
The Semantic of Twilight Transactions

Annette Bieniusa Peter Thiemann

March 24, 2011

1 Introduction

By avoiding observable inconsistencies, the semantics of transactional memory provides
a comparatively simple model for concurrent programming. Instead of (implicitly) as-
sociating several memory locations with a lock and requiring that the lock needs to be
obtained before accessing any of these memory locations and released thereafter, accesses
are grouped together in a transaction that runs at a proclaimed level of isolation.
Prior work on the semantics of transactions [1, 6] focused primarily on weak atomicity,

which is important for hybrid applications (for example, an application that includes
legacy code using locking as well as new transactional code) because it helps to study
the interaction of transactional and non-transactional memory accesses. However, these
formalizations do not account for the phenomena that occur in an interleaved execution
of transactions. For example, in state-of-the-art algorithms like TL2 [3], threads may
get stuck even when a fair scheduling of threads is provided because they are repeatedly
forced to abort by other transactions’ successful commits.
To illustrate the mechanism underlying the aborts, this chapter pursues an approach

that abstracts program execution by traces of memory accesses and transaction control
operations. To this end, we define a monadic lambda calculus with threads and trans-
actions, ΛSTM . Similar to schemes in research on isolation level for databases, each
memory access is modeled by an effect on the global heap. This abstraction allows for an
easy comparison of different TM algorithms. Their semantics are reflected in the effect
traces which they generate during program execution under certain scheduling schemes.
The traces are then used to show that the TM algorithms implement isolation levels like
opacity or snapshot isolation.
This chapter is ordered as follows:

1. We present a formalization of a semantics for transactional memory that is suitable
for proving properties of a TM implementation.

A high-level semantics abstracts so many details that properties of the implemen-
tation become trivially evident [5]. A low-level semantics provides so many details
that formal proof of its properties is no longer tractable. An example is the pseu-
docode for an implementation. Our semantics keeps the middle ground. It explicitly

1

models the non-deterministic interleaving of the operations in each thread including
operations in aborting transactions. However, it does not model implementation
details like the construction of memory snapshots or the implementation of locks.

2. We prove that our semantics for ΛSTM implements opacity [4], that is, all execution
traces in our semantics are equivalent to serial execution traces, where the execution
of critical regions, namely the transaction bodies, is non-interleaved.

3. We demonstrate that a small modification of the semantics (the TM algorithm,
respectively) yields another notion of transactional isolation, namely snapshot iso-
lation. We define a criterion for traces that suffice snapshot isolation and prove
that the modified semantics ΛTWI only produces such snapshot traces.

2 Execution traces

Let us begin with some examples of execution traces that provide insight into our ap-
proach. These traces abstract over atomic effects that denote the beginning of a trans-
action (at ti), read accesses to variable x within a transaction (r ti (x)), commits of a trans-
action which correspond to globally visible modifications to shared variables (coti(x̄)),
and abort effects for unsuccessful transactions (abti). In these effects, i is a (unique)
transaction id and t the thread identifier.
To simplify reasoning, we rely on an abstract notion of time. Effect are supposed

happens atomically at a distinct, single point in time. Further, effects can be (totally)
ordered according to the point in time when they occur.

2.1 Successful commits

If all transactions in a program’s run commit successfully, the execution trace can be
turned into a serializable one by adapting the scheduler’s decision. For example, consider
this trace:

time

t1

t2

at1 r1(x) r1(y)

at2 r2(z)

co1(x, y)

co2(z)

The scheduling interleaves two transactions t1 and t2 that read and write disjoint
variables x 6= y 6= z. For this trace, there are two equivalent serial traces:

t1

t2

at1 r1(x)

at2 r2(y)

co1(x)

co2(y)

and

2

t1

t2

at1 r1(x)

at2 r2(y)

co1(x)

co2(y)

Both traces correspond to evaluations of the program to the same final heap and result.
During the evaluation, each transaction conceptually operates on its own snapshot of the
heap, taken at the beginning of the transaction. As both transactions were able to finish
successfully, their read and write sets cannot have elements in common, and all their
operations are independent. Hence both serial traces are equivalent to the original one.

2.2 Read conflicts

A read conflict occurs if one transaction commits a write operation to a variable that
another transaction is just about to read. In that case, the reading transaction must not
proceed because its snapshot is no longer consistent with the current heap. Thus, the
semantics forces the second transaction to abort.
An example of abort induced by a read conflict is depicted in the next trace.

t1

t2

at1 ab1

at2 r2(x)co2(x)

The trace gives an example for a transaction t1 which had to abort because of a read
conflict on variable x (it does not produce a read effect because the read operation is
never permitted, as explained above). Nevertheless, there is an equivalent serial trace:

t1

t2

at1 ab1

at2 r2(x)co2(x)

2.3 Snapshot isolation

Not all interleavings of threads can be decoupled into some equivalent serial trace. Take
a look at the next example:

t1

t2

at1 r1(x) co2(y)

at2 r2(y) co2(x)

It is not serializable because a read operation is supposed to return the last value
written to a variable. Hence, in a serial trace the latter operation would yield the value
written by the first one.
Algorithms that allow traces like this implement a weaker isolation level called snapshot

isolation. Semantically, a thread-local copy of the memory is made at the start of a
transaction. The transaction operates this private copy during its execution. At commit,

3

Figure 1 Syntax of ΛSTM . Gray expressions arise only during evaluation.
x∈Var
l ∈Ref
v ∈Val ::= l | tt | ff | () | λx.e | return e
e ∈Exp ::= v | x | e e | if e e e | e >>= e

| spawn e | atomic e | (e,Wi, Ri, i, e,H)

| newref e | readref e | writeref e e

all changes are merged back into the global heap. The transaction is in conflict with
another transactions only if both transactions try to update the same heap locations. A
detailed discussion of snapshot isolation is done in Section 5.

3 Formalization

This section formalizes an STM with lazy update, where all write operations are delayed
till the commit operation. The formalization is based on a monadic call-by-name lambda
calculus with references, threads, and transactions.

3.1 Syntax

Figure 1 contains the syntax of ΛSTM . A value is either a reference, a boolean, the unit
constant, or a function. Expressions comprise these values, variables, function applica-
tion, conditional, monadic return and bind, spawning of threads, transactions, transac-
tions in progress (an intermediate expression not arising in source programs), and the
usual operations on references.
Figure 2 defines the type system for ΛSTM . The type language consists of the types

of the simply typed lambda calculus with base types boolean and unit, a reference type
R τ for references pointing to values of type τ , function types, and a monadic type µ τ
for a monad returning values of type τ . There is a choice of two monads, IO for general
monadic operations and STM for operations inside a transaction.
The typing judgment Σ|Γ ` e : τ contains two environments: Σ tracks the type of

memory locations, and Γ tracks the type of variables. There is a second, heap typing
judgment Σ ` H that relates the type of each memory location to the (closed) value
stored in it. The typing rules are syntax-directed and mostly standard.

3.2 Operational Semantics

Figure 3 introduces some further definitions for the operational semantics. A program
state H,P is a pair consisting of a heap and a thread pool. A thread pool maps thread
identifiers to expressions to be evaluated concurrently. The execution of a program is
represented by a labeled transition relation between program states.

4

Figure 2 Typing rules of ΛSTM .
Types τ ::= bool | () | R τ | τ → τ | µ τ

µ ::= IO | STM

Σ|Γ ` ff : bool
T-False

Σ|Γ ` tt : bool
T-True

Σ|Γ ` () : ()
T-Unit

Γ(x) = τ

Σ|Γ ` x : τ
T-Var

Σ(l) = τ

Σ|Γ ` l : R τ
T-Ref

Σ|Γ, x : τ1 ` e : τ2

Σ|Γ ` λx.e : τ1 → τ2
T-Func

Σ|Γ ` e2 : τ1 → τ2 Σ|Γ ` e1 : τ1

Σ|Γ ` e2 e1 : τ2
T-App

Σ|Γ ` e1 : bool Σ|Γ ` e2 : τ Σ|Γ ` e3 : τ

Σ|Γ ` if e1 e2 e3 : τ
T-If

Σ|Γ ` e : τ

Σ|Γ ` return e : µ τ
T-Return

Σ|Γ ` e1 : µ τ Σ|Γ ` e2 : τ → µ τ ′

Σ|Γ ` e1 >>= e2 : µ τ ′
T-Bind

Σ|Γ ` e : IO τ

Σ|Γ ` spawn e : IO ()
T-Spawn

Σ|Γ ` e : STM τ

Σ|Γ ` atomic e : IO τ
T-Atomic

Σ|Γ ` e : STM τ Σ|Γ ` e′ : STM τ Σ `Wi Σ ` Ri Σ ` H
Σ|Γ ` (e,Wi, Ri, i, e

′,H) : IO τ
T-Txn

Σ|Γ ` e : τ

Σ|Γ ` newref e : STM (R τ)
T-Alloc

Σ|Γ ` e : R τ

Σ|Γ ` readref e : STM τ
T-Deref

Σ|Γ ` e1 : R τ Σ|Γ ` e2 : τ

Σ|Γ ` writeref e1 e2 : STM ()
T-Assign

H(l) = (v, i)⇒ Σ|[] ` v : Σ(l)

Σ ` H

5

Figure 3 State related definitions.
l ∈Ref
P ∈Program = ThreadId⇀ Exp
Ti ∈Transaction = Exp× Store× Store× Id× Exp× Store
H, Ri,Wi ∈ Store = Ref⇀ Val× Id
αi ∈TxnEffect = {at ti, ab

t
i, co

t
i(l̄), r

ti
i (l), εti}

α ∈Effect = {εt, spt(t)}

A transaction in progress is represented by a tuple (e,Wi, Ri, i, e
′,H′). It consists of

the expression e that is currently evaluated, the write set Wi and the read set Ri of the
transaction, a (unique) transaction identifier i, a copy of the original transaction body
e′, and a copy H′ of the heap taken at the beginning of the transaction. The latter two
store the relevant state at the beginning of a transaction to facilitate the consistency
check and the abort operation.
A reference corresponds to a heap location. All stores (the heap, the read set, and

the write set of a transaction) map a reference to a pair of a value and a transaction
identifier. The transaction identifier specifies the transaction which committed or, in
case of the write set, attempts to commit the value to the global store. S(l) denotes the
lookup operation of a reference l in a heap S. It implies l ∈ dom(S). The store update
operation S[l 7→ y] returns a store that is identical to S, except that it maps l to y. For
two stores S1 and S2, we write S1[S2] for the updated version of S1 with all entries of S2.
Operations can have different effects α on the global state: the begin transaction (at ti),

abort transaction (abti), read reference l (r tii (l)), and commit writing references l̄ (coti(l̄))
indicating operations on the global shared heap, or empty effects (εti or ε

t), with t a thread
identifier, and i a transaction id. The empty effects εt represent monadic reductions that
occur outside a transaction (see top of Fig. 5). The spawn effect spt(t′)denotes the
spawning of a new thread with thread id t′ by thread t.
The evaluation of a program with body e starts in an initial state 〈〉, {0 7→ e} with an

empty heap and a main thread with thread identifier 0. A final state has the formH, {0 7→
v0, . . . , tn 7→ vn}. The rules in Figures 4 and 5 define the semantics of the language
constructs. In Fig. 4, E [•] denotes an evaluation context for an expression andM[•] an
evaluation context for monadic expressions. We write m to indicate that an expression
has a monadic type. As usual, e[e′/x] denotes the capture-avoiding substitution of x by
e′ in e.
The IO monad is the top-level evaluation mode. Each reduction step α

=⇒ chooses
an expression from the thread pool P. The non-determinism in this choice models an
arbitrary scheduling of threads.
Spawning a thread (Spawn) creates a new entry in the thread pool and returns unit in

the parent thread.
An atomic expression at the top-level (Atomic) creates a new transaction in progress

with the expression to be evaluated, an empty read and write set, and a fresh transaction
identifier (that has never been used before in a particular evaluation). Further, a copy

6

Figure 4 Operational semantics: Local evaluation steps.
Evaluation contexts

E ::= [] e | if [] e e′

M ::= readref [] | writeref [] e | []>>= e

Expression evaluation →

(λx.e) e′ → e[e′/x]

if tt e e′ → e

if ff e e′ → e′

e→ e′

E [e]→ E [e′]

Monadic evaluation y
return e′ >>= e y e e′

e→ e′

ey e′
my m′

M[m] yM[m′]

of the expression m is needed for possible rollbacks, and a copy of the current heap to
mark the beginning of the transaction.
All monadic evaluation steps can take place inside a transaction (STM-Monad).
Allocation of a new reference (Alloc) must check that the reference is not yet allo-

cated in the heap. But it must also check that the reference is not yet allocated in any
concurrently running transaction to avoid accidental overwrites when both transactions
commit. This condition is indicated by l /∈ H,P, eschewing a formal definition.

