|
Introduction to Objective Caml

Stefan Wehr

University of Freiburg.

October 30, 2006

Motivation

Simple Expressions and Types
Functions

Simple Pattern Matching
Compound Datatypes

I/O and Compilation
Resources

1/40

Why OCaml?

@ Convenient encoding of tree structures
@ Powerful pattern matching facilities
@ Close correspondence to mathematical notation

2/40

Motivation
Features of OCaml

@ Functional language (functions are first-class values)
@ Strong and statically typed

@ Parametric polymorphism

@ Type inference

@ Recursive, algebraic datatypes (irees, lists, ...)

@ Garbage collection

@ Modul-system

@ (Object-system)

3/40

Applications written in OCaml

@ File sharing: MLdonkey (http://mldonkey.org/)

@ File synchronizer: unison
(http://www.cis.upenn.edu/~bcpierce/unison/)

@ Compilers and interpreters: OCaml, XQuery, XDuce, CDuce
@ Proof assistant: Coq (http://coqg.inria.fr/)

4740

Simple Expressions and Types

The Toplevel Loop

@ Interactive development
@ Evaluation of expressions (calculator)
@ Definitions

$ ocaml
Objective Caml version 3.09.2

39 + 3;;

- : int = 42

let answer = 39 + 3;;
val answer int = 42

#

5/40

Simple Expressions and Types

Basic Types (1)

(0)is

— : unit = ()

@ Singleton type: () is the only element of unit
@ Similar to voidin C or Java
@ Result type of functions with side effects

2 + 5 % 8;;
— : int = 42

@ Signed integers, represented by a machine word minus one bit

@ Common Operators: +,

@ Conversions: string_of_int, int_of_string,
float_of_int

-, %, /, mod

6/40

Simple Expressions and Types

Basic Types (2)

3.1415926536 . 2.0;;
- : float = 6.2831853072

@ |IEEE double-precision floating point, equivalent to C’s double
@ Arithmetic operators end withadot: +. , —., ., /.
@ Conversions: string_of_float, int_of_float

Char.uppercase ’'x’;;
- : char = "X’

@ Latin-1 characters (unicode library: http://camomile.sf.net/)
@ Functions: Char.lowercase, Char.uppercase

@ Conversions: Char . code (character — integer),
Char.chr (integer — character)

7140

Simple Expressions and Types

Basic Types (3)

"Hello " ~ "World\n";;
— : string = "Hello World\n"

@ Strings with Latin-1 encoding
@ Operators: ~ (concatenation), "Hello". [1] (index access)
@ Functions: String.length, String.sub

1 =2 || false;;
- : bool = false
@ Operators: &&, | |, not

@ Comparisons: = (equality), <> (inequality), <, <=, >, >=
These operators work on arbitrary but equal types; for some
types, a runtime exception is raised.

8/40

Simple Expressions and Types Functions

Conditionals and Variables Functions

Conditionals
let square x = X * X ;;
if 1 < 2 then 3 + 7 val square : int -> int = <fun>
else (if "Hello" = "stefan" then 0 else 42);; # square 42; ;
- : int = 10 — : int = 1764
Variables @ Function type: t1 -> t2
@ Variables are names for values @ Function call without parenthesis around argument

@ No assignment!
let average x y = (x +vy) / 2;;

let}{f 559 val average : int -> int -> int = <fun>
val x : int = 4
¥ 38 + x;; # average 21 63;;
- : int = 42 - : int = 42
let v = 3 in 39 + y;;
- : int = 42 . .
by @ Type of multi-argument functions: t1 -> t2 -> ... -> tn
Unbound value y @ Function call: concatenate all arguments to the function
9/40 10/40

Functions Functions

Nested Functions Recursive Functions

@ A recursive function calls itself inside its own body.
@ Defined as ordinary functions, but uses 1let rec instead of

@ Functions may be arbitrarily nested. let.
@ Example: function that computes x’
let sum_of 3 x y z =
let sum a b = a + Db # let rec power i x =
in sum x (sum y z);; if i = 0 then

val sum_of 3 : int -> int —-> int -> int = <fun> 1.0

sum_of 3 1 2 3;; alae

- ¢ int =6 x *x. (power (i — 1) x);;

’ val power : int -> float -> float = <fun>

power 5 2.0;;
- : float = 32.

