
Deriving Type Systems and Implementations for
Coroutines

Konrad Anton and Peter Thiemann

Institut für Informatik, Universität Freiburg
{anton,thiemann}@informatik.uni-freiburg.de

Abstract. Starting from reduction semantics for several styles of corou-
tines from the literature, we apply Danvy’s method to obtain equivalent
functional implementations (definitional interpreters) for them. By ap-
plying existing type systems for programs with continuations, we obtain
sound type systems for coroutines through the translation. The resulting
type systems are similar to earlier hand-crafted ones. As a side product,
we obtain implementations for these styles of coroutines in OCaml.

1 Introduction

Coroutines are an old programming construct, dating back to the 1960s [5]. They
have been neglected for a while, but are currently enjoying a renaissance (e.g.
in Lua [12]), sometimes in the limited form of generators (Python [20], C# [17])
and sometimes under different names (e.g., fibers in .NET).

Type systems for coroutines have not been considered in the past. Coroutines
without parameters and return values (Simula, Modula 2 [21]), coroutine opera-
tions whose effects are tied to the static structure of the program (ACL, [16]), or
coroutines lexically limited to the body of one function (C#), could be integrated
into said languages without special support in the type system.

In an earlier paper [1], we developed the first type system for a simply-typed
λ-calculus with coroutines. This development was done in an ad-hoc style for
a feature-rich calculus and resulted in a type and effect system with a simple
notion of subeffecting to capture the control effects of coroutine operations.

In this paper, we follow a different course and rigorously derive a type sys-
tem for a simple core calculus. The derivation starts with a reduction seman-
tics from the literature [11]. To this reduction semantics, we apply Danvy’s
method [6] to obtain a denotational semantics after several semantics-preserving
transformation steps. Then we further transform the semantics to a denota-
tional implementation (a combinator implementation) using methods developed
by Thiemann [19]. This combinator implementation of the coroutine operations
is directly and practically usable. It is available for OCaml on the web.

The denotational implementation also provides good grounds for constructing
a type system that is aware of coroutines. As the combinators contains control
operators, we apply a type system for (the control operators) shift and reset [2,7]
to them and abstract from the types to obtain the desired system. This approach



Expressions e ::= l | x | λx.e | e e | x := e | if e then e else e | e = e | nil
Values v ::= l | λx.e | nil
Ev. contexts C ::= � | e C | C v | x := C | if C then e else e | e = C | C = v

(C[x], θ, l0) ⇒ (C[θ(x)], θ, l0)
(C[(λx.e) v], θ, l0) ⇒ (C[e[x := z]], θ[z 7→ v], l0) where z is fresh
(C[x := v], θ, l0) ⇒ (C[v], θ[x 7→ v], l0)
(C[if nil then e2 else e3], θ, l0) ⇒ (C[e3], θ, l0)
(C[if v then e2 else e3], θ, l0) ⇒ (C[e2], θ, l0) if v 6= nil
(C[l = l], θ, l0) ⇒ (C[l], θ, l0)
(C[l1 = l2], θ, l0) ⇒ (C[nil], θ, l0) if l1 6= l2

Fig. 1. Syntax and reductions of the base calculus.

allows us to construct a variety of type systems. We provide a type soundness
proof for one of them by specifying a typed translation to cps augmented with a
reader monad. This translation is not ad-hoc either, because we fork it off from
an intermediate transformation result of Danvy’s method.

In summary, the contributions of this paper are:

– Systematically derived implementation of coroutine library for OCaml.
– Systematically derived monomorphic type system for coroutines.
– Type soundness proof via a typed translation to a standard monomorphic

lambda calculus with references.

2 Reduction Semantics for Coroutines

In their paper “Revisiting Coroutines” (henceforth abbreviated RC), Moura and
Ierusalimschy [11] define a core calculus that can be extended to cover various
styles and features of coroutines. They consider two styles of coroutines, sym-
metric and asymmetric. In the symmetric setting, a coroutine passes control by
explicitly invoking another coroutine. In the asymmetric setting, there are two
ways of passing control. Either a coroutine can explicitly invoke another corou-
tine, in which case it establishes a parent-child relationship to the next coroutine,
or it can pass control to the implicit parent coroutine. In each case, the coroutine
that passes control suspends itself. As a final variation, not considered in RC, a
coroutine implementation may support both styles of control passing [1, 14].

The base calculus is a call-by-value lambda calculus with assignment, loca-
tions, equality, and a conditional. Evaluation proceeds from right to left. Fig. 1
defines its syntax and its reduction rules. The latter work on a configuration
that consists of an expression e, a store θ ∈ (Var ∪ Loc) → Value that maps
variables and locations to values, and a location l ∈ Loc. Here, Var is a set of
variables and Loc is a set of store locations. The base calculus does not use the
third location component, but the symmetric coroutine operations do.

2



Expressions e ::= · · · | create e | transfer e e | current
Ev. contexts C ::= · · · | create C | transfer e C | transfer C v

(C[create v], θ, l0) ⇒ (C[l], θ[l 7→ v], l0) where l /∈ dom(θ)
(C[transfer l v], θ, l0) ⇒ (θ(l) v, θ[l 7→ nil, l0 7→ λx.C[x]], l) where l 6= l0
(C[transfer l0 v], θ, l0) ⇒ (C[v], θ, l0)
(C[current], θ, l0) ⇒ (C[l0], θ, l0)

Fig. 2. Syntax and reductions of the calculus with symmetric coroutines.