Write operations (Write) are straightforward. They just affect the local write set and
store the value along with the current transaction identifier.
The read operation on references (Read) needs to consult the global state. If a reference

cannot be read from the local read or write set, it is accessed in the current global heap.
To maintain the transaction’s consistency, the read operation is successful only if the
value has not been updated since the transaction’s beginning. The value and transaction
identifier as registered in the heap for this reference are then added to the read set and
the value is returned to the transactional computation.
If a reference is present in the read set, but not in the write set, then its value is taken

from the read set (ReadRSet).
If the reference is present in the write set, then its value is taken from the write set,

without checking the read set (ReadWSet).
If none of the preceding three cases holds at a read, then the transaction aborts and

rolls back via Rollback by abandoning the transaction in progress and reinstalling the
saved transaction body m′ as an atomic block. In fact, this rule has no precondition

7

Figure 5 Operational semantics: Global evaluation steps.

P(t) = m my m′

H,P εt
=⇒ H,P{t 7→ m′}

IO-Monad

P(t) =M[spawn m] t′ fresh

H,P spt(t′)
=⇒ H,P{t 7→ M[return ()], t′ 7→ m}

Spawn

P(t) =M[atomic m] Ti = (m, 〈〉, 〈〉, i,m,H) i fresh

H,P
atti=⇒ H,P{t 7→ M[Ti]}

Atomic

P(t) =M[(m,Wi, Ri, i,m
′,H′)] my m′′

H,P
εti=⇒ H,P{t 7→ M[(m′′,Wi, Ri, i,m

′,H′)]}
STM-Monad

P(t) =M[(M′[newref e],Wi, Ri, i,m
′,H′)] l /∈ H,P

H,P
εti=⇒ H,P{t 7→ M[(M′[return l],Wi[l 7→ (e, i)], Ri, i,m

′,H′)]}
Alloc

P(t) =M[(M′[writeref l e],Wi, Ri, i,m
′,H′)]

H,P
εti=⇒ H,P{t 7→ M[(M′[return ()],Wi[l 7→ (e, i)], Ri, i,m

′,H′)]}
Write

P(t) =M[(M′[readref l],Wi, Ri, i,m
′,H′)]

l /∈ dom(Wi) ∪ dom(Ri) H(l) = H′(l) = (e, j)

H,P
r
ti
i (l)
=⇒ H,P{t 7→ M[(M′[return e],Wi, Ri[l 7→ (e, j)], i,m′,H′)]}

Read

P(t) =M[(M′[readref l],Wi, Ri, i,m
′,H′)]

l /∈ dom(Wi) Ri(l) = (e, j)

H,P
εti=⇒ H,P{t 7→ M[(M′[return e],Wi, Ri, i,m

′,H′)]}
ReadRSet

P(t) =M[(M′[readref l],Wi, Ri, i,m
′,H′)] Wi(l) = (e, i)

H,P
εti=⇒ H,P{t 7→ M[(M′[return e],Wi, Ri, i,m

′,H′)]}
ReadWSet

P(t) =M[(m,Wi, Ri, i,m
′,H′)]

H,P
abti=⇒ H,P{t 7→ M[atomic m′]}

Rollback

P(t) =M[(return e,Wi, Ri, i,m
′,H′)]

check(Ri,H) = ok H′′ = H[Wi] l̄ = dom(Wi)

H,P
cot

i(l̄)=⇒ H′′,P[t 7→ M[return e]]

Commit

8

Figure 6 Operational semantics: Helper relations.

∀l ∈ dom(Ri) : Ri(l) = H(l)

check(Ri,H) = ok
Check-Ok

∃l ∈ dom(Ri) : Ri(l) 6= H(l)

check(Ri,H) = bad
Check-Bad

so that a rollback may happen non-deterministically at any time during a transaction.
This way, it is easy to extend our model with an explicit user abort or retry operation.
Furthermore, this rule covers the abort both when reading fails as well as when the
commit operation fails.
When committing (Commit), the heap is checked for updates to the references which

are found in the transaction’s read set since the start of the transaction. There are two
cases:

The check is successful: None of the variables read by the transaction have been com-
mitted by another transaction in the meantime. Therefore, the transaction may
publish its writes atomically to the shared heap and return to the IO monad.

The check fails: The only applicable rule is Rollback. The transaction aborts and
restarts.

Each of these reductions generates the appropriate effect label on the transition re-
lation. Thus, each sequence of labeled reductions uniquely determines a sequence of
labels, which we call the trace of the reduction sequence. Unlike other formalizations,
the interleaving of transactions as well as the abort operations are visible in the trace.

Theorem 3.1 (Type soundness). The type system in Figure 2 is sound with respect to
the operational semantics of ΛSTM .

Proof of 3.1: The proof is by establishing type preservation and progress in the usual
way [9]. The proof of progress relies crucially on the use of the Rollback rule if the
comparison of heap entries in Read or Commit fails.

4 Opacity

The standard isolation property that most STM systems provide is opacity. It states that
any allowed interleaving of transactions must have an equivalent serialized execution.
Furthermore, even aborting transactions are required to view memory locations only in
a consistent way.
We can prove formally that the semantics for ΛSTM satisfies opacity. To this end,

we give a definition for well-formedness of execution traces in terms of the effects they
exhibit.

9

We then show that reordering certain evaluation steps leads to equivalent reductions
sequences. Reductions are considered equivalent if each read operation returns the same
value, each commit operation commits the same values, and each transaction’s outcome
(abort or commit) is the same. To see which reordering yields equivalent reductions, we
define a notion of dependency on effects.
Finally, we show that all reduction sequences produced by the operational semantics

are equivalent to some reduction sequence with a serial trace, up to the assignment of
unique labels to the transactions. Note that we only consider finite traces, without loss
of generality: for infinite traces, we would be able to establish our results for all finite
prefixes.

4.1 Well-formed effect traces

We start with a formal account on effect traces.

Definition 4.1 (Effect traces). A trace ᾱ is the sequence ᾱ = α1 . . . αn of effects αi ∈
Effect, i ∈ 1, . . . , n.
A total order on the effects α ∈ ᾱ is defined by their position in the effect trace. For

i, j ∈ {1, . . . , |ᾱ|} and i < j, we use the abbreviation

ᾱ ` αi < αj

to denote that an effect αi is happening before αj in an trace ᾱ. Similarly,

ᾱ ` β̄ < γ̄

extends the relation to sets of effects if it holds pairwise for all elements in β̄ and γ̄.

We identify by α any effect from a trace ᾱ, αi denotes the effect index i in the trace,
αt an effect from thread t, and αti an effect from transaction Ti in thread t.
Further, ᾱ|t = {αt ∈ ᾱ} is the subset of all effects from thread t, and ᾱ|t,i = {αti ∈ ᾱ}

the subsets of all effects from transaction i in thread t.
Empty effects encode the scheduling of threads, yet they have no influence on the

globally shared state. We define therefore an operation 〈·〉 which reduces a trace to its
quintessence, the ordered sequence of non-empty effects.

Definition 4.2. The kernel of a trace 〈ᾱ〉 is the reduction of the trace to its non-empty
effects.

〈∅〉 = ∅

〈α, ᾱ〉 =

{
〈ᾱ〉 if α = εit or α = εt

α, 〈ᾱ〉 otherwise

Definition 4.3. A trace α is equal in effects to a trace β iff

〈α〉 ≡ 〈β〉

10

The well-formedness of a trace depends largely on the order of certain effects.

Definition 4.4 (Well-formed traces). A trace ᾱ is well-formed iff the following conditions
hold:

• There is no effect for a thread before its spawn effect, unless it is the main thread.

For t 6= 0 : αt ∈ ᾱ⇒ spt
′
(t) ∈ ᾱ ∧ ᾱ ` spt

′
(t) < αt

• There is no effect for a transaction Ti before its atomic effect.

r tii (l) ∈ ᾱ⇒ at ti ∈ ᾱ ∧ ᾱ ` at ti < r tii (l)

coti(l̄) ∈ ᾱ⇒ at ti ∈ ᾱ ∧ ᾱ ` at ti < coti(l̄)

abti ∈ ᾱ⇒ at ti ∈ ᾱ ∧ ᾱ ` at ti < abti

• There is no read effect for a transaction Ti after its commit or abort effect.

coti(l̄) ∈ ᾱ⇒ ∀r
ti
i (l) ∈ ᾱ : ᾱ ` r tii (l) < coti(l̄)

abti ∈ ᾱ⇒ ∀r
ti
i (l) ∈ ᾱ : ᾱ ` r tii (l) < abit

• A transaction may have either a commit or an abort effect, but not both.

coti(l̄) ∈ ᾱ⇒ abti /∈ ᾱ

abti ∈ ᾱ⇒ coti(l̄) /∈ ᾱ

• There are no non-transactional effects within a transaction.

εt ∈ ᾱ⇒ @i : ᾱ ` at ti < εt < coti(l̄) or ᾱ ` at ti < εt < abti

• Transactional effects from the same thread do not interleave.

∀t∀i 6= j : ᾱ ` ᾱ|t,i < ᾱ|t,j or ᾱ ` ᾱ|t,j < ᾱ|t,i

Definition 4.5 (Pending transactions). A transaction Ti is pending in a trace ᾱ if it
has neither a commit or an abort effect:

abti /∈ ᾱ and coti(l̄) /∈ ᾱ

In contrast to other definitions of well-formed execution traces (e.g. [8]), we do not
include the condition that the order of all reads and writes in the transaction is pre-
served in the effect traces. The operational semantics guarantees that each transaction is
working on a consistent view of the shared memory as indexed by its time stamp. A read
operation returns the last value written, either by another transaction which updated the
global heap, or by the transaction itself in a local write step. Further, all write operations
are published (i.e., made visible to other transactions) only after the successful commit.
Therefore, the trace reflects the order of the globally visible effects of the read and write
operations. The local reads and writes have no globally visible effect.

11

Lemma 4.1. All traces produced by type-correct programs are well-formed.

Proof of 4.1: Type-correct programs allow only certain compositions of transactional
phases. Effects are only produced when evaluating expressions in the STM monad. An
at ti effect is only produced when entering the STM monad. All read effects are produced
within the STM part, and the evaluation of a transactional expression finishes with either
an abti or coti(l̄) effect.

The well-formedness of a trace relates the effects of one transaction to each other.
Complementary, an isolation level defines a relation between the effects of all transactions
that participate in a trace [2]. Serializability, for example, is one of these isolation levels.

Definition 4.6 (Serial traces). A well-formed trace ᾱ is serial if for any two transactions
Ti and Tj (i 6= j), all effects from Ti occur before all effects from Tj, or vice versa:

∀ i 6= j : ᾱ ` ᾱ|ti,i < ᾱ|tj ,j or ᾱ ` ᾱ|tj ,j < ᾱ|ti,i

In contrast to other approaches, we do not exclude aborting or pending transactions
in the definition for serial traces. Therefore, we actually model opaque traces.

