests.

We can read off the effectiveness of effect monitoring from these two rows. Adding
access permissions to integer contracts improves the detection rate for mutations
from 82% to 87.3%, an improvement of 6.4%. Adding access permissions to very
liberal type contracts (top with effects) has about the same detection rate as
(int, no effects).
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The remaining rows break down the reasons for the failure of a mutant.

– contract failure: the test revealed an unexpected return value;
– signaled error: the test was stopped because an error (e.g. dereferencing of

undefined, calling a method on null) was signaled;
– browser timeout: the test server timed out due to non-terminating code;5

– read violations: the code violates the read access permissions;
– write violations: the code violates the write access permissions;
– read/write violations: the code violates a read or write access permission.

Why is it possible that a mutant counts in more than one row? To see this,
let’s consider a mutant with a test outcome of s,s,r,w,c,r. This outcome states
that the first and second function passed 1000 tests successfully, the third and
sixth function were stopped because of a read access violation (r), the forth was
stopped due to a write violation (w), and the fifth was stopped because the
function returned a value that violated the return contract of the function (c).

A mutant only counts as “fulfilled” if all six functions pass all tests (they all
report (s)). Otherwise, the mutant counts as “rejected”. Because a rejection may
have more than one reason, the example outcome s,s,r,w,c,r counts as a contract
failure, a read violation, and a write violation. For that reason, the counts in
these rows are not disjoint so that the percentages do not add to 100%.

Of special interest are the cases where the contract system did not detect the
mutation of the code as these cases indicate the effectiveness of the annotations.
A manual inspection of these mutants revealed that in many cases the mutated
code is semantically equivalent to the original version, e.g. x.p was changed to x.q,
where both properties p and q were always undefined. In other cases, the contract
is fulfilled by a mutant because the modification did not change any property
access or return value from a type perspective, e.g. return true is changed to
return false. While these mutants may violate the intended semantics, we cannot
expect more because we started from a partial specification, not from the full
specification of a linked-list data structure.

We also manually inspected ten randomly selected mutants that timed out.
All of these mutants timed out because of an infinite loop. Hence, we have reason
to believe that our choice of timeout is sensible.

5.2 Case Study: Richards Benchmark

A second case study was performed on the Richards benchmark code, which
is part of the Google V8 benchmark suite.6 It simulates the task dispatcher of
an operating system. The code implements 29 functions in 650 LOC. A person
without prior knowledge of the code under test provided the contracts and im-
plemented custom generators in about four hours. It took about another two
hours to develop the access permissions.
5 Non-termination is signaled after a timeout of 15 seconds for one function. On av-

erage, the run time for a test case is less than 10ms.
6 http://v8.googlecode.com/svn/data/benchmarks/v6/richards.js
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no effects with effects

fulfilled contracts 1148 38.9% 911 30.8%
rejected contracts 1807 61.1% 2044 69.2%

reason for rejection (one mutant may be counted multiple times)

failed contracts 872 48.3% 866 42.4%
signaled error 1052 58.2% 1037 50.7%
browser timeout 28 1.5% 30 1.5%
read violation 0 0.0% 202 9.9%
write violation 0 0.0% 149 7.4%
read/write violation 0 0.0% 349 17.1%

Table 2. Testing random mutations of the Richards case study.

Table 2 shows the result of testing about 2950 mutated versions. We execute
for each mutant 50 Tests per function to test effect and contract violations. We
chose to run a smaller number of tests to reduce the overall run time and to
check if a large number of test cases is required to obtain a high detection rate
of mutants.

For this application, adding access permissions increased the detecting rate
from 61.1% to 69.2%, which amounts to a 13% improvement. This increase is
quite surprising as the percentages of detected read or write violations are much
smaller than in the linked-list case study.

5.3 Performance Evaluation

All case studies and benchmarks were executed on a Lenovo Thinkpad X61s
notebook with a Core 2 Duo processor with 1.60 GHz and 2GB Ram running the
Google-Chrome browser (7.0.517.44) on top of Linux version 2.6.35-23-generic.
In this setting, a test run of a mutant is about four times slower with monitoring
enabled than without monitoring. This slowdown is consistent for both case
studies.