The calculus models beta reduction in Scheme style by renaming the bound
variable to a fresh variable z and assigning the substituted value to that variable.
Thus, these fresh variables serve as locations and facilitate a straightforward
implementation of the assignment operation.

2.1 Symmetric Coroutines

The symmetric coroutine calculus extends the base calculus with operations to
create a coroutine and to transfer control to a coroutine. Moreover, there is an
operation to obtain the identity of the currently running coroutine.

Fig. 2 defines the extended syntax as well as the additional evaluation con-
texts and reduction rules. For simplicity, it differs from the calculus in RC in
that it does not have the notion of a main coroutine, to which execution falls
back if a coroutine just terminates without passing on control. The equivalence
proof of symmetric and asymmetric coroutines in RC relies on this feature.

This calculus (as well as the following ones) models coroutines exclusively as
storable values in the sense of the EOPL book [13]. Thus, an expression never
denotes a coroutine directly, but only via a store location.

The definition of the transfer operation implements the convention that an
active coroutine is not represented in the store. Creating a coroutine obtains
an unused store location and assigns it a procedure. Transferring control to a
coroutine sets its location to nil and suspending the coroutine overwrites it with a
new procedure (the continuation that arises as the context of the transfer). The
second reduction rule for transfer implements the special case that a coroutine
transfers control to itself.

2.2 Asymmetric Coroutines

The asymmetric calculus is slightly more complicated. To the base calculus, it
adds operations to create a coroutine, to resume another coroutine (establishing
the parent-child relationship mentioned at the beginning), and to yield to the
parent coroutine.

Fig. 3 shows the extended syntax, evaluation contexts, and reductions. Devi-
ating from the presentation in RC, the configuration keeps the current coroutine
l0 in the third component and the evaluation context has been split in an in-
ner evaluation context C and an outer evaluation context D. The D contexts

3



Expressions e ::= · · · | create e | resume e e | yield e | l : e
Ev. contexts C ::= · · · | create C | resume e C | resume C v | yield C
Ev. contexts II D ::= � | C[l : D]

(D[C[create v]], θ, l0) ⇒ (D[C[l]], θ[l 7→ v], l0) where l /∈ dom(θ)
(D[C[resume l v]], θ, l0) ⇒ (D[C[l0 : θ(l) v]], θ[l 7→ nil], l) where l 6= l0
(D[C[resume l0 v]], θ, l0) ⇒ (D[C[v]], θ, l0)
(D[C[l : C0[yield v]]], θ, l0) ⇒ (D[C[v]], θ[l0 7→ λx.C0[x]], l)
(D[C[l : v]], θ, l0) ⇒ (D[C[v]], θ, l)

Fig. 3. Syntax and reductions of the calculus with asymmetric coroutines.

Expressions e ::= · · · | create e | transfer e e | resume e e | yield e | l : e
Ev. contexts C ::= · · · | create C | transfer e C | transfer C v

. . . | resume e C | resume C v | yield C
Ev. contexts II D ::= � | C[l : D]

(D[C[create v]], θ, l0) ⇒ (D[C[l]], θ[l 7→ v], l0) where l /∈ dom(θ)
(D[C[transfer l v]], θ, l0) ⇒ (D[θ(l) v], θ[l 7→ nil, l0 7→ λx.C[x]], l) if l 6= l0
(D[C[transfer l0 v]], θ, l0) ⇒ (D[C[v]], θ, l0)
(D[C[resume l v]], θ, l0) ⇒ (D[C[l0 : θ(l) v]], θ[l 7→ nil], l) where l 6= l0
(D[C[resume l0 v]], θ, l0) ⇒ (D[C[v]], θ, l0)
(D[C[l : C0[yield v]]], θ, l0) ⇒ (D[C[v]], θ[l0 7→ λx.C0[x]], l)
(D[C[l : v]], θ, l0) ⇒ (D[C[v]], θ, l)

Fig. 4. Syntax and reductions of the calculus with Dahl-Hoare style coroutines.

structure the evaluation contexts in pieces between the newly introduced labeled
expressions l : . . .. The latter denote return points for the yield operation and
they keep and restore the identity l of the parent coroutine if a coroutine termi-
nates without yielding. The reductions imported from the base calculus are all
lifted to work in context D[C[. . . ]] instead of just plain C[. . . ].

In this calculus, a coroutine may terminate sensibly. If it finishes with a value,
it implicitly yields to its parent or, at the top-level, it concludes the computation.
There is again a special case for a coroutine to resume to itself.

2.3 Dahl-Hoare Style Coroutines

Dahl-Hoare style coroutines combine the features of the symmetric and the asym-
metric calculus as suggested by Haynes and coworkers [14]. Fig. 4 defines syntax
and semantics of the corresponding calculus. It extends the asymmetric calcu-
lus with the straightforward adaptation of the transfer rules to nested eval-
uation contexts of the form D[C[. . . ]], but still capturing only the innermost
C-continuation.

4



3 From Reduction Semantics to Denotational
Implementation

In a series of papers, Danvy developed a systematic method to interconvert
different styles of semantic artifacts while preserving their meaning. Here, we are
interested in the route from reduction semantics to a definitional interpreter as
spelt out in Danvy’s invited presentation at ICFP 2008 [6]. We follow that route
exactly for the three reduction semantics from Sec. 2 to obtain three equivalent
definitional interpreters.