Definition 4.7 (Consistent snapshot). A transaction operates on a consistent memory
snapshot iff there is no update of a variable between the begin of the transaction and a
read effect of this variable in a transaction.

∀r tii (l) ∈ ᾱ : @cotjj (l̄) with ᾱ ` at ti < co
tj
j (l̄) < r tii (l) and l ∈ l̄

Beside the total order that is defined by the position in a trace, another partial order
is connects effects based on their interdependence.

Definition 4.8 (Control dependency). An effect αi has a control dependency on an
effect αj, αi .c αj, iff they must occur in that order in any well-formed trace. A control
dependency exists in the following cases:

• at ti .c r
ti
i (l)

• at ti .c co
t
i(l̄)

• at ti .c ab
t
i

• r tii (l) .c ab
t
i

• r tii (l) .c co
t
i(l̄)

Definition 4.9 (Data dependency). An effect αi has a data dependency on an effect αj,
αi.dαj, if they exhibit a write-read, read-write or write-write conflict. A data dependency
exists in the following cases where i 6= j:

• r tii (l) .d co
t′
j (l̄) if l ∈ l̄

12

• coti(l̄) .d r
t′
j (l) if l ∈ l̄

• coti(l̄) .d co
t′
j (l̄′) if l̄ ∩ l̄′ 6= ∅

Definition 4.10 (Dependency). An effect αi is directly dependent on an effect αj, iff
αi is either control or data dependent on αj and ᾱ ` αi < αj in a trace ᾱ . An effect αi
is dependent on an effect αj, αi . αj, iff they are contained in the transitive closure of
directly dependent effects:

(αi, αj) ∈ {(α, β) | α is directly dependent on β}∗

Effects that are not dependent are called independent.

Definition 4.11 (Dependent transactions). A transaction Ti is dependent on a transac-
tion Tj if αi . αj for an effect αi from Ti and an effect αj from Tj.

Definition 4.12 (Trace dependencies). Let ᾱ be a well-formed trace. The trace depen-
dencies ∆(ᾱ) are defined as the set of all tuples of dependent effects in this trace:

∆(ᾱ) = {(αi, αj) | αi . αj}

4.2 Serializing effect traces

We are interested in equivalence classes of traces that are permutations of each other and
yield the same final program state. However, there are restrictions on what reorderings
of effects are permissible. For example, the order of trace items with respect to one
thread must not be changed. We call permutations that leave the relative ordering inside
every thread unchanged admissible permutations. We prove in this section that we can
admissibly permute any trace from executing a program in ΛSTM such that it becomes
serial, and that the execution of the serial trace yields the same final program state.

Definition 4.13 (Equivalence of traces). A trace ᾱ is equivalent to a trace β̄ iff β̄ is an
admissible permutation of ᾱ and ∆(ᾱ) = ∆(β̄).

Definition 4.14 (Equivalence of program states). A program state P is equivalent
to a program state P ′, P ' P ′ iff for all threads i either P(i) = P ′(i) or P(i) =
M[(m1,Wi, Ri, i,m2,H)],P ′(i) =M[(m1,Wi, Ri, i,m2,H′)] and H|Ri = H′|Ri .

Definition 4.15 (Equivalence of evaluation states). An evaluation state H,P is equiv-
alent to an evaluation state H′,P ′ iff H = H′ and P ' P ′.

Lemma 4.2 (Permutation of reduction steps). Let R be the two-step reduction

H,P αi=⇒ H0,P0
αj

=⇒ H′,P ′0.

If αi is independent from αj, then there exists an equivalent reduction sequence R′ of the
form

H,P
αj

=⇒ H1,P1
αi=⇒ H′,P ′1

and P ′0 ∼ P ′1.

13

Proof of 4.2: Case distinction on all independent effects.
Effect-free operations (αi = εt or αj = εti) are either pure or work on local (transac-

tional) state. Therefore, these steps can get swapped with any operation while resulting
in the same heap and thread pool. Reduction steps which result in an abort only modify
the transactions’ local state. The same holds for read operations. For commit effects, it
holds that subsequent independent commit operations change disjoint parts of the global
heap. The rules for inconsistency checks require that read and write sets of concurrently
running transactions are disjoint in case of successful commit. Therefore reordering in-
dependent commit operations has no influence on the heap’s final state, and produces
equivalent program states.

In our semantics the begin of a transaction defines its relative order to other trans-
actions. Yet, this order is only partial for transactions that perform their operations
interleaved. In this case, they all only commit successfully if their operations do not
conflict with each other. The following lemma shows that for these transactions, any
relative order is permissive.

Lemma 4.3 (Permutation of committing transactions). Let ᾱ be a well-formed trace
with ᾱ = ᾱ′coti(l̄) and ᾱ′ serial. Further, let Tj be a transaction with at

tj
j ∈ ᾱ and

ᾱ ` at tii < at
tj
j < cotii (l̄) and there does not exist a k with ᾱ ` at tii < at tkk < at

tj
j . Then

ᾱ is equivalent to a trace β̄ with β̄ ` αj < at tii for all effects αj of transaction Tj.

Proof of 4.3: According to the restrictions, the trace must have the following struc-
ture:

ᾱ = αpre, at
ti
i , r

ti
i (l) | εtii , at

tj
j , r

tj
j (l) | εtjj , (ab

ti
i | co

ti
i (l̄)), αpost

There are no dependencies between at
tj
j and any r tii (l), or at tjj and at tii , or any r tii (l)

and any r
tj
j (l). Empty effects neither introduce dependencies. By Lemma 4.3 this is

therefore equivalent to trace

αpre, at
tj
j , r

tj
j (l) | εtjj , at

ti
i , r

ti
i (l) | εtii , (ab

ti
i |co

ti
i (l̄)), αpost

Case distinction on the status of Tj .

• Case ab
tj
j ∈ ᾱ: There is no dependency between ab

tj
j and any effect of Ti, so by

Lemma 4.2, the trace is equivalent to

αpre, at
tj
j , r

tj
j (l) | εtjj , ab

tj
j , at

ti
i , r

ti
i (l) | εtii , αpost

• Case co
tj
j (l̄) ∈ ᾱ: Assume that r tii (l) . co

tj
j (l̄). Then, the validation of the transac-

tion Ti in rule Commit would fail and cotii (l̄) /∈ ᾱ in contradiction to the assumption.
Hence, cotjj (l̄) is not dependent on any effect of Ti, and by Lemma 4.2, the trace is
equivalent to

αpre, at
tj
j , r

tj
j (l) | εtjj , co

tj
j (l̄), at tii , r

ti
i (l) | εtii , αpost

14

• Case Tj is pending: Then the trace ᾱ is equivalent to

αpre, at
tj
j , r

tj
j (l) | εtjj , at

ti
i , r

ti
i (l) | εtii , αpost

End case distinction on the status of Tj .

In the remainder of this section, we identify which subsequences of a trace are not
serial, and specify an algorithm that moves the effects to the appropriate place.

Lemma 4.4 (Conflicts). Let ᾱ be a well-formed trace. Then ᾱ is either serial, or there
exists an αk such that the prefix α1 . . . αk is serial and

1. αk and αk+1 are independent, or

2. αk = r tii (l) and αk+1 = co
tj
j (l̄) with l ∈ l̄.

Proof of 4.4: We consider all possible combinations of effects which might occur in
a well-formed trace. Cases that are left out lead violate well-formedness.
Case distinction on αi and αk+1 where i 6= j.

• Case αk = εti or αk+1 = εtj : serial or independent.

• Case αk = εtij or αk+1 = ε
tj
j : serial or independent.

• Case αk = at tii and αk+1 = at
tj
j : serial.

• Case αk = at tii and αk+1 = r tii (l): serial.

• Case αk = at tii and αk+1 = r
tj
j (l): independent.

• Case αk = at tii and αk+1 = cotii (l̄): serial.

• Case αk = at tii and αk+1 = co
tj
j (l̄): independent.

• Case αk = at tii and αk+1 = abtii : serial.

• Case αk = at tii and αk+1 = ab
tj
j : independent.

• Case αk = r tii (l) and αk+1 = r
tj
j (l′): independent.

• Case αk = r tii (l) and αk+1 = r tii (l′): serial.

• Case αk = r tii (l) and αk+1 = cotii (l̄): serial.

• Case αk = r tii (l) and αk+1 = co
tj
j (l̄): If l ∈ l̄, then this is the second case in the

lemma. Otherwise independent.

• Case αk = r tii (l) and αk+1 = abtii : serial.

15

Figure 7 Reordering transactions for opacity.
while ᾱ is not serial do

choose αk and αk+1 such that α1 . . . αk is serial and α1 . . . αk+1 is not serial
if αk and αk+1 are independent then swap αk with αk+1

else if αk = r tii (l) and αk+1 = co
tj
j (l̄) with l ∈ l̄ then

permute transactions in prefix such that prefix ends with transaction j
else

report error
end if

end while

• Case αk = r tii (l) and αk+1 = ab
tj
j : independent.

• Case αk = cotii (l̄) and αk+1 = co
tj
j (l̄′): According to the operational semantics, it

must hold that l̄ ∩ l̄′ = ∅. Therefore, the effects are independent.

• Case αk = cotii (l̄) and αk+1 = ab
tj
j : independent.

End case distinction on αi and αk+1 where i 6= j.

For the proof of opacity, we define an algorithm which produces for a serializable trace
an equivalent serial trace.
The algorithm in Figure 7 has the following properties:

1. It terminates on all traces produced by a type-correct programs in ΛSTM without
an error.

2. For any trace input of a type-correct program in ΛSTM , it yields an equivalent
serial trace.

We prove these properties in several steps.

Lemma 4.5 (Termination). The algorithm terminates on all traces of well-typed pro-
grams in ΛSTM .

Proof of 4.5: We show that the algorithm only performs a finite number of swaps for
each pair of effects. Further, for each iteration of the while loop, either a permutation or a
swap is performed. The transaction permutations are performed at most n! times, where
n is the number of all transactions that participates in a trace. Letmt denote the number
of effects that a transaction produces, and m = maxmt. For every permutation, each
pair of effects is swapped at most once ((m− 1)!). As each trace consists only of a finite
number of effects, the algorithm performs at most n!(m− 1)! many swap operations.

Lemma 4.6 (Permutation). The output of the algorithm is a permutation of the input
trace.

16

Proof of 4.6: All operations on the trace are permutations of effects. Therefore,
effects are neither removed from nor added to the input trace.

Lemma 4.7 (Dependencies). The algorithm does not change any dependencies in the
trace.

Proof of 4.7: Effects are only swapped when they are independent or when permuting
transactions. In the latter case, the dependencies in the trace are respected as is shown
in Lemma 4.3.

Lemma 4.8 (Correctness of the algorithm). The output of the algorithm is an equivalent
serial trace.

Proof of 4.8: By 4.6 and 4.7, the output is equivalent to the input trace. By 4.5, the
algorithm terminates on all traces from type-correct programs. In this case, the condition
for entering the while loop is falsified, and therefore the trace is serial.

Theorem 4.1 (Opacity). Let P0 be a type-correct program. Further, let R be a sequence
of reductions

H0,P0
α1=⇒ . . .

αn=⇒ Hn,Pn.

Then there exists an equivalent sequence R′ of the form

H0,P0
α′
1=⇒ . . .

α′
n=⇒ Hn,P ′n

such that ᾱ(R′) is serial.

Proof of 4.1: We apply the algorithm for serialization of traces to the traces of R. Be-
cause the algorithm only requires the permutation of independent effects, by Lemma 4.2
the result is an equivalent reduction sequence with serial trace.

5 Snapshot Isolation

The semantics of serializability is easy to reason about, but it is rather restrictive with
respect to the set of valid schedules. By confining the check for intermediate updates at
commit time to the write set of the transaction, the system exhibits snapshot isolation
semantics, a popular concurrency control notion in data bases [2]. The basic idea behind
snapshot isolation is that each transaction is guaranteed to work on a consistent memory
snapshot in isolation from each other, and that there are no lost updates. In the context
of STM, snapshot isolation can be used to implement data structures where operations
are checked for conflicts on a higher level. A typical use case are container data structures
like lists or trees where insertions of different elements commute on the level of semantics,
but the implementation yields non-commuting memory access patterns.