11/40 12/40

Functions

Mutually Recursive Functions

@ Connect several 1et rec definitions with the keyword and.

let rec £ 1 j =
if i = 0 then
J
else g (j — 1)
and g j =
if j mod 3 = 0 then
J
else £ (3 — 1) J;;
val £ int -> int -> int = <fun>
val g int -> int = <fun>
g 5i;
- : int = 3

13/40

Functions

Polymorphic Functions

@ Work on values of arbitrary type
@ Arbitrary types represented as type variables " a, ' b, ...

let id x = X;;
val id "a => 'a = <fun>

14/ 40

Functions

The Value Restriction

@ Only values can be polymorphic.
@ Function applications are not values.

@ The value restriction is needed to ensure soundness in the
presence of side-effects.

let id’ = id id;;

val id’ ' a —> ' _a = <fun>
1d’ 5;;

- : int = 5

id’;;

- : int -> int = <fun>

15/40

Functions

Higher-order functions

@ Functions are ordinary values.

@ A higher-order function takes another function as an argument
or returns it as the result.

@ Partial application of a function (with less arguments than
expected) returns another function

let add x y = x + y;;

val add : int -> int -> int = <fun>
let inc = add 1;;
val inc : int -> int = <fun>

let compose £ g x = £ (g x);;

(a —> 'b) —> ('c —> 'a)
compose inc inc 0;;

- : int = 2

val compose : > ’'c —> b = <fun

16/40

Functions

Function Types in Detalil

@ The arrow associates to the right: The type
int -> int -> int isthe same as
int -> (int -> int)

@ addtakes an int and returns a function of type
int -> int

@ Function application associates to the left: The expression
add 1 2isthesameas (add 1) 2

@ The sub-expression (add 1) hastype int —-> int sowe
can apply it to the integer 2

let inc = add 1;;

val inc int -> int = <fun>
inc 2;;
- : int = 3

17/40

Functions

Anonymous Functions

@ The keyword fun constructs an anonymous function.

fun x —> x + 1;;
-> int = <fun>
(fun x —> x + 1) 0;;

- : int
compose inc
- : int = 2

@ Definitions such as 1let add x y = x + y arejust
syntactic sugar. Here is the expanded definition:

let add = fun x y —> x + y;;
val add int —-> int —-> int = <fun>

18/40

Simple Pattern Matching

Simple Pattern Matching

@ Powerful feature
@ Defines expressions by case analysis
@ Simple pattern: constant or variable
Constant matches only the constant value given
Variable matches all values and binds the value to the
variable

let rec fib i =
match i with

0 ->0

[1 > 1

| J —> fib (3 - 2) + fib (J - 1);;
val fib : int -> int = <fun>
fib 1;;
- : int = 1
fib 6;;
- : int = 8

19/40

Simple Pattern Matching

Matching Order

@ Cases of a match expression are tried in sequence, from top
to bottom.

@ The body of the first matching case is evaluated.

@ The following definition of £ib is wrong (£ ib loops forever
when called).

let rec fib i =
match i with

j —> fib (j - 2) + fib (j - 1)
| 0 -> 0
| 1 => 1;;
Warning U: this match case is unused.
Warning U: this match case is unused.
val fib : int -> int = <fun>
fib 5;;

Stack overflow during evaluation (looping recursion?).

20/40

Simple Pattern Matching

Incomplete Matches

OCaml issues a warning if the cases of a match do not cover all
possible values:

let rec fib i =
match i with
0 ->0
1 > 1;;
Warning P: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:
2
val fib
fib 2;;
Exception: Match_failure

int -> int = <fun>

(9T, 55, 2) .