In each case, the sequence of semantic artifacts starts with an ML program
that implements the respective reduction semantics. The first step converts the
reduction semantics to a small-step abstract machine by applying refocusing [10].
The result is fused with an iteration function to obtain a tail-recursive evaluation
function. Inlining the reduction function and then applying transition compres-
sion (function unrolling on known arguments and simplification) results in a
tail-recursive interpreter that still manipulates a syntactic representation of the
evaluation context. The next step is to refunctionalize this evaluation context to
a continuation resulting in an interpreter with continuations [9]. The interpreter
can be converted to direct style and subjected to closure unconversion to obtain
a “natural looking” interpreter that represents values no longer syntactically.

As the intermediate steps are amply demonstrated in the work of Danvy
and coworkers (e.g., [6]), we refrain from going through them in detail. We
only comment on special steps that need to be taken for the calculi with the
asymmetric coroutine operators and show the essential parts of the final results,
in particular omitting the standard lambda calculus parts.

3.1 Symmetric Coroutines

The direct-style version of the interpreter in Fig. 5 is equivalent to the reduc-
tion semantics in Fig. 2 because it has been constructed from the latter using a
sequence of semantics-preserving transformations. As a final step, we have trans-
formed the store and the currently executed coroutine into two global variables,
after observing that they are passed in a single-threaded way.

Most of the code should be self-explanatory. The operations shift and
push prompt (and new prompt) are from Kiselyov’s implementation [15] of the
control operators shift and reset [8] that arise from during the transformation
to direct style. The code avoids special handling of the case where a coroutine
transfers control to itself by choosing the right ordering for the reads and writes
of the store.

Close scrutiny of the code (it’s in fact easier to see when studying the in-
termediate results of the transformation) shows that push prompt is only called
when the evaluation context is empty. Thus, push prompt need only be placed
once at the top-level and shift could be replaced by call/cc because it would
be an error if the call to cor v2 ever returned. Applying this transformation
yields in principle the implementation of coroutines given by Haynes, Friedman,

5



(* values manipulated by interpreter *)

type value =

| VLoc of location

| VFun of (value -> value)

| VNil

let pp : value prompt = new_prompt ()

let rec evaldu_expr e =

match e with

| ...

| Create e ->

let v = evaldu_expr e in

let newl = fresh_location () in

update_Loc newl v;

VLoc newl

| Transfer (e1, e2) ->

let v2 = evaldu_expr e2 in

let VLoc l1 = evaldu_expr e1 in

let l = !current_coroutine in

shift pp (fun ec ->

update_Loc l (VFun ec);

let VFun cor = lookup_Loc l1 in

update_Loc l1 VNil;

current_coroutine := l1;

push_prompt pp (fun () ->

cor v2))

| Current ->

let l = !current_coroutine in

VLoc l

Fig. 5. Definitional interpreter with symmet-
ric coroutines (excerpt).

type value = (* as before *)

let pp : value prompt = new_prompt ()

let rec evaldg_expr e =

match e with

| ...

| Create e -> (* as before *)

| Resume (e1, e2) ->

let v2 = evaldg_expr e2 in

let VLoc l1 = evaldg_expr e1 in

let VFun cor = lookup_Loc l1 in

update_Loc l1 VNil;

let lc = !current_coroutine in

let v =

push_prompt pp

(fun () ->

current_coroutine := l1;

cor v2)

in current_coroutine := lc;

v

| Yield e ->

let v = evaldg_expr e in

let lc = !current_coroutine in

shift pp (fun ec ->

update_Loc lc (VFun ec);

v)

Fig. 6. Definitional interpreter with asym-
metric coroutines (excerpt).

and Wand [14]. Their implementation looks more complicated at first glance
because they represent a coroutine by a function and because they abstract the
coroutine body over the transfer function. But disentangling their implemen-
tation of create and transfer leads to the code in Fig. 5 with call/cc in place
of shift.

3.2 Asymmetric Coroutines

The calculus with asymmetric coroutines requires some extra transformation
steps. These extra steps are caused by the second level of evaluation contexts
named D in Fig. 3. After the initial transformation steps, the intermediate result
is a tail-recursive interpreter with two arguments that hold evaluation contexts,
corresponding to the D[C[. . . ]] in the reduction semantics. Both of them are then
refunctionalized, giving rise to an interpreter with two levels of continuations,
and then transformed to direct style two times to obtain the code in Fig. 6. As
before, the direct-style transformation introduces the control operators shift
and reset.

6



The interpreter reuses the same type of values. It merges the two cases
for resume by choosing the correct ordering for the reads and writes to the
store. The The shift operation in yield abstracts the context up to the prompt
set in the parent coroutine’s resume instruction. The variable lc in the code
for resume implements the labeled expression lc, · · · : and the assignment
current coroutine := lc implements its reduction.

3.3 Dahl-Hoare Style Coroutines

To obtain a definitional interpreter with Dahl-Hoare style coroutines, it is suffi-
cient to merge the code from Fig. 5 and Fig. 6. Thanks to the shared configura-
tion, the code fits together without change.

3.4 Correctness

The chain of transformations according to Danvy’s recipe preserves the seman-
tics in the following sense. The proof is by appeal to the correctness of each
transformation step.