17

Serializable traces are trivially also valid in snapshot isolation as read and write effects
of transactions are not interleaved. For further examples of snapshot traces consider the
following execution trace:

t1

t2

at1

at2

r1(x) r1(y)

r2(x) r2(y)

co1(x)

co2(y)

Transactions T1, running in thread t1 and transaction T2, running in thread t2, operate
on the same memory snapshot, and update different memory locations. Yet, there is a
read-write dependency from T1 on T2 because T1 is committing x which T2 read. Vice
versa, there is also a read-write dependency from T2 on T1 due to their operations on
y. Therefore, the transactions cannot be serialized by re-ordering their traces. This
mutual read-write dependency on transactions is known as write skew anomaly in the
literature [2].
To detect such a kind of anomaly, it does not suffice to consider a pair of transactions

in isolation. In the following example, three transactions operate on the same memory
snapshot, again committing on different locations.

t1

t2

t3

at1

at2

at3

r1(x) r1(z)

r2(y) r2(z)

r3(x) r3(y) r3(z)

co1(x)

co2(y)

co3(z)

There is no write skew between transactions T1 and T2. However, these transactions
are related via their read-read dependency on variable z which is updated in transaction
T3. For this reason, T1 and T2 cannot be serialized with respect to each other. To reflect
this read-read dependency in combination with write-skew, the snapshot relationship
must contain the transitive closure of transactions that exhibit a write skew anomaly.
Further, this transitive closure needs further to be extended with transactions that

only partly share data dependencies that are not write skews. The situation is depicted
in this example:

t1

t2

t3

at1

at2

at3

r1(x) r1(y)

r2(x) r2(y)

r3(x) r3(y) r3(z)

co1(x)

co2(y)

co3(z)

Transaction T3 can neither be ordered after T2 because it read variable y which is
updated by T2, nor may it be ordered before T2 due to its write-read dependency on
transaction T1. The underlying reason for this is given in the write skew of T1 and T2.
We therefore say that T2 and T3 are also snapshot related.
By definition, only transaction that commit successfully can exhibit write skew anoma-

lies. For opaque systems, aborting transactions that operate on the same memory snap-

18

Figure 8 Operational semantics: Check for Snapshot Isolation.

∀l ∈ dom(Ri) ∩ dom(Wi) : Ri(l) = H(l)

check(Ri,Wi,H) = ok
Check-Ok

∃l ∈ dom(Ri) ∩ dom(Wi) : Ri(l) 6= H(l)

check(Ri,Wid,H) = bad
Check-Bad

shot as another transaction can be ordered before this transaction. The situation changes
when the aborting transaction operates on a different snapshot as this does not allow
serializing it the committing transaction. Consider the following trace:

t1

t2

t3

at1

at2

at3

r1(x) r1(y)

r2(x) r2(y)

r3(x) r3(y)

co1(x)

co2(y)

ab3

As in the previous example, it is neither possible to move transaction T3 before nor
after T2. This indicates that both committing and aborting transactions may be snapshot
related.

5.1 Operational semantics

Figure 8 shows an alternative implementation of Check-Ok and Check-Bad. Replacing
the original relations in Figure 6 with these, the algorithm implements snapshot isolation.
We call the language whose semantics is defined by the adapted rules in the following
ΛSI to distinguish it from its opaque counterpart, ΛSTM .
Notice that an alternative semantics of the read access to transactional variables for

snapshot isolation might return the entry in the transaction local heap copy without
checking for the current value in the heap. This construction also provides a consis-
tent memory snapshot for transactional execution. In practice, this can be achieved for
example by keeping multiple versions of each variable. To keep the formalizations of
the different isolation levels comparable, we refrain here from modeling such a multi-
versioning scheme.

5.2 Snapshot isolation for ΛSI

We now formally define the notion of snapshot isolation in terms of traces. Following
the definition for the isolation level of snapshot isolation in [2], none of the anomalies
but write skews are allowed. Our formalization of traces impedes by design dirty reads
and dirty writes because updates are only visible to other transactions after a commit.

19

The definition of effects does not distinguish between writes and commits, but merges
them together into one effect. We therefore can focus here on the remaining kinds of
anomalies.

Definition 5.1 (Non-repeatable reads). A transaction Ti experiences a non-repeatable
read iff

∃x : ᾱ ` r tii (x) < co
tj
j (l̄) < r tii (x) with x ∈ l̄

Definition 5.2 (Read skew). A transaction Ti exhibits a read skew with some other
transaction Tj (i 6= j) iff

∃x, y : ᾱ ` r tii (x) < co
tj
j (l̄) < r tii (y) with x, y ∈ l̄

Definition 5.3 (Lost updates). A transaction causing a lost update iff

∃x : ᾱ ` r tii (x) < co
tj
j (l̄) < cotii (l̄′) and x ∈ l̄ ∩ l̄′

Definition 5.4 (Snapshot isolation). A transactional system implements snapshot iso-
lation iff in its trace

1. all reads are repeatable,

2. there are is no read skew, and

3. there are no lost updates.

Lemma 5.1. All reads in ΛSI are repeatable.

Proof of 5.1: In ΛSI , each read value is registered in the read set for a location
after the first global read access (Read). All subsequent read access either retrieve the
value from the read set (ReadRSet) or the write set (ReadWSet). So, any effect trace
contains at most one read effect for a location in a transaction, and non-repeatable reads
are not possible.

Lemma 5.2. There is no read skew in ΛSI .

Proof of 5.2: In Read, there is a test for intermediate updates to the heap:

H(l) = H′(l) = (e, j)

The value in the global heap can only have changed when another transaction Tj com-
mitted to the location. Therefore, the global read only succeeds if there is no read skew
possible.

Lemma 5.3. There are no lost updates in ΛSI .

20

Proof of 5.3: In Commit, there is a check for intermediate updates to the heap:

∀l ∈ dom(Ri) ∩ dom(Wi) : Ri(l) = H(l)

This check fails if another transaction Tj committed to the location between the global
read of the value that added it to the read set and the commit. Therefore, the commit
only succeeds if there are no lost updates possible.

Theorem 5.1 (Snapshot isolation for ΛSI). The formal system ΛSI implements snapshot
isolation.

Proof of 5.1: The proof follows immediately from Lemmas 5.1,5.2, and 5.3.

5.3 Snapshot traces

In Section 4, we have shown how to transform serializable traces into a canonical form,
namely serial traces. For traces from systems with snapshot isolation, we now introduce
also a canonical form which we call snapshot trace.
The main difference between serializability (or opacity) and snapshot isolation is the

presence of write skews. Starting from their definition, we derive several criteria that
prevent the serialization of a snapshot trace.

Definition 5.5 (Write skew anomaly). Two transactions Ti and Tj, i 6= j, exhibit a
write skew anomaly in a trace ᾱ, Ti ∼ᾱ Tj, iff there exists references x, y such that

r tii (x), r tii (y), r
tj
j (x), r

tj
j (y), cotii (l̄1), co

tj
j (l̄2) ∈ ᾱ

and
ᾱ ` at tii < co

tj
j (l̄2)

ᾱ ` at
tj
j < cotii (l̄1)

with x ∈ l̄1 and y ∈ l̄2.

ti

tj

at i

atj

ri(x) ri(y)

rj(y) rj(x)

coi(l̄1)

coj(l̄2)

Lemma 5.4. The write skew anomaly ∼ᾱ defines a symmetric relation on the set of
transactions in a trace ᾱ.

Proof. The symmetry follows directly from Definition 5.5.

Let ∼+
ᾱ be the transitive and reflexive closure of ∼ᾱ.

21

Definition 5.6 (Snapshot related). A transaction Ti is snapshot related with another
transaction Tj, Ti n Tj, iff

1. ᾱ ` at
tj
j < at tii < co

tj
j (l̄),

2. there is r tii (l) such that ᾱ ` r tii (l) < co
tj
j (l̄) with l ∈ l̄,

3. there is a Tk such that Ti depends on Tk and Tk ∼+
ᾱ Tj.

ti

tk

tj

atk cok(l̄′)

at i ri(l)

atj coj(l̄)

Obviously, snapshot dependency is not a symmetric relationship. It further holds that
if there is a write skew between Ti and Tj , then Ti n Tj or vice versa.

Definition 5.7 (Snapshot connected). A transaction Ti is snapshot connected to another
transaction Tj,Ti l Tj, iff

1. ᾱ ` at
tj
j < at tii < co

tj
j (l̄),

2. there is a Tk on which Ti depends with Tk ∼+
ᾱ Tj, and

3. there is a Tn such that Ti depends on Tn and Tn n Tj

ti

tn

tk

tj

atk cok(l̄′)

at i

atn

atj coj(l̄)

Lemma 5.5. Transactions that are snapshot connected cannot be serialized.

Proof of 5.5: We consider the two possible cases:
Case distinction .

• Case Ordering Ti before Tj : By definition, there is a transaction Tk with Tk ∼+
ᾱ Tj ,

and Ti depends on Tk. Tk cannot be ordered before Tj because there is a read effect
r tkk (l) which is data dependent on the commit effect cotj(l̄). Due to the dependency
on Ti must be ordered after Tk.

22

• Case Ordering Ti before Tj : By definition, there is transaction Tn with Tn n Tj ,
and Tn depends on Ti. Due to a read effect r tnn (l), Tn cannot be moved after the
commit effect cotj(l̄) because the read effect l ∈ l̄ is data dependent on it. Further,
transaction Ti may not be ordered after Tn because of Tn depends on Ti.

End case distinction .

Definition 5.8 (Snapshot admissible). A well-formed trace ᾱ is snapshot admissible if

1. the atomic effect of a transaction is followed by all read effects and effects of this
transaction,

2. there are no lost updates, and

3. if there is an atomic effect at tii such that ᾱ ` at
tj
j < at tii < co

tj
j (l̄), then Ti is

snapshot connected to Tj, and all effects from Ti are before co
tj
j (l̄).

Lemma 5.6. Snapshot admissible traces are snapshot traces.

Proof of 5.6: By definition, snapshot admissible traces do not allow lost updates.
Further, it holds that no effect from another transaction is allowed between the reads of
a transaction. Hence, neither read skew nor non-repeatable reads are possible.

Examples Trivially, serialized traces are snapshot admissible as there is no interleaving
of transactional effects from different threads possible.

Corollary 5.1. A serialized trace is snapshot admissible.

For traces with write skew and snapshot-connected transactions, the canonical snap-
shot admissible trace are of the following form:

at tii (r tii (l) | εtii) at
tj
j (r

tj
j (l′) | εtjj) co

tj
i (l̄) co

tj
j (l̄′)

at tii (r tii (l) | εtii) at
tj
j (r

tj
j (l′) | εtjj) co

tj
i (l̄) at tkk (r tkk (l′′) | εtkk) abtkk co

tj
j (l̄′)

To show that traces produced by well-typed programs in ΛSI are snapshot admissible,
we follow a similar path as in the proof for opaqueness of ΛSTM . As for opaque traces, it
is possible to reorder traces under certain conditions without changing their semantics.
To simplify the reordering, we collect snapshot connected transactions in a special

relation m as we encounter them in the process.

Definition 5.9 (Snapshot admissible). Given a relation m between transactions, a well-
formed trace ᾱ is snapshot admissible under m iff

1. ᾱ is snapshot admissible, and

2. if transaction Ti is snapshot connected with Tj, then Ti m∗ Tj.

23

Lemma 5.7 (Conflicts). A trace ᾱ taken from an execution of a program in ΛSI is
either snapshot admissible under some m, or there is a prefix ᾱ′ such that ᾱ′ = α1 . . . αk
is snapshot admissible under m and

• αk and αk+1 are independent, or

• αk = r tii (l) and αk+1 = cotj(l̄) with l ∈ l̄.