To give ballpark numbers, running 1000 tests for each of the six functions
of the linked-list test suite takes about 6 seconds with monitoring compared to
1.5 seconds without. For Richards, running 50 tests for each of the 29 functions
takes 1.85 seconds with monitoring compared to 0.5 seconds without.

For the Richards benchmark we also timed the original code (without muta-
tion) once with monitoring and once without to measure the slowdown for code
that never violates the effect annotations. This experiment masks out the effects
of contract violations, which cause the program to stop earlier on faulty mutants
than on correct code. However, the slowdown is similar: running 1000 test cases
for each of the 29 functions took 32.4 seconds with monitoring enabled versus
7.4 seconds without, a slowdown factor of 4.4.
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6 Related Work

Effect systems are closely related to access permissions. Effect systems have been
conceived for functional languages [20] to describe and infer the scope of side
effects, with the goal of detecting parallelizable code fragments and improving
memory management.

There are too many papers on effect systems to do them all justice here. How-
ever, Greenhouse and Boyland [22] introduce effect annotations for Java which
closely resemble our contracts. In contrast to our system, effects are collected for
regions which comprise a set of objects. Their approach aims for tracking data
dependencies of software components. The main differences to our work are that
most effect systems are integrated in type systems and thus geared towards static
analysis (whereas ours is geared towards dynamic analysis) and that our prime
motivation lies in the detection of software defects.

Similarly related is work on ownership and aliasing control. Again, with the
exception of the dynamic ownership system of Boyland and coworkers [8], most
ownership systems statically impose tree-like ownership structures on object
graphs [3, 12, 34, 38]. The main difference to ownership types is that our sys-
tem is entirely access path-based whereas ownership types are context-based.
Furthermore, some ownership systems forbid the mere existence of references,
whereas access permissions forbid the traversal of certain paths.

Bierhoff and Aldrich [7] define a static checker for access permission in Java. It
combines typestate and object aliasing information to design and verify protocols
for safe object access. They also focus on the correct usage of single resources.
Their access permissions are statically verified.

Deutsch’s [10] analysis for sharing and aliasing is also entirely based on access
paths. It is a static analysis phrased as an abstract interpretation of a storeless
semantics.

Run-time monitoring is a well-known approach to providing safety and se-
curity guarantees. Erlingsson [15] provides an overview of such applications. As
a notable difference, security monitoring is mostly geared towards eliminating
(sequences of) uses of undesired operations and can often be implemented by
finite automata, whereas access path monitoring rules out undesired accesses
and requires a more specific implementation techniques (e.g., for dealing with
aliasing).

Similar monitoring ideas using program transformation have been explored
to provide safety and security in scripting languages, in particular for JavaScript.

BrowserShield [35] provides run-time monitoring of JavaScript. Browser-
Shield also rewrites code by redirecting critical operations according to user-
specified policies. Likewise, the Google Caja project [21] employs an online com-
pilation process of JavaScript code to a safe subset named Cajita.

Maffeis and co-workers [30] combine several isolation techniques for restrict-
ing heap accesses of third-party code. They disallow eval, Function, and constructor

within untrusted code and also rewrite property accesses with wrappers to enable
run-time checks.
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These systems operate within the browser during interactive user sessions and
provide complete interposition. In contrast, our tool is focused on development
and testing of applications.

Finifter and co-workers [19] design a JavaScript heap analysis framework to
detect information leaks. To prevent exploits, third-party code is restricted to a
name space by prefixing properties with a unique identifier.

ConScript [33] allows fine-grained application specific security policies that
are enforced at run time by a modified JavaScript execution engine. Compared
to our approach, they have different goals and less overhead, but are tied to a
particular, obsolete browser implementation.