Lemma 1. Let e be a closed expression and ∗⇒ be the reflexive transitive closure
of ⇒. Suppose that (e, θ0, l0)

∗⇒ (v, θ, l).
Then eval expr e with store dθ0e and !current coroutine = l0 evaluates

to dve with store dθe and !current coroutine = l with d·e defined by

dle = VLoc l
dλx.ee = VFun (fun x -> eval expr e)
dnile = VNil

4 Implementation

In earlier work, we exhibited and proved correct a systematic transformation
from an interpreter to a denotational implementation [19]. A denotational im-
plementation specifies the semantics of each single language construct in terms
of a combinator. Although the referenced work is posed in the area of program
generation, the underlying technique is more generally applicable. In particular,
it is applicable to the definitional interpreters constructed in Sec. 3.

As we already have closure un-converted interpreters, it remains to trans-
form binders to a higher-order abstract syntax representation and to extract the
combinators. Fig. 7 shows the combinators extracted from Fig. 5 and Fig. 6. For-
tunately, our implementation language OCaml also performs right-to-left evalu-
ation of function arguments so that it matches the theory perfectly.

The final transformation step in our previous work [19] is tag removal, which
gets rid of the value type as also advertised by Carette and coworkers [4]. While
this step is not essential for deriving a type system, we apply it to obtain a
type-safe implementation of coroutines for OCaml. The appendix Sec.A shows

7



let create v =

let newl = fresh_location () in

update_Loc newl v;

VLoc newl

let resume (VLoc l1, v2) =

let VFun cor = lookup_Loc l1 in

update_Loc l1 VNil;

let lc = !current_coroutine in

let v =

push_prompt pp

(fun () ->

current_coroutine := l1;

cor v2)

in current_coroutine := lc;

v

let yield v =

let lc = !current_coroutine in

shift pp (fun ec ->

update_Loc lc (VFun ec);

v)

let transfer (VLoc l1, v2) =

shift pp (fun ec ->

let lc = !current_coroutine in

let VFun cor = lookup_Loc l1 in

update_Loc l1 VNil;

update_Loc lc (VFun ec);

current_coroutine := l1;

push_prompt pp (fun () -> cor v2))

Fig. 7. Combinators extracted from the definitional interpreters.

the code, which is also available on the web.1 Space does not permit further dis-
cussion of the implementation. Let it suffice to say that the interface is monadic
and matches the type system explained in the next Sec. 5.

5 Deriving a Type System

The development in Sec. 3 and Sec. 4 shows that coroutines are tightly connected
to composable continuations by exhibiting a formally derived implementation of
the former with the latter. The results of the RC paper also strongly support
this point of view.

To obtain a type system for coroutines, we therefore choose the following
strategy. We regard the coroutine operations as abbreviations for the combina-
tors in Fig. 7. As these combinators contain the control operators shift and reset,
we employ a type system that supports shift and reset to obtain adequate typings
for them. Such a system has been proposed by Danvy and Filinski [7] and later
scrutinized and extended with polymorphism by Asai and Kameyama [2]. We
use that system to informally derive a type system for coroutines and postpone
a formal treatment to Sec. 6.
1 http://proglang.informatik.uni-freiburg.de/projects/coroutines/

8



The Danvy/Filinsky type system proves judgments of the form Γ ;α ` e : τ ;β
where the type environment Γ , the expression e, and the resulting type τ are as in
a standard type system (e.g., the system of simple types). Additionally, α and β
stand for the answer type of the implicit continuation. More precisely, evaluation
of the expression e modifies the answer type from α to β. The formal explanation
is that the type of e∗ is (τ∗ → α∗) → β∗, where ∗ indicates application of the
call-by-value CPS transformation to a term or a type. The function type in
this system also includes the modification of the answer type of the implicit
continuation in its body. We write σ/α → τ/β for a function from σ to τ that
modifies the answer type from α to β. For reference, Sec. B in the appendix
contains the typing rules of the monomorphic system in a variant adapted to
the right-to-left evaluation order of our calculus.

5.1 Global Variables and the Reader Monad

Another important observation concerns the global variable that contains the
current coroutine. Inspection of the interpreter (Fig. 5 and Fig. 6) reveals that
the location of the current coroutine does not change while the body of a fixed
coroutine executes. For example, the code for resume sets the current coroutine
to the resumed routine and restores the current coroutine to its previous value
when the resumed coroutine terminates or yields. The transfer operation over-
writes the current coroutine to the called coroutine without remembering the
past one.

This observation shows that the current coroutine is essentially stored in a
reader monad. Thus, it need not be threaded through the computation, but just
passed downwards. Resuming or transferring to another coroutine starts in a
freshly initialized reader monad.

A similar observation applies to the global coroutine store θ. Each location of
this store either contains a function/continuation or the value nil. The value nil
indicates that the coroutine is either active or suspended by a resume operation.
With this convention, the semantics enforces that there is only one instance of a
coroutine at any time: it is a run-time error to resume or transfer to a coroutine
which is currently nil.

Analyzing the interpreter shows that the set of coroutine locations that are
set to nil does not change while the body of a fixed coroutine executes, as
long as the transfer operation is not used.2 The code for resume overwrites
the location of the resumed coroutine with nil and the corresponding yield
operation overwrites this location with a captured continuation.

Thus, the information which coroutine must not be invoked (because its
location is nil) could be stored in a reader monad, but not the actual function
or continuation which has to be threaded through the computation.