Proof of 5.7: We consider all possible combinations of effects which might occur in
a well-formed trace in ΛSI . Cases that are left out violate well-formedness.
Case distinction on αi and αk+1 where i 6= j.

• Case αk = εti or αk+1 = εtj : snapshot admissible or independent.

• Case αk = εtij or αk+1 = ε
tj
j : snapshot admissible or independent.

• Case αk = at tii and αk+1 = at
tj
j : snapshot admissible.

• Case αk = at tii and αk+1 = r tii (l): snapshot admissible.

• Case αk = at tii and αk+1 = r
tj
j (l): independent.

• Case αk = at tii and αk+1 = cotii (l̄): snapshot admissible.

• Case αk = at tii and αk+1 = co
tj
j (l̄): independent.

• Case αk = at tii and αk+1 = abtii : snapshot admissible.

• Case αk = at tii and αk+1 = ab
tj
j : independent.

• Case αk = r tii (l) and αk+1 = r
tj
j (l′): independent.

• Case αk = r tii (l) and αk+1 = r tii (l′): snapshot admissible.

• Case αk = r tii (l) and αk+1 = cotii (l̄): snapshot admissible.

• Case αk = r tii (l) and αk+1 = co
tj
j (l̄): If l ∈ l̄, then this is the second case in the

lemma. Otherwise independent.

• Case αk = r tii (l) and αk+1 = abtii : snapshot admissible.

• Case αk = r tii (l) and αk+1 = ab
tj
j : independent.

• Case αk = cotii (l̄) and αk+1 = co
tj
j (l̄′): According to the operational semantics, it

must hold that l̄ ∩ l̄′ = ∅. Therefore, the effects are independent.

• Case αk = cotii (l̄) and αk+1 = ab
tj
j : independent.

24

End case distinction on αi and αk+1 where i 6= j.

Lemma 5.8 (Permutation of independent transactions). Let ᾱ be a well-formed trace
with ᾱ = ᾱ′coti(l̄) and ᾱ′ is snapshot admissible. Further, let Tj be a transaction with
ᾱ ` at tii < at

tj
j < cotii (l̄) and there @k with ᾱ ` at tii < at tkk < at

tj
j .

Then, either Ti and Tj have a write skew, or trace ᾱ is equivalent to a trace β̄ with
β̄ ` αj < at tii for all effects αj of transaction Tj.

tj

ti

atj

at i

rj(x)

ri(y)

coi(l̄)

Proof of 5.8: There are no dependencies between at
tj
j and any r tii (l), or at tjj and at tii ,

or any r tii (l) and any r
tj
j (l).

If cotj(l̄) ∈ ᾱ and there is a dependency of a r tii (l) to cotj(l̄), then the transactions
have a write skew. Otherwise, Tj does not depend on Ti and all effects may be reordered
because they are independent.

Examples To provide some intuition on the permutations in Algorithm 9, we consider
the steps that are performed on the following trace.

at1 at2 r1(x) r1(y) r2(x) r2(y) at3 r3(z) at4 r4(z) r4(x) co1(x) co2(y) ab4 co3(z)

For better readability, we assume that each transaction is run in a separate thread.
Starting with an empty m, the algorithm detects the prefix at1 at2 r1(x) to not be

admissible and reorders the independent effects at2 and r1(x). Similarly, the other read
effects of T1 are moved towards at1, yielding

at1 r1(x) r1(y) at2 r2(x) r2(y) at3 r3(z) at4 r4(z) r4(x) co1(x) co2(y) ab4 co3(z)

The admissible prefix ends here with r4(x) which is followed by co1(x). The atomic
effect between at4 and at1 which is closest to at4 is at3. Because T4 does not depend on
T3, the effect at4 is moved before at3. With the following recursive calls to TxnSwap,
at4 finally ends up at the head of the trace.

at4 at1 r1(x) r1(y) at2 r2(x) r2(y) at3 r3(z) r4(z) r4(x) co1(x) co2(y) ab4 co3(z)

The next steps move again the read effects of T4 immediately behind at4, such that
the trace is then in this order:

at4 r4(z) r4(x) at1 r1(x) r1(y) at2 r2(x) r2(y) at3 r3(z) co1(x) co2(y) ab4 co3(z)

25

Figure 9 Reordering transactions for snapshot traces.
m= ∅
while ᾱ is not snapshot admissible under m do

choose αk and αk+1 such that α1 . . . αk is snapshot admissible under m and
α1 . . . αk+1 is not

if αk is not in conflict with αk+1 then
swap αk with αk+1

else if αk = r tii (l) and αk+1 = co
tj
j (l̄) then

TxnSwap(i,j)
else

signal error
end if

end while

method TxnSwap(i,j)
if @at tkk : ᾱ ` at

tj
j < at tkk < at tii then

if write skew between Ti and Tj and not Ti m Tj then
add (Ti, Tj) to m

else
move at tii before at

tj
j

end if
else

take at tnn such that @at :
kᾱ ` at tnn < at tkk < at tii

if Ti depends on Tn then
if Tn m Tj then

add (Ti, Tj) to m
else

TxnSwap(n,j)
end if

else
move at tii before at tnn
TxnSwap(i,j)

end if
end if

end

26

Now, the commit of T1 is permuted with the preceding effects resulting in the trace

at4 r4(z) r4(x) at1 r1(x) r1(y) at2 r2(x) co1(x) r2(y) at3 r3(z) co2(y) ab4 co3(z)

with admissible prefix at4 r4(z) r4(x) at1 r1(x) r1(y) at2 r2(x). At this point, the algo-
rithm detects the write skew between T1 and T2 and adds (1, 2) to m. The prefix
at4 r4(z) r4(x) at1 r1(x) r1(y) at2 r2(x) co1(x) is admissible under the extended m, and in
the next iteration r2(y) is again moved before co1(x).
Finally, swapping the commits and aborts at the end of the trace towards the other

effects of the transaction to which they belong, the trace is snapshot admissible:

at4 r4(z) r4(x) ab4 at1 r1(x) r1(y) at2 r2(x) r2(y) co1(x) at3 r3(z) co3(z)

The algorithm in Figure 9 has the following properties:

1. It terminates on all traces that are produced by well-typed programs in ΛSI .

2. For any trace input from a well-typed program in ΛSI , it yields an equivalent trace
which is snapshot admissible.

Lemma 5.9 (Termination). The algorithm terminates on all traces of type-correct pro-
grams in ΛSI without an error.

Proof of 5.9: Let n be the number of transaction in the trace. Each permutation of
atomic effects is performed at most n − 1 times. For every permutation, each effect is
swapped at most (m) times wherem is the maximal number of effects which are produced
by a transaction in the trace. Hence, the algorithm stops after a finite number of swaps.
By Lemma 5.7, the program never reaches the case for signaling the error.

Lemma 5.10 (Permutation). The output of the algorithm is a permutation of the input
trace.

Proof of 5.10: All operations on the trace only permute the effects, but do not change
the elements in the trace.

Lemma 5.11 (Dependencies). The algorithm does not change any dependencies in the
trace.

Proof of 5.11: Effects are only swapped when they are independent or when per-
muting transactions. In the latter case, the dependencies in the trace are respected as is
shown in Lemma 5.8.

27

Theorem 5.2 (Snapshot traces for ΛSI). Let P0 be a type-correct program in ΛSI .
Further, let R be a sequence of reductions

H0,P0
α1=⇒ . . .

αn=⇒ Hn,Pn.

Then there exists an equivalent sequence R′ of the form

H0,P0
α′
1=⇒ . . .

α′
n=⇒ Hn,P ′n

such that ᾱ(R′) is snapshot admissible.

Proof of 5.2: We apply the algorithm for reordering traces into a snapshot admis-
sible form to the traces of R. Because the algorithm only requires the permutation of
independent effects, by Lemma 5.10 the result is an equivalent reduction sequence with
an admissible trace.

As serial traces allow easier reasoning about transactional executions when compared to
serializable traces, snapshot admissible traces are a simpler canonical form for snapshot
traces. Reducing the number of possible interleavings for effects aids programmers in
reasoning about the interaction of concurrently running transactions.

6 Formalization of Twilight

This section gives a formalization of the Twilight STM. Twilight STM splits the code
of a transaction into a (functional) atomic phase, which behaves as in ΛSTM , and an
(imperative) twilight phase. Code in the twilight phase executes before the decision
about a transaction’s fate (restart or commit) is made and can affect its outcome based
on the actual state of the execution environment. The Twilight API has operations to
detect and repair read inconsistencies as well as operations to overwrite previously written
variables. It also permits the embedding of I/O operations which can be constructed in
such a way that the I/O operation is executed exactly once.
In the actual implementation, twilight code may run concurrently with other trans-

actions including their twilight code. Related work on formalizations of transactional
memory([1], [6]) require transactions to be executed in a sequential fashion in order to
abstract over the method to provide mutual exclusion to heap locations. The formaliza-
tion we present here just restricts the possible interleaving of threads in such a way that
the twilight code of each transaction runs solo, i.e. all other threads are stalled while a
transaction executes its twilight code. It is therefore possible for a transaction to observe
updates by other transactions when reaching the twilight zone.

6.1 Syntax

Figure 10 shows the syntax of ΛTWI . In addition to the standard operations that were
described in Section 3, there is now a special bind operator>>=>> for entering the twilight
zone. The error value indicates that a thread is stuck in an erroneous state.

28

Figure 10 Syntax of ΛTWI . Expressions marked in gray arise only during evaluation.
x∈Var l ∈ Ref
v ∈Val ::= l | tt | ff | () | λx.e | return e | error
e ∈Exp ::= v | x | e e | if e e e

| spawn e | atomic e | e >>= e | e >>=>> e

| (e,Wi, Ri, i, e,H) | (e,Wi, Ri, i, e, f)

| newref e | readref e | writeref e e
| update e e | reread e | inconsistent e
| reload | ignoreUpdates | IOtoSTM e | retry

The syntax provides also repair operations for modifying the heap in the twilight
zone. Variables that have been read or modified in the body of the transaction can
be modified via update , and reread yields the value that a variable is currently
associated with in the read set. The operation inconsistent compares the state of
the transaction in the read set with its counterpart in the global heap. A consistent
snapshot of the read set with the values that are currently in the heap can be obtained
with reload. The ignoreUpdates operator allows a transaction to disregard updates by
other transactions during conflict detection. By using IOtoSTM , an irrevocable expression
can be embedded into the twilight zone. Finally, there is the retry method issues a
restart of the transaction.
As in the type system for ΛSTM , Σ tracks the type of memory locations, and Γ tracks

the type of variables. Figure 11 shows only the rules that differ from the ones in Figure 2.
The type system comprises now two other kinds of monad, the TWI and the TXN

monad. The expressions that are evaluated as transactions are now all of type TXN

monad as shown in rule T-Atomic. An instance of the TXN monad consists of both a
transactional body and twilight code. The rule T-TwiBind deals with the switch form a
transaction’s body to the associated twilight zone. Expressions of type TWI τ may only
be used within the twilight code of a transaction as they require special concurrency
guarantees.