Program specification frameworks like Spec# [5], JML [29], or Eiffel [14]
permit the formulation of access permissions as FOL-formulas in Hoare-style
pre- and postconditions. Because specialized syntax is missing, the annotation
process is rather heavy-weight. Besides, these frameworks are geared towards
full specifications, whereas we are only interested in partial specifications.

The situation gets even more complicated in a setting with higher-order func-
tions as indicated by Berger and co-workers [6]. They present an extension of
a call-by-value imperative higher-order functions calculus with aliasing. This al-
lows for static reasoning about assertion in the form of Hoare-style triples. In the
very same way, Banerjee et al. [4] derive a logic for reasoning about mutation
and separation of the heap locally. With the emphasis on the theory of aliasing,
these systems are orthogonal to the work presented here.

7 Conclusion

We proposed a novel extension of software contracts with access permissions
that specify the side effects of an operation in terms of access paths. We im-
plemented monitoring for access permissions by a program transformation and
demonstrated that this implementation has a high, but acceptable overhead
(slowdown by a factor of four). As a basis of the implementation, we developed
a formalization that enabled us to cleanly specify the interaction of monitoring
and aliasing.

Two case studies showed that the specification of contracts with access per-
missions takes about 30-40 minutes per 100 LOC (for a person not familiar with
the source code) and that in return the number of bugs detected by contract
monitoring increases between 6% and 13%. We find this improvement remark-
able because the baseline, monitoring of type signatures, already captures a large
amount of bugs (61% and 82%). Hence, access permissions seem to catch a sig-
nificant number of extra errors and could be a worthwhile extension of testing
frameworks.

We believe that our approach is more widely applicable. Other scripting
languages have features similar to JavaScript, so the framework should be easily
adaptable to them. More generally, path-based access permissions would make
sense for any object-based language.
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In future work, we want to progress in various directions. An obvious exten-
sion would be a special treatment for effects on the DOM [28]. Because DOM
structures are guaranteed to be trees (no aliasing!), many of the complications
of general object graphs do not arise in the case of DOM.

We further wish to automatically generate random test data from access
permissions to perform tests that exercise the side effects of the operations. As
similar notions have been proposed in work on security for mashups, it would
be interesting to explore applications to security, too.

There are further options in the design space of permissions like generalizing
the path specifications to arbitrary regular expressions on the path level that
are worth investigating.

Finally, a long term goal would be the integration of such a monitoring facility
into a JavaScript engine to improve the efficiency of testing. For now, we opted
for the transformational approach because it is easier to implement, it is more
portable and it is more durable under changes to the JavaScript engine.
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A Linked-List

A.1 LinkedList with Contracts (exact contracts)

1 function LinkedList() { ... }
2 /∗c js:ll.(int) → undefined with [this. head.∗, this. length] ∗/
3 function add(data) { ... }
4 /∗c js:ll.(int) → (int or null) with [this. length.@, this. head.∗.@] ∗/
5 function item(index) { ... }
6 /∗c js:ll.(int) → (int or null) with [this. head.∗, this. length] ∗/
7 function remove(index) { ... }
8 /∗c js:ll.() → int with [this. length.@] ∗/
9 function size() { ... }

10 /∗c js:ll.() → [int] with [this. head.∗.@ ] ∗/
11 function toArray() { ... }
12 /∗c js:ll.() → string with [this. head.∗.@] ∗/
13 function toString() { ... }
14 LinkedList.prototype = { constructor: LinkedList, add: add, ... };

A.2 LinkedList with Contracts with simple contracts

1 /∗c js:ll.(top) → undefined with [this. head.∗, this. length] ∗/
2 function add(data) { ... }
3 /∗c js:ll.(top) → top with [this. length.@, this. head.∗.@] ∗/
4 function item(index) { ... }
5 /∗c js:ll.(top) → top with [this. head.∗, this. length] ∗/
6 function remove(index) { ... }
7 /∗c js:ll.() → [top] with [this. head.∗.@ ] ∗/
8 function toArray() { ... }
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