2 With transfer we could build code that performs the following control transfers. Let l1, l2,
and l3 be coroutine locations. At the top-level, first resume to l1, which in turn resumes l2.
Then transfer to l3, which yields (to l1), which in turn transfers to l2.

When l2 is first active, l1 and l2 are both nil. The second time round, only l2 is nil.

9



σ, τ, α, β ::= · · · | σ α−→ τ | cor(β)

Γ ` e : σ
σ−→ τ & α

Γ ` create e : cor(σ)& α

Γ ` e1 : cor(β)& α Γ ` e2 : β & α

Γ ` transfer e1 e2 : α & α

Γ ` current : cor(α)& α
Γ, x : σ ` e : τ & β

Γ ` λx.e : σ
β−→ τ & α

Γ ` e1 : σ
α−→ τ & α Γ ` e2 : σ & α

Γ ` e1 e2 : τ & α

Fig. 8. Types and relevant typing rules for symmetric coroutines.

In the case of (pure) symmetric coroutines, this information does not matter.
There is always exactly one active coroutine, the location of which is set to
nil. According to the semantics, a program can transfer safely to any coroutine
without crashing.

5.2 Symmetric Coroutines

If we apply the Danvy/Filinsky type system to the transfer operator in Fig. 7,
we obtain the following results.

– The type of a coroutine is a reference to a function type.
– The function type of a coroutine always has the form τ/α → α/α.
– Under the assumption that current coroutine has type ref(τ1/α1 → α1/α1),

the type of transfer is ref(τ0/α0 → α0/α0)× τ0/α1 → τ1/β1.
– The return type of the coroutine type as well as its answer types do not

matter because a symmetric coroutine never returns.

These findings motivate the abbreviation cor(τ) = ref(∀α.τ/α → α/α) for the
type of a coroutine that accepts a value of type τ . In addition, the type system
needs to keep track of the type of the current coroutine, which happens to be
stored in a reader monad (Sec. 5.1). This observation leads to an indexed monadic
typing judgment of the form Γ ` e : τ &α where the effect α indicates that the
current coroutine has type cor(α) and function types of the corresponding form
σ

α−→ τ where α is the expected type of the current coroutine at the call site of
the function. Fig. 8 contains the type syntax and the relevant typing rules.

5.3 Asymmetric Coroutines

Again, applying the Danvy/Filinsky type system to the resume and yield op-
erators in Fig. 7, we obtain the following results.

– The type of a coroutine is a reference to a function type.

10



σ, τ, α, β, γ, δ ::= · · · | σ α β−→ τ | cor(α, β)

Γ ` e : β
β γ−→ γ & α δ

Γ ` create e : cor(β, γ)& α δ
Γ ` current : cor(α, δ)& α δ

Γ ` e1 : cor(β, γ)& α δ Γ ` e2 : β & α δ

Γ ` resume e1 e2 : γ & α δ

Γ ` e : δ & α δ

Γ ` yield e : α & α δ

Γ, x : σ ` e : τ & β  γ

Γ ` λx.e : σ
β γ−→ τ & α δ

Γ ` e1 : σ
α δ−→ τ & α δ Γ ` e2 : σ & α δ

Γ ` e1 e2 : τ & α δ

Fig. 9. Types and relevant typing rules for asymmetric coroutines.

Γ ` e1 : cor(β, δ)& α δ Γ ` e2 : β & α δ

Γ ` transfer e1 e2 : α & α δ

Fig. 10. Typing rule for transfer.

– The function type of a coroutine always has the form τ/α → α/α.
– resume has type ref(σ/τ → τ/τ)× σ/α → τ0/β.
– Assuming that the current coroutine has type ref(σ/τ → τ/τ), the type of

yield is τ0/γ → σ/τ0.
– If the coroutine also returns normally, then τ0 = τ , in which case the types

work out to
• resume : ref(σ/τ → τ/τ)× σ/α → τ/β and
• yield : τ/γ → σ/τ (assuming the coroutine was resumed by the above

resume).

A suitable coroutine type for this constellation is cor(σ, τ) = ref(σ/τ → τ/τ)
and the corresponding type system is again a monadic system that keeps track
of the type of the current coroutine stored in the reader monad. The typing
judgment correspondingly reads Γ ` e : τ &α  β where the effect α  β
specifies that the current coroutine has type cor(α, β). The function type has

the form σ
α β−→ τ where the current coroutine at the point of the function call is

expected to be cor(α, β). Fig. 9 shows the relevant parts of the syntax of types
and of the typing rules.

5.4 Dahl-Hoare Style Coroutines

The Dahl-Hoare style only adds the transfer operation to the API for asym-
metric coroutines. Thus, it remains to find a typing rule for transfer to go
along with the system in Sec. 5.3. The rule (shown in Fig. 10) is similar to the
typing of the resume operation, but —as it replaces the current coroutine— its
return/yield type must be equal to the return type of the current coroutine.