6.2 Operational Semantics

Figure 12 introduces further definitions for the operational semantics.
A transaction Ti is a tuple (e,Wi, Ri, i, e,H). As before, it consists of the expression

that is currently evaluated, the write set and the read set of the transaction, a (unique)
transaction identifier, a copy of the whole expression that is to be evaluated transaction-
ally for rollbacks, a copy of the heap taken at the beginning of the transaction or during
a reload. Now, additionally, the ΛTWI calculus requires another kind of transaction tuple
which does not contain a heap copy, but a flag denoting the transaction’s status. An ok
flag indicates that a transaction’s read set variables are consistent with the current heap,
a bad flag denotes some inconsistency between the read set and the current heap.
An execution state consists of a heap, a thread pool with expressions that are concur-

29

Figure 11 Extension of type rules of ΛTWI .
Types: τ ::= bool | () | R τ | τ → τ | µ τ

µ ::= IO | TXN | STM | TWI

Σ|Γ ` error : τ
T-Error

Σ|Γ ` e : TXN τ

Σ|Γ ` atomic e : IO τ
T-Atomic

Σ|Γ ` e1 : STM τ Σ|Γ ` e2 : bool→ τ → TWI τ ′

Σ|Γ ` e1 >>=>> e2 : TXN τ ′
T-TwiBind

Σ|Γ ` e : TXN τ Σ|Γ ` e′ : TXN τ Σ `Wi Σ ` Ri Σ ` H
Σ|Γ ` (e,Wi, Ri, i, e

′,H) : IO τ
T-Txn

Σ|Γ ` e : TWI τ Σ|Γ ` e′ : TXN τ Σ `Wi Σ ` Ri
Σ|Γ ` (e,Wi, Ri, i, e

′, f) : IO τ
T-TwiTxn

Σ|Γ ` e1 : R τ Σ|Γ ` e2 : τ

Σ|Γ ` update e1 e2 : TWI ()
T-Update

Σ|Γ ` e : R τ

Σ|Γ ` reread e : TWI τ
T-Reread

Σ|Γ ` e : R τ

Σ|Γ ` inconsistent e : TWI bool
T-Incons

Σ|Γ ` reload : TWI ()
T-Reload

Σ|Γ ` ignoreUpdates : TWI ()
T-IgnoreUpdates

Σ|Γ ` retry : TWI τ
T-Retry

Σ|Γ ` e : IO τ

Σ|Γ ` IOtoSTM e : TWI τ
T-Safe

Figure 12 State extended with flags.
s ∈ State = Heap× Program× ThreadId
T ∈Txn = Exp× Store× Store× Id× Exp× Store
T ′ ∈TwiTxn = Exp× Store× Store× Id× Exp× Flag
f ∈Flag = {ok, bad}
αi ∈TxnEffect = · · · ∪ {αti | α ∈ Effect}

30

Figure 13 Semantics: Evaluation contexts and standard reduction rules.
Evaluation contexts:

E ::= [] e | if [] e e′

M ::= newref e | readref [] | writeref [] e
| reread [] | update [] e | inconsistent [][]>>= e | []>>=>> e

Expression evaluation →:

(λx.e) e′ → e[e′/x]

if tt e e′ → e

if ff e e′ → e′

e→ e′

E [e]→ E [e′]

Monadic evaluation y
return e >>= e′ y e′ e

error>>= e y error

e→ e′

ey e′
my m′

M[m] yM[m′]

rently evaluated, and a thread identifier to denote the thread that is currently executing
the twilight code of a transaction. The evaluation of a program starts in an initial con-
figuration 〈〉, {0 7→ e}, · with an empty heap, a main thread t0, and no twilight identifier
set. A final configuration has the form H, {0 7→ v0, . . . , tn 7→ vn},−. In contrast to the
operational semantics of ΛSTM , an evaluation step in ΛTWI can produce more than one
effect (e.g. ReloadBad). The rules in Figures 13-19 define the semantics of the language
constructs.
In Figure 13, E [•] andM[•] denote the evaluation context for expressions and monadic

expressions, respectively. As an additional rule, the error statement is passed through
the monad without further evaluation of statements.
The evaluation rules for the IO monad and the transaction body in Figure 14 are

similar to the previous formalization. They only differ with respect to the twilight flag
that is recorded in the system’s state. Execution steps at top level or within a transaction
are only permitted if no transaction is currently executing its twilight zone.
Figure 15 shows the evaluation of expressions within the twilight zone. Before com-

mitting, the transaction must switch from the STM monad to the TWI monad with the
twilight bind>>=>> . At this point, the heap is checked for updates to the references that
are in the transaction’s read set. There are two cases:

Rule TwiOk applies if the check is successful, this is, none of the heap locations read
by the transaction have been updated by another transaction in the meantime. It

31

Figure 14 Operational semantics: IO and STM monad.

P(t) = m my m′

H,P,− εt
=⇒ H,P{t 7→ m′},−

IO-Monad

P(t) =M[spawn m] t′ fresh

H,P,− spt(t′)
=⇒ H,P{t 7→ M[return ()], t′ 7→ m},−

Spawn

P(t) =M[atomic m] T = (m, 〈〉, 〈〉, i,m,H) i fresh

H,P,−
atti=⇒ H,P{t 7→ M[T]},−

Atomic

P(t) =M[(m,Wi, Ri, i,m
′,H′)] my m′′

H,P,−
εit=⇒ H,P{t 7→ M[(m′′,Wi, Ri, i,m

′,H′)]},−
STM-Monad

P(t) =M[(M′[newref e],Wi, Ri, i,m
′,H′)] l /∈ P,H

H,P,−
εit=⇒ H,P{t 7→ M[(M′[return l],Wi[l 7→ (e, i)], Ri, i,m

′,H′)]},−
Alloc

P(t) =M[(M′[writeref l e],Wi, Ri, i,m
′,H′)]

H,P,−
εit=⇒ H,P{t 7→ M[(M′[return ()],Wi[l 7→ (e, i)], Ri, i,m

′,H′)]},−
Write

P(t) =M[(M′[readref l],Wi, Ri, i,m
′,H′)]

l /∈ dom(Wi) ∪ dom(Ri) H(l) = H′(l) = (e, j)

H,P,−
r
ti
i (l)
=⇒ H,P{t 7→ M[(M′[return e],Wi, Ri[l 7→ (e, j)], i,m′,H′)]},−

Read

P(t) =M[(M′[readref l],Wi, Ri, i,m
′,H′)]

l /∈ dom(Wi) Ri(l) = (e, i)

H,P,−
εit=⇒ H,P{t 7→ M[(M′[return e],Wi, Ri, i,m

′,H′)]},−
ReadRSet

P(t) =M[(M′[readref l],Wi, Ri, i,m
′,H′)] Wi(l) = (e, i)

H,P,−
εit=⇒ H,P{t 7→ M[(M′[return e],Wi, Ri, i,m

′,H′)]},−
ReadWSet

P(t) =M[(m,Wi, Ri, i,m
′,H′)]

H,P,−
abti=⇒ H,P{t 7→ M[atomic m′]},−

Rollback

32

Figure 15 Operational semantics: Control flow in the twilight zone.

P(t) =M[(M′[return e >>=>> m],Wi, Ri, i,m
′,H′)] check(Ri,H) = ok

H,P,−
εit=⇒ H,P{t 7→ M[(M′[m tt e],Wi, Ri, i,m

′, ok)]}, t
TwiOk

P(t) =M[(M′[return e >>=>> m],Wi, Ri, i,m
′,H′)] check(Ri,H) = bad

H,P,−
εti=⇒ H,P{t 7→ M[(M′[m ff e],Wi, Ri, i,m

′, bad)]}, t
TwiBad

P(t) =M[(M′[reload],Wi, Ri, i,m
′, ok)]

H,P, t
εit=⇒ H,P{t 7→ M[(M′[return ()],Wi, Ri, i,m

′, ok)]}, t
ReloadOk

P(t) =M[(M′[reload],Wi, Ri, i,m
′, bad)]

j fresh Rj = {l 7→ H(l)|l ∈ dom(Ri)}

H,P, t
abti,at

t
j ,r

t
j (l)

=⇒ H,P{t 7→ M[(M′[return ()],Wj , Rj , j,m
′, ok)]}, t

ReloadBad

P(t) =M[(M′[ignoreUpdates],Wi, Ri, i,m
′, f)]

H,P, t
εit=⇒ H,P{t 7→ M[(M′[return ()],Wi, Ri, i,m

′, ok)]}, t
IgnoreUpdates

P(t) =M[(retry ,Wi, Ri, i,m
′, f)]

H,P, t
abti=⇒ H,P{t 7→ M[atomic m′]},−

Retry

P(t) =M[(return e,Wi, Ri, i,m
′, ok)] H′′ = H[W ′i]

H,P, t
cot

i(l̄)=⇒ H′′,P[t 7→ M[return e]],−
Commit

P(t) =M[(return e,Wi, Ri, i,m
′, bad)]

H,P, t
abti=⇒ H,P{t 7→ M[atomic m′]},−

CommitFail

Figure 16 Helper relation.

∀l ∈ dom(Ri) : Ri(l) = H(l)

check(Ri,H) = ok

∃l ∈ dom(Ri) : Ri(l) 6= H(l)

check(Ri,H) = bad

∀l ∈ dom(Ri) ∩ dom(Wi) : Ri(l) = H(l)

check(Ri,Wi,H) = ok

∃l ∈ dom(Ri) ∩ dom(Wi) : Ri(l) 6= H(l)

check(Ri,Wid,H) = bad

33

sets the twilight flag to ok.

Rule TwiBad applies if the check fails. It sets the transaction’s twilight flag to bad. In
the TWI monad, the transaction’s twilight state can be set to ok with a reload or
ignoreUpdates. Thus, the transaction can repair or ignore its inconsistencies and
still commit successfully.

The definition of the helper function for the check is in Figure 16. The boolean value
that is passed to the next statement m in the TWI monad reveals the outcome of the
consistency check to the transaction’s execution context. Further, the thread identifier
in the global state is set to the identifier of the thread which executes the transaction.
If there are no inconsistencies, the reload operation does not change the internal state

of the transaction. Otherwise, entries in the read set are replaced by their counterparts
in the global heap. This corresponds semantically to an abort of the transaction, and
the start of a new transaction which adopts the reads set and write set, as well as the
execution context of the aborted predecessor. The annotated effects reflect it by emitting
the abort effect for the transaction, the begin effect for the new transaction, and a list
of all read effects as listed in the read set. Also, the transaction’s state is now found
consistent with respect to the current heap and is flagged with ok.
In a similar way, ignoreUpdates also puts the transaction into a committable state by

setting the state flag to ok. Because no new values are observed, nor global operations
performed, the empty effect is emitted to the trace.
When the twilight zone has been reduced to a return statement, the rule for commit

transfers its heap modification as registered in the write set to the global heap (Commit).
A corresponding commit effect which contains the locations of the modified variables is
emitted, and the thread identifier in the global state which indicated that a twilight zone
is exectued is reset.
If the transaction has been found inconsistent with respect to the global heap when

entering its twilight zone, and it has not obtained an update of the read variables via
reload or explicitly ignored updates via ignoreUpdates, the commit fails (CommitFail).
The transaction formally aborts and is restarted completely.
With IOtoSTM , an statement to be evaluated in the IO monad can be lifted into the

twilight zone of a transaction. The statement, with the exception of atomic expressions
(cf. IOtoSTMErr), is evaluated in a top level environment. The effects are transferred
to the enclosing transaction. When a new thread is spawn (IOtoSTMSpawn), it is added
to the system’s thread pool for later execution. IOtoSTMEnd returns to the execution
context of the enclosing transaction.
Figure 18 shows the rules for repair operations in the twilight zone. Evaluating

inconsistent l yields the result of comparing the value for l in the read set with the
one in the global heap. Similarly to Write, the update operation replaces the value in
the write set (Update), while the reread operation returns the value for a reference in
the read set (Reread).
Errors are induced by invalid read or write operations inside the twilight zone as

depicted in Figure 19. A read (or write) operation is illegal in the twilight code if its

34

Figure 17 Operational semantics: Embedding of I/O operations.

P(t) =M[(M′[IOtoSTM e],Wi, Ri, i,m, f)]

e 6= atomic m′ H, {t 7→ e},− αt

=⇒ H, {t 7→ e′},−

H,P, t
αt
i=⇒ H,P{t 7→ M[(M′[IOtoSTM e′],Wi, Ri, i,m, f)]}, t

IOtoSTM

P(t) =M[(M′[IOtoSTM e],Wi, Ri, i,m, f)]

H, {t 7→ e},− αt

=⇒ H, {t 7→ e′; t′ 7→ e′′},−

H,P, t
αt
i=⇒ H,P{t 7→ M[(M′[IOtoSTM e′],Wi, Ri, i,m, f)]; t′ 7→ e′′}, t

IOtoSTMSpawn

P(t) =M[(M′[IOtoSTM return e],Wi, Ri, i,m,H)f]

H,P, t
εit=⇒ H,P{t 7→ M[(M′[return e],Wi, Ri, i,m, f)]}, t

IOtoSTMEnd

Figure 18 Operational semantics: Repair operations.

P(t) =M[(M′[inconsistent l],Wi, Ri, i,m
′, f)] Ri(l) = H(l)

H,P, t
εit=⇒ H,P{t 7→ M[(M′[return ff],Wi, Ri, i,m

′, f)]}, t
InconsFalse

P(t) =M[(M′[inconsistent l],Wi, Ri, i,m
′,H)f] Ri(l) 6= H(l)

H,P, t
εit=⇒ H,P{t 7→ M[(M′[return tt],Wi, Ri, i,m

′, f)]}, t
InconsTrue

P(t) =M[(M′[update l e],Wi, Ri, i,m, f)] l ∈ dom(Wi)

H,P, t
εit=⇒ H,P{t 7→ M[(M′[return ()],Wi[l 7→ (e, i)], Ri, i,m, f)]}, t

Update

P(t) =M[(M′[reread l],Wi, Ri, i,m, f)] Ri(l) = (e, j)

H,P, t
εit=⇒ H,P{t 7→ M[(M′[return e],Wi, Ri, i,m, f)]}, t

Reread

35

Figure 19 Operational semantics: Error.

P(t) =M[(M′[inconsistent l],Wi, Ri, i,m
′, f)] l /∈ dom(Ri)

H,P, t
abti=⇒ H,P[t 7→ M[error]],−

InconsErr

P(t) =M[(M′[update l e],Wi, Ri, i,m, f)] l /∈ dom(Wi)

H,P, t
abti=⇒ H,P[t 7→ M[error]],−

UpdateErr

P(t) =M[(M′[reread l],Wi, Ri, i,m, f)] l /∈ dom(Ri)

H,P, t
abti=⇒ H,P[t 7→ M[error]],−

RereadErr

P(t) =M[(M′[IOtoSTM atomic m′],Wi, Ri, i,m, f)]

H,P, t
abti=⇒ H,P[t 7→ M[error]],−

IOtoSTMErr

location has not been read (or written) in the preceding STM phase of the transaction.
Another source for errors is the nesting of transactions within IOtoSTM . As there is no
obvious good semantics for open nested transactions [7], we follow here the semantics
that is specified for Haskell’s STM and dynamically reject the evaluation of atomic m.
Errors abort the enclosing transaction. When they are propagated to the top-level,

they terminate the execution of the associated thread.

Theorem 6.1 (Type soundness). The type system in Figure 11 is sound with respect to
the operational semantics of ΛTWI .

6.3 Semantics of Twilight Transactions

Twilight STM provides not only an enriched interface for programming transactions, it
also allows weakening of isolation semantics of transactions. In database transactions,
it is common to have several levels of isolation. For software transactions, weakening of
the isolation level can have undesirable and unexpected effects.
To aid the programmer in employing relaxed isolation semantics, all twilight transac-

tions adhere to the principle of consistency. Therefore, the operational semantics does
not allow zombie transactions that are doomed to fail, or exhibit all kind of undesired
behavior due to violated invariants in inconsistent memory snapshots.

Lemma 6.1 (Consistency). A twilight transaction always operates on a consistent mem-
ory snapshot.

Proof of 6.1: The consistency of the transaction’s memory snapshot can only be
violated by reading variables that were updated on the global heap since the begin of

36

the transaction. We therefore have to consider all rules that operate on the global heap.
They are easy to identify as they emit read and commit effects.
Case distinction on rules accessing the global heap.

• Case Atomic: When starting the transaction, a copy of the global heap is obtained.
This operation is atomic and cannot be interleaved by modifications of the heap.

• Case Read: The rule Read checks upon each first access to a reference if it is con-
sistent with the variables that are have been read so far. Therefore, each reference
is compared to its counterpart in the copy of the heap that has been acquired when
starting the execution of the transaction. Only if the current heap contains the
same value as the heap copy (i.e., the value has not changed), the read operation
is successfully performed.

• Case ReloadBad: The reload of the read set is performed in an atomic operation
that cannot be interleaved with any update operation. Both the local copy of the
heap and the read set are updated with the current values of the references.

• Case Commit: All update operations that are issued by a transaction get published
to the global heap when commit via Commit. As the commit is performed in one
indivisible operation, the heap’s consistency is not violated, and no inconsistent
state can be observed by another transaction.

End case distinction on rules accessing the global heap.

Starting from a program which employs standard atomic blocks, how does adding
a twilight zone influence the program’s semantics? Given the guarantee of consistent
memory snapshots, the programmer can specify the desired isolation semantics for each
program in ΛTWI individually, and obtain stronger semantics for a program. In the next
sections, we show how operations in the twilight zone can define the isolation level of
opacity and snapshot isolation by transforming STM monads from ΛSTM in ΛTWI .

6.4 Opacity in ΛTWI

Implementing opacity in TwilightSTM is straightforward by transforming the code stat-
ically with J·Ko. The transformation extends the atomic blocks with an (empty) twilight
zone which simply returns the result of evaluating the STM monad in the block. All
other expressions are not changed.

37

JxKo = x

JttKo = tt

JffKo = ff

J()Ko = ()

Jλx.eKo = λx.JeKo
Je1 e2Ko = Je1Ko Je2Ko

Jif e1 e2 e3Ko = if Je1Ko Je2KoJe3Ko
Jreturn eKo = return JeKo
Je1 >>= e2Ko = Je1Ko >>= Je2Ko
Jspawn eKo = spawn JeKo

Jnewref eKo = newref JeKo
Jreadref eKo = readref JeKo

J writeref e1 e2Ko = writeref Je1Ko Je2Ko
Jatomic mKo = atomic (JmKo >>=>> λx.λy.return y)

Theorem 6.2 (Opacity for Twilight transactions). The execution trace of a program m
in ΛSTM is equivalent in effects to a trace of the transformed program JmKo in ΛTWI .

Proof of 6.2: The proof is done by induction on evaluation steps.
The rules IO-Monad, Spawn, Atomic, STM-Monad, Alloc, Write, Read, ReadWSet,

and ReadRSet in ΛSTM have an equal evaluation rule with the same name in ΛTWI

which is taken when evaluating expressions in the IO and STM monad. The rules in
ΛTWI merely extend the system and transaction state with twilight flags. In all rules
that define evaluation outside the TWI monad are the flags not set.
The scheduling for threads in ΛSTM can be simulated in ΛTWI as the transaction

which executes a twilight zone is running solo. It cannot be interleaved with evaluation
steps from other threads.
The only differences arise when performing the commit operation in ΛSTM and its

equivalent in ΛTWI , namely the twilight bind and the following evaluation of the twilight
zone.
We now consider the state of the system in ΛSTM where a thread has evaluated an

atomic block to the transaction tuple (return e,Wi, Ri, i,m
′,H′), and the scheduling

chose this thread for the next step.
Case distinction on the applicable rules.

• Case Commit: The rule requires that check(Ri,H) = ok. It then yields in the
execution trace the following step:

H,P{t 7→ M[(return e,Wi, Ri, i,m
′,H′)]}

cot
i(l̄)=⇒ H′′,P{t 7→ M[return e]}

38

where H′′ = H[Wi] and l̄ = dom(Wi).

• Case Rollback: If the check failed (i.e. check(Ri,H) = bad), or a non-deterministic
choice requires the transaction to abort, the execution trace continues with a roll-
back:

H,P{t 7→ M[(return e,Wi, Ri, i,m
′,H′)]}

abti=⇒ H,P{t 7→ M[atomic m′]}

End case distinction on the applicable rules.
Now, consider the rules that are applicable in ΛTWI when evaluating the corresponding

expression
(return e >>=>> λx.λy.return y,Wi, Ri, i,m

′,H′)
.
Case distinction on the applicable rules.

• Case TwiOk: The rule requires that check(Ri,H) = ok. The evaluation then
proceeds with these steps:

H,P{t 7→ M[(return e >>=>> λx.λy.return y,Wi, Ri, i,m
′,H′)]},−

εit=⇒ H,P{t 7→ M[((λx.λy.return y) tt e,Wi, Ri, i,m
′, ok)]}, t

εit=⇒ H,P{t 7→ M[((λy.return y) e,Wi, Ri, i,m
′, ok)]}, t

εit=⇒ H,P{t 7→ M[(return e,Wi, Ri, i,m
′, ok)]}, t

cot
i(l̄)=⇒ H′,P{t 7→ M[return e]},−

with H′ = H[Wi] and l̄ = dom(Wi)

• Case TwiBad: The rule requires that check(Ri,H) = bad. Hence, at commit the
transaction failed verification because the empty twilight zone does not perform
any repair or ignoring of inconsistencies.

H,P{t 7→ M[(return e >>=>> λx.λy.return y,Wi, Ri, i,m
′,H′)]},−

εit=⇒ H,P{t 7→ M[((λx.λy.return y) ff e,Wi, Ri, i,m
′, bad)]}, t

εit=⇒ H,P{t 7→ M[((λy.return y) e,Wi, Ri, i,m
′, bad)]}, t

εit=⇒ H,P{t 7→ M[(return e,Wi, Ri, i,m
′, bad)]}, t

abti=⇒ H,P{t 7→ M[atomic m′]},−

• Case Rollback: As in ΛSTM , the transaction aborts and restarts.

H,P{t 7→ M[(return e >>=>> λx.λy.return y,Wi, Ri, i,m
′,H′)]},−

abti=⇒ H,P{t 7→ M[atomic m′]},−

39

Figure 20 Snapshot operations.
Syntax:

e ∈ Exp ::= · · · | wsetCons

Type rules:

Σ|Γ ` wsetCons : TWI ()
T-WSetCons

Operational semantics:

P(t) =M[(M′[wsetCons],Wi, Ri, i,m
′, f)] check(Ri,Wi,H) = ok

H,P, t
εit=⇒ H,P{t 7→ M[(M′[return tt],Wi, Ri, i,m

′, f)]}, t
WSetCons

P(t) =M[(M′[wsetCons],Wi, Ri, i,m
′, f)] check(Ri,Wi,H) = bad

H,P, t
εit=⇒ H,P{t 7→ M[(M′[return ff],Wi, Ri, i,m

′, f)]}, t
WSetIncons

End case distinction on the applicable rules.
Each execution trace in ΛSTM has an equivalent counterpart in ΛTWI : if the transac-

tion commits successfully in ΛSTM , there is an equivalent execution trace in ΛTWI which
commits and results in the same final global state. In the same way, an abort in ΛSTM
can be simulated by an abort in ΛTWI .
For each of these execution traces, the effect traces are equivalent in effects, as the

effect traces in ΛTWI contain only additional empty effects.

6.5 Snapshot isolation in ΛTWI

To implement snapshot isolation, transactions need to operate on a consistent memory
snapshot. Further, as explained in Section 5, the entries in the write set must be checked
for intermediate updates between the begin of the transaction and its commit.
By Lemma 6.1, the operational semantics of ΛTWI exacts memory consistency. There-

fore, the twilight code just needs to specify operations that obviate lost updates.
To simplify the transformation in the formal calculus, we enlarge the formal language

ΛTWI with a new primitive, wsetCons. The operation wsetCons is testing for incon-
sistencies in the write set. In an implementation of TwilightSTM, this operation can
easily be provided as a primitive. Alternatively, all references to the variables that are
modified can be dynamically tagged, and tested individually for inconsistencies with
inconsistent .