11



σ, τ, α, β, γ, δ ::= · · · | σ L,l,α β−→ τ | corl
L(α, β)

Γ ; L′, l′ ` e : β
L,l,β γ−→ γ & α δ

Γ ; L′, l′ ` createl e : corl
L(β, γ)& α δ

Γ ; L, l ` current : corl
L(α, δ)& α δ

Γ ; L′, l′ ` e1 : corl
L(β, γ)& α δ

Γ ; L′, l′ ` e2 : β & α δ l /∈ L′ L = L′ ∪ {l′}
Γ ; L′, l′ ` resumel e1 e2 : γ & α δ

Γ ; L, l ` e : δ & α δ

Γ ; L, l ` yield e : α & α δ

Γ ; L, l′ ` e1 : corl
L(β, δ)& α δ Γ ; L, l′ ` e2 : β & α δ l /∈ L \ {l′}

Γ ; L, l′ ` transferl e1 e2 : α & α δ

Γ, x : σ; L, l ` e : τ & β  γ

Γ ; L′, l′ ` λx.e : σ
L,l,β γ−→ τ & α δ

Γ ; L, l ` e1 : σ
L,l,α δ−→ τ & α δ Γ ; L, l ` e2 : σ & α δ

Γ ; L, l ` e1 e2 : τ & α δ

Fig. 11. Type system for asymmetric coroutines with nil tracking.

5.5 Keeping Track of Nil

Up to this point, the type systems do not prevent to resume or transfer to a
pending coroutine that waits for a yield and has its location set to nil. As
mentioned in Sec. 5.1, this information could be split from the coroutine store
and passed in a reader monad. Reflecting that reader monad in the type system
requires a number of changes.

1. There must be a static approximation of the location where the coroutine is
stored. We solve that by attaching a source label to each create expression
and using that label.

2. There must be an approximation of the set of locations of pending coroutines.
A set of labels is sufficient.

3. The typing judgment must keep track of the additional indexing of the reader
monad.

4. The function type and the coroutine type must be extended to accommodate
the additional indexing information.

Fig. 11 contains a first draft of a type system that tracks this extra information.
The typing judgment extends to Γ ;L, l ` e : σ &α  δ where L is the set
of pending labels and l ∈ L is the label of the currently active coroutine. The
function type and the coroutine type carry the same information L, l as indexes.
Thus, a coroutine of type corl

L(β, γ) is stored in location l and, while active, the

coroutines in L are pending. A function of type σ
L,l,α δ−→ τ can only be called

while in coroutine l with pending set L.

12



L ⊇ L′ l /∈ L′

corl
L(α, β) ≤ corl

L′(α, β)

σ′ ≤ σ τ ≤ τ ′ L ⊇ L′ l /∈ L′

σ
L,l,α β−→ τ ≤ σ′ L′,l,α β−→ τ ′

Fig. 12. Subtyping.

The create operation transforms a function into a coroutine while preserving
its indexes. The resume operation checks with l /∈ L′ that the resumed coroutine
is neither active nor in the pending set and demands a suitable pending set
L = L′∪{l′} for the resumed coroutine. The transfer operation checks similarly
that the target coroutine is not in the pending set, but transferring to oneself is
permitted. The remaining rules are straightforward.

This type system has been constructed systematically from the operational
semantics, but it turns out to be quite conservative. First, it disallows a coroutine
to resume to itself, which is fine by the operational semantics. However, this
restriction is needed to obtain a sound type system.

Suppose we changed the resume rule to allow self-resumption. In this case,
the constraints in the rule would change to l /∈ L′ \ {l′} and L = L′ \ {l′} ∪ {l}.
In a program that creates more than one coroutine instance with the same label
l, resuming the first of these coroutines and then resuming to coroutine with a
different label blocks later resumes to another l-coroutine, which is annoying,
but still sound. However, because a coroutine is allowed to resume to itself,
the modified type system lets a first instance with label l directly resume to
another instance with label l. This instance, in turn could try to resume to the
first instance, which is not stopped by the type system but which results in a
run-time error. Hence, the system that allows self-resumption would be unsound.

This complication is caused by the procedure-call-like semantics of resume.
It is not an issue for the transfer operation because it replaces the currently
running coroutine.

Second, the type system requires subtyping to avoid being overly rigid. With-
out subtyping, each resume operation can only invoke one kind of coroutine,
namely the one indexed with the correct l and L. The amendment is to allow
multiple create operations labeled with the same label and to introduce subtyp-
ing with respect to the L index. Fig. 12 contains suitable subtyping rules for the
function type and for the coroutine type. When moving to the supertype, both
rules admit decreasing the index: a function or coroutine can always be used in a
less restrictive context. The function type is contravariant in the argument and
covariant in the result, as usual. The argument and result types of the coroutine
need to remain invariant for technical reasons (stored in a reference).

13



(Γ ` e : τ & α β)∗ = Γ ∗ ` e∗ : ref(α∗ → β∗) → (τ∗ → β∗) → β∗

(x1 : σ1, . . . , xn : σn)∗ = x1 : σ∗
1 , . . . , xn : σ∗

n

(cor(α/β))∗ = ref(α∗ → β∗)

(σ
α β−→ τ)∗ = σ∗ → ref(α∗ → β∗) → (τ∗ → β∗) → β∗

l∗ = λc.λk.k l

x∗ = λc.λk.k x

(λx.e)∗ = λc.λk.k (λx.e∗)

(e1 e2)
∗ = λc.λk.e∗2 c (λv2.e

∗
1 c (λv1.v1 v2 c k))

(create e1)
∗ = λc.λk.e∗1 c(λv1.let l = fresh in update l (λv2.v1 v2 l (λz.z)); k l)

(resume e1 e2)
∗ = λc.λk.e∗2 c (λv2.e

∗
1 c (λv1.let v = lookup v1 in k (v v2)))

(yield e1)
∗ = λc.λk.e∗1 c(λv1.update c k; v1)

(transfer e1 e2)
∗ = λc.λk.e∗2 c (λv2.e

∗
1 c (λv1.let v = lookup v1 in update c k; v v2))

Fig. 13. Translation.

6 Type Soundness

To prove type soundness of the system in Sec. 5.3 and Sec. 5.4 (Fig. 9 and Fig. 10),
we consider an intermediate product of the transformation chain from Sec. 3. In
the case of asymmetric coroutines, an intermediate product after refunctional-
ization was an interpreter with two levels of continuations. According to the
observation in Sec. 5.1, we transformed the use of the state monad for the cur-
rent coroutine in this interpreter into a use of the reader monad. Subsequently,
we removed the outer layer of continuations by direct style transformation and
moved the interpretation of the lambda from the cases for resume and transfer
into the case for create. The consequence of the last transformation step is that
a coroutine location always contains a continuation, before it could also contain
a standard (CPS) function.

With this preparation, we consider the interpreter as a translation from the
source language to CPS plus reader monad in a lambda calculus with references
and read off the accompanying translation on types. Fig. 13 shows the details of
the translation. For the typing to go through, the type of a computation must
be polymorphic over the final answer type of the continuation.

Lemma 2. Suppose that Γ ` e : τ &α  β in the system of Fig. 9 with the
transfer rule. Then Γ ∗ ` e∗ : ref(α∗  β∗) → (τ∗ → β∗) → β∗ in a simple type
system for call-by-value lambda calculus with references (e.g., [18, Chapter 13]).

The type soundness of the nil-tracking type system in Fig. 11 and Fig. 12 can
be shown using a similar translation.

14



7 Related Work

Language design aspects of coroutines have been explored in the 1970s and
1980s. Coroutines have found entry in some current programming languages
(Python [20], Lua [12], C# [17]), but their formal semantics has been neglected.

The exception is the RC paper [11], which rigorously defines small step oper-
ational semantics for several styles of coroutines and proves various expressivity
results among them and with respect to continuations and subcontinuations.
One might also view the Scheme implementation of Haynes and coworkers [14]
a formal specification of coroutines.

However, apart from our own work [1], we are not aware of any exploration of
type systems tailored to coroutines. The other paper considers a richer calculus
inspired by the needs of practical programming and develops its type system in
an ad-hoc way. For example, the resume operation takes two continuations to
distinguish between a yield and a normal return of the invoked coroutine. On
the other hand, the system developed in the present paper reveals that the effect
in the previous system [1] keeps track of the type of the current continuation
which is stored in a reader monad. This insight would not have been possible
without the systematic transformation approach.

Blazevic [3] produced a monad-based implementation of symmetric corou-
tines with session types in Haskell. Our work is based on an eager language,
offers asymmetric coroutines, and is derived from a specification.

8 Conclusion

Using the systematic transformation approach advocated by Danvy, we have
transformed a small-step reduction semantics for various styles of coroutines to
a working, type-safe OCaml implementation. We have further derived a type
system for a calculus with coroutines by applying a type system that is aware
of control operators to the result of the transformation. Another outcome of the
transformation is the translation which is used in constructing a type soundness
proof for the type system.

We found that the systematic approach enabled additional insights. An ex-
ample is the discovery of the use of the reader monad, which leads to the con-
struction of the nil-tracking type system. Also the type soundness proof is vastly
simplified with the translation that is also derived from an intermediate trans-
formation step. Last but not least, the transformation gave rise to a practically
useful, type-safe library implementation.

References

1. K. Anton and P. Thiemann. Typing coroutines. In R. Page, V. Zsók, and
Z. Horváth, editors, Eleventh Symposium on Trends in Functional Programming
(draft proceedings), pages 91–105. University of Oklahoma Printing Services, 2010.

15



2. K. Asai and Y. Kameyama. Polymorphic delimited continuations. In Z. Shao,
editor, APLAS, volume 4807 of LNCS, pages 239–254, Singapore, 2007. Springer.

3. M. Blazevic. monad-coroutine: Coroutine monad transformer for suspending
and resuming monadic computations. http://hackage.haskell.org/package/

monad-coroutine, 2010.
4. J. Carette, O. Kiselyov, and C. chieh Shan. Finally tagless, partially evaluated: Tag-

less staged interpreters for simpler typed languages. J. Funct. Program., 19(5):509–
543, 2009.

5. M. E. Conway. Design of a separable transition-diagram compiler. Comm. ACM,
6(7):396–408, 1963.

6. O. Danvy. Defunctionalized interpreters for programming languages. pages 131–
142, 2008.

7. O. Danvy and A. Filinski. A functional abstraction of typed contexts. Technical
Report 89/12, DIKU, University of Copenhagen, July 1989.

8. O. Danvy and A. Filinski. Abstracting control. In Proc. 1990 ACM Conference on
Lisp and Functional Programming, pages 151–160, Nice, France, 1990. ACM Press.

9. O. Danvy and K. Millikin. Refunctionalization at work. Science of Computer
Programming, 74(8):534–549, 2009.

10. O. Danvy and L. R. Nielsen. Refocusing in reduction semantics. Research Report
BRICS RS-04-26, DAIMI, Department of Computer Science, University of Aarhus,
Aarhus, Denmark, Nov. 2004.