We can define a transformation from ΛSI to ΛTWI which preserves the operational
semantics by yielding traces that are equivalent in effects. As with J·Ko, only the atomic

40

blocks are transformed:

Jatomic mKs = atomic JmKs >>=>> λx.λy.wsetCons>>=

λb.if b (ignoreUpdates>>= λz.return y) (retry))

All other expressions are transformed recursively, analogously to J·Ko.

Theorem 6.3 (Snapshot Isolation for Twilight transactions). The execution trace of a
program m in ΛSI is equivalent in effects to a trace of the transformed program JmKs in
ΛTWI .

Proof of 6.3: As in the proof of 6.2, all rules but the commit rule in ΛSI have an
equivalent counterpart in ΛTWI .
We again consider the possible execution steps at commit time in both formalizations

and show that they yield equivalent results.
Consider the state of the system in ΛSI where a thread has evaluated an atomic block

to the transaction tuple (return e,Wi, Ri, i,m
′,H′), and the scheduling chose this thread

for the next step.
Case distinction on the applicable rules.

• Case Commit: The rule requires that check(Ri,Wi,H) = ok. It then yields in the
execution trace the following step:

H,P{t 7→ M[(return e,Wi, Ri, i,m
′,H′)]}

cot
i(l̄)=⇒ H′′,P{t 7→ M[return e]}

where H′′ = H[Wi] and l̄ = dom(Wi).

• Case Rollback: If the check failed (i.e. check(Ri,Wi,H) = bad), or a non-
deterministic choice requires the transaction to abort, the execution trace is con-
tinued with a rollback:

H,P{t 7→ M[(return e,Wi, Ri, i,m
′,H′)]}

abti=⇒ H,P{t 7→ M[atomic m′]}

End case distinction on the applicable rules.
As before, we distinguish between the rules that are applicable in ΛTWI when evalu-

ating the corresponding transformed expression

m = return e >>=>> λx.λy.wsetCons>>=

λb.if b (ignoreUpdates>>= λz.return y) (retry)

Case distinction on the applicable rules.

41

• Case TwiOk: The rule requires that check(Ri,H) = ok. The evaluation then
proceeds with these steps:

H,P{t 7→ M[(m,Wi, Ri, i,m
′,H′)]},−

εit=⇒ H,P{t 7→ M[((λx.λy.wsetCons>>= . . .) tt e,Wi, Ri, i,m
′, ok)]}, t

εit=⇒ H,P{t 7→ M[((λy.wsetCons>>= . . .) e,Wi, Ri, i,m
′, ok)]}, t

εit=⇒ H,P{t 7→ M[(wsetCons>>= λb. . . . ,Wi, Ri, i,m
′, ok)]}, t

As check(Ri,H) implies check(Ri,Wi,H), the execution continues with the rule
WSetCons.

εit=⇒ H,P{t 7→ M[(return tt>>= λb. . . . ,Wi, Ri, i,m
′, ok)]}, t

εit=⇒ H,P{t 7→ M[((λb.if b . . .) tt,Wi, Ri, i,m
′, ok)]}, t

εit=⇒ H,P{t 7→ M[(if tt ,Wi, Ri, i,m
′, ok)]}, t

εit=⇒ H,P{t 7→ M[(ignoreUpdates>>= . . . ,Wi, Ri, i,m
′, ok)]}, t

εit=⇒ H,P{t 7→ M[(return ()>>= . . . ,Wi, Ri, i,m
′, ok)]}, t

εit=⇒ H,P{t 7→ M[((λz.return e) (),Wi, Ri, i,m
′, ok)]}, t

εit=⇒ H,P{t 7→ M[(return e,Wi, Ri, i,m
′, ok)]}, t

cot
i(l̄)=⇒ H′,P{t 7→ M[return e]},−

• Case TwiBad: The rule requires that check(Ri,H) = bad.

H,P{t 7→ M[(m,Wi, Ri, i,m
′,H′)]},−

εit=⇒ H,P{t 7→ M[((λx.λy.wsetCons>>= . . .) ff e,Wi, Ri, i,m
′, bad)]}, t

εit=⇒ H,P{t 7→ M[((λy.wsetCons>>= . . .) e,Wi, Ri, i,m
′, bad)]}, t

εit=⇒ H,P{t 7→ M[(wsetCons>>= λb. . . . ,Wi, Ri, i,m
′, bad)]}, t

The two possible consistency states for the write set yield these cases:

Case distinction on check(Ri,Wi,H).

42

– Case check(Ri,Wi,H) = ok: The rule WSetCons is the only applicable rule.

H,P{t 7→ M[(wsetCons>>= λb. . . . ,Wi, Ri, i,m
′, bad)]}, t

εit=⇒ H,P{t 7→ M[(return tt>>= λb. . . . ,Wi, Ri, i,m
′, bad)]}, t

εit=⇒ H,P{t 7→ M[((λb.if b . . .) tt,Wi, Ri, i,m
′, bad)]}, t

εit=⇒ H,P{t 7→ M[(if tt ,Wi, Ri, i,m
′, bad)]}, t

εit=⇒ H,P{t 7→ M[(ignoreUpdates>>= . . . ,Wi, Ri, i,m
′, bad)]}, t

εit=⇒ H,P{t 7→ M[(return ()>>= . . . ,Wi, Ri, i,m
′, ok)]}, t

εit=⇒ H,P{t 7→ M[((λz.return e) (),Wi, Ri, i,m
′, ok)]}, t

εit=⇒ H,P{t 7→ M[(return e,Wi, Ri, i,m
′, ok)]}, t

cot
i(l̄)=⇒ H′,P{t 7→ M[return e]},−

– Case check(Ri,Wi,H) = bad: The rule WSetIncons is the only applicable
rule.

H,P{t 7→ M[(wsetCons>>= λb. . . . ,Wi, Ri, i,m
′, bad)]}, t

εit=⇒ H,P{t 7→ M[(return ff>>= λb. . . . ,Wi, Ri, i,m
′, bad)]}, t

εit=⇒ H,P{t 7→ M[((λb.if b . . .) ff,Wi, Ri, i,m
′, bad)]}, t

εit=⇒ H,P{t 7→ M[(if ff ,Wi, Ri, i,m
′, bad)]}, t

εit=⇒ H,P{t 7→ M[(retry ,Wi, Ri, i,m
′, bad)]}, t

abti=⇒ H,P{t 7→ M[atomic m′]},−

End case distinction on check(Ri,Wi,H).

• Case Rollback: As in ΛSTM , the transaction is aborted and restarted.

H,P{t 7→ M[(m,Wi, Ri, i,m
′,H′)]},−

abti=⇒ H,P{t 7→ M[atomic m′]},−

End case distinction on the applicable rules.
Again, no interleavings are possible when executing the twilight zone, so the traces

for the execution in ΛTWI and ΛSI have an equivalent counterpart in the other formal
language which yields effect traces that are equal in effects.

43

6.6 Irrevocability in ΛTWI

A major restriction of many transactional systems is the lack of support for executing
irrevocable actions whose effects cannot in general be rolled back. These are in general
I/O operations, such as system calls, that are to be executed inside transactions. It is
possible to embed such calls into transactions in ΛTWI . The following lemma illustrates
how this can be done.

Lemma 6.2 (Irrevocability). Let

T = m1 >>= λx.ignoreUpdates>>= λy.IOtoSTM m2 >>= λz.m3

be a well-typed transaction in ΛTWI . Then m2 is evaluated at most once in each run of
the transaction unless m3 is contains an explicit call to retry .

Proof of 6.2: A transaction is restarted when it either contains a call to retry , or
it applies Rollback during execution of the transactional body, or when its evaluation
of the twilight zone ends in applying the rule CommitFail.
In the first case, by the assumption made in the lemma, only m1 may contain a retry

operator. Similarly, in the second case, the rule Rollback can only be applied when
evaluating m1. In both cases, the monadic expression m2 is not executed before the
restart is performed.
Consider the following cases upon evaluating ignoreUpdates:

Case distinction on entering the twilight zone.

• Case TwiOk: The state flag is set to ok. Then, the state is unchanged in ignoreUpdates.

• Case TwiBad: The state flag is set to bad. In IgnoreUpdates, the flag is finally
set to ok.

End case distinction on entering the twilight zone.
There is no evaluation rule which switches the transaction’s flag to the bad state.

Hence, if no error is thrown or no call to retry occurs in m3, the rule Commit is
applied, and the transaction commits successfully. Hence, the monadic expression m2 is
only evaluated once.

Besides ignoreUpdates, also the reload operator allows a transaction to switch into
an “irrevocable mode” while yielding an updated snapshot of the read set. These opera-
tions also interact in such a way that calling ignoreUpdates before reload prevents the
transaction from obtaining the current, possibly updated values. A programmer should
therefore take care that each execution path in the twilight zone has preferably only one
of these operations. The implementation of Twilight STM in Haskell ensures this with
its parametrized monads and a special Safe monad with irrevocable semantics.

44

6.7 The power of Twilight operations

In the last sections we have shown how different semantics can be implemented for a trans-
action by employing twilight operations such as ignoreUpdates, reload, or wsetCons.
The programmer should be aware that these operations can also be (mis-) used to

implement semantics that are usually undesirable. For example, the transaction

atomic {readrefx >>= λv. writerefx (v + 1)>>=>> λz.ignoreUpdates}

can cause lost updates if another transaction commits to x concurrently.
Though, to simplify the reasoning about the interleaving and possible interaction of

transactions, ΛTWI provides only consistent memory snapshots for each transaction.
This means that neither read skews nor non-repeatable reads can be observed. The
interleaving can partially be observed by inspecting the read set’s state and updated
values, and the twilight zone may then react on these observations as the programmer
specified.

References

[1] Martín Abadi, Andrew Birrell, Tim Harris, and Michael Isard. Semantics of trans-
actional memory and automatic mutual exclusion. In POPL ’08: Proceedings of
the 35th annual ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 63–74, San Francisco, California, USA, 2008. ACM.

[2] Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil, and Patrick
O’Neil. A critique of ANSI SQL isolation levels. In SIGMOD ’95: Proceedings of the
1995 ACM SIGMOD international conference on Management of data, pages 1–10,
San Jose, California, United States, 1995. ACM.

[3] David Dice, Ori Shalev, and Nir Shavit. Transactional locking II. In Proceedings
of the 20th International Symposium on Distributed Computing, DISC 2006, LNCS
4167, pages 194–208. Springer, 2006.

[4] Rachid Guerraoui and Michal Kapalka. On the correctness of transactional memory.
In Siddhartha Chatterjee and Michael L. Scott, editors, PPOPP, pages 175–184.
ACM, 2008.

[5] Tim Harris, Simon Marlow, Simon Peyton Jones, and Maurice Herlihy. Composable
memory transactions. In Sixteenth ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pages 48–60, Chicago, IL, USA, June 2005. ACM
Press.

[6] Katherine F. Moore and Dan Grossman. High-level small-step operational semantics
for transactions. In Phil Wadler, editor, Proc. 35th ACM Symp. POPL, pages 51–62,
San Francisco, California, USA, January 2008. ACM.

45

[7] J. Eliot B. Moss. Open nested transactions: Semantics and support. Poster presented
at Workshop on Memory Performance Issues (WMPI 2006), Austin, TX, February
2006.

[8] Gerhard Weikum and Gottfried Vossen. Transactional information systems: theory,
algorithms, and the practice of concurrency control and recovery. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2001.

[9] Andrew Wright and Matthias Felleisen. A syntactic approach to type soundness.
Information and Computation, 115(1):38–94, 1994.

46

	Introduction
	Execution traces
	Successful commits
	Read conflicts
	Snapshot isolation

	Formalization
	Syntax
	Operational Semantics

	Opacity
	Well-formed effect traces
	Serializing effect traces

	Snapshot Isolation
	Operational semantics
	Snapshot isolation for SI
	Snapshot traces

	Formalization of Twilight
	Syntax
	Operational Semantics
	Semantics of Twilight Transactions
	Opacity in TWI
	Snapshot isolation in TWI
	Irrevocability in TWI
	The power of Twilight operations