11. A. L. de Moura and R. Ierusalimschy. Revisiting coroutines. ACM Trans. Program.
Lang. Syst., 31(2):1–31, 2009.

12. A. L. de Moura, N. Rodriguez, and R. Ierusalimschy. Coroutines in lua. Journal
of Universal Computer Science, 10:925, 2004.

13. D. P. Friedman and M. Wand. Essentials of Programming Languages. MIT Press
and McGraw-Hill, 3rd edition, 2008.

14. C. T. Haynes, D. P. Friedman, and M. Wand. Continuations and coroutines. In
ACM Conference on Lisp and Functional Programming, pages 293–298, 1984.

15. O. Kiselyov. Delimited control in OCaml, abstractly and concretely: System de-
scription. In M. Blume, N. Kobayashi, and G. Vidal, editors, FLOPS, volume 6009
of LNCS, pages 304–320, Sendai, Japan, Apr. 2010. Springer.

16. C. D. Marlin. Coroutines: a programming methodology, a language design and an
implementation. Springer, 1980.

17. Microsoft Corp. C# Version 2.0 Specification, 2005. http://msdn.microsoft.

com/en-US/library/618ayhy6(v=VS.80).aspx.
18. B. C. Pierce. Types and Programming Languages. MIT Press, 2002.
19. P. Thiemann. Combinators for program generation. J. Funct. Program., 9(5):483–

525, Sept. 1999.
20. G. Van Rossum and P. Eby. PEP 342 – coroutines via enhanced generators. http:

//www.python.org/dev/peps/pep-0342/, 2005.
21. N. Wirth. Programming in Modula-2. Springer, 1982.

16



SUPPLEMENTARY MATERIAL NOT PART OF THE
SUBMISSION

A Coroutine Implementation for OCaml

A.1 Interface

type (’i,’o,’a) cm (* coroutine monad *)
type (’i,’o) coro (* coroutine representation *)

(* monadic glue operators *)
val return : ’a -> (’i,’o,’a) cm
val (>>=) : (’i,’o,’a) cm -> (’a -> (’i,’o,’b) cm) -> (’i,’o,’b) cm

(* coroutine operators *)
val create : (’i -> (’i,’o,’o) cm) -> (’i,’o) coro
val current : (’i,’o, (’i,’o) coro) cm
val resume: (’i,’o) coro -> ’i -> ’o
val yield : ’o -> (’i,’o,’i) cm
val transfer : (’ii,’o) coro -> ’ii -> (’i,’o,’i) cm

17



A.2 Implementation

(* pure OCaml coroutines using Oleg Kiselyov’s delimited continuations *)
open Delimcc

type (’i, ’o) coro = ((’i->’o)ref * ’o prompt)
type (’i,’o,’a) cm = ((’i,’o) coro) -> (’a)

let create (f: ’i -> (’i,’o,’o) cm) : (’i,’o) coro =
let p: ’o prompt = new_prompt() in
let rec coro = ( ref (fun (x:’i) -> (f x) coro ), p)
in coro

let current (curcoro : (’i,’o) coro) : (’i,’o) coro =
curcoro

let resume (coro: (’ii,’oo) coro) (v: ’ii) : ’oo =
let (pfun, pr) = coro in
let new_f = !pfun in
push_prompt pr (fun () ->

new_f v)

let yield (v:’o) (state: (’i,’o) coro) : ’i =
let (pfun, pr) = state in
shift pr (fun (k:(’i->’o)) ->

pfun := k ;
v)

let transfer (coro: (’ii,’o) coro) (v: ’ii) (state: (’i,’o) coro) : ’i =
let (pfun, my_pr) = state in
shift my_pr (fun (k: ’i->’o) ->

pfun := k ;
let (otherpfun, other_pr) = coro in
let otherfun = !otherpfun in
push_prompt other_pr (fun () ->

otherfun v) )

let return (v : ’a) (state : (’i,’o) coro) = v

let (>>=) (m : (’i,’o,’a) cm) (f : ’a -> (’i,’o,’b) cm) : (’i,’o,’b) cm =
fun (state: (’i,’o) coro) ->
(f (m state)) state

18



B Type System with Shift and Reset

Γ, x : τ `p x : τ
Γ, x : σ; α ` e : τ ; β

Γ `p λx.e : (σ/α → τ/β)

Γ ; γ ` e1 : (σ/α → τ/β); δ Γ ; β ` e2 : σ; γ

Γ ; α ` e1 e2 : τ ; δ

Γ `p e : τ

Γ ; α ` e : τ ; α

Γ, k : (τ/δ → α/δ); σ ` e : σ; β

Γ ; α ` shift k.e : τ ; β

Γ ; σ ` e : σ; τ

Γ `p reset e : τ

Fig. 14. Type system with shift and reset.

Fig. 14 contains the typing rules of Danvy and Filinski’s type system with
shift and reset [7]. The `p judgment is for expressions that never modify the
answer type: values and applications of the reset operator.

As the soundness of the type system for shift and reset depends on the left-to-
right evaluation order of the language, we had to modify the function application
rule to cater for the right-to-left evaluation of our calculus. Our replacement rule
is

Γ ;β ` e1 : (σ/α → τ/β); γ Γ ; γ ` e2 : σ; δ
Γ ;α ` e1 e2 : τ ; δ

We have proved the correctness of this rule by applying the right-to-left call-by-
value CPS translation and type checking the resulting term.

19