21/40

Simple Pattern Matching

Functions with Matching

@ Common situation: pattern matching on the last argument of a
function

@ Use the function keyword instead of an explicit mat ch
expression

let rec mult x = function
0O -> 0
| v => x + mult x
val mult int -> int
mult 1 2;;
- : int = 2
mult 3 2;;
- : int = 6

(y — 1);;

-> int = <fun>

22/40

Simple Pattern Matching

Matching Characters

let is_uppercase = function
IAI ‘ IBI | ICI ‘ IDI | IEI ‘ IFI | IGI
I IHI ‘ III I IJI ‘ IKI I ILI ‘ IMI I INI
| IOI ‘ IPI | IQI ‘ IRI | ISI ‘ ITI | IUI
| IVI ‘ IWI | IXI ‘ IYI | 4 ZI _> true
| ¢ -> false;;
val is_uppercase char -> bool = <fun>

is_uppercase 'A’;;
- : bool = true

is_uppercase ’'a’;;
- : bool = false

With pattern ranges and wildcard pattern:

let is_uppercase = function
"AT .. "Z'" —=> true
[-> false;;
val is_uppercase char —> bool = <fun>

23/40

Simple Pattern Matching

Matching Strings

let hall of fame = function
"Adel" -> "Sellimi"
| "Rodolfo" —-> "Cardoso"
| "Altin" -> "Rraklli"
| "Harry" -> "Decheiver"
| "Ali" —> "GlUnes"
| "Uwe" -> "Wassmer"
| => WPW

24/40

Simple Pattern Matching

Patterns Everywhere

@ Patterns are used in all binding mechanisms:
let pattern = expression
let name pattern ... pattern = expression
fun pattern —> expression

@ Very useful with tuples and records (introduced next)

25/40

Compound Datatypes

@ Fixed-length sequences of values with arbitrary types
@ Construction:
let p = ("2-times", (fun x —> x * 2), 2 = 42);;
val p : string * (int —-> int) * bool
("2-times", <fun>, false)

@ Elimination by pattern matching:

let (a, b, c) = p;;

val a : string = "2-times"

val b : int -> int = <fun>

val ¢ : bool = true

match p with (a, _, _) —-> a;;
- : string = "2-times"

@ Pairs can be eliminated with £st and snd:
fst (1,2);;

- : int =1
snd (1,2);;
- : int = 2

26/40

Compound Datatypes

@ Variable-length sequences of values with the same type
@ Two constructors:
Nil [1,the empty list
Cons ej::e», creates a new list with first element ey
and rest of the list e

@ Shorthand notation:
[e1;...;en] isidentical to e1:: (ex::...:: (enii [])-.+)
@ t list isthe type of lists with elements of type t

let 1 = "Hello" "World" :: [1;;

val 1 : string list = ["Hello"; "World"]
let 17 = [1;2;3];;

val 1’ : int list = [1; 2; 3]

27 /40

Compound Datatypes

Lists and Pattern Matching

Lists are eliminated using pattern matching:

function

let rec inc_list
[] > [1
el g8 ab == (5L & b)) inc_list 1;;
val inc_list : int list —> int list = <fun>
inc_list [1; 2; 3; 41;;
- : int list = [2; 3; 4; 5]

let rec sum _list = function
[-> 0
| 1 :: 1 —> 1 + sum_list 1;;

int list —-> int = <fun>
4];;

val sum_list
sum_list [1; 2; 3;
- : int = 10

28/40

Compound Datatypes

The Map Function

@ The function List .map applies a function to every element in

a list
@ List.map ("a —> 'b) -> "a list —> ’'b list

@ We can define the function inc_11ist in terms of map

because
inc_list [il; ...; in] =[il+4+1; ...; in+1].
let inc_list = List.map (fun i -> i+1);;

val inc_list int list —-> int list = <fun>
inc_list [1; 2; 3; 41;;
- : int list = [2; 3; 4; 5]

29/40

Compound Datatypes

The Fold Function

@ The function List.fold_right “folds” a function over a list
@ List.fold_right
("a -> 'b -> 'b) -> 'a list -> 'b -> ’b
@ We can define the function sum_11st in terms of map
because sum_list [il; ...; in]l =11 + ... + in.

let sum_list 1 = List.fold_right (+) 1 0;;
val sum_list int list -> int = <fun>

sum_list [1; 2; 3; 41;;

- : int = 10

30/40

Compound Datatypes

Algebraic datatypes

@ They represent the union of several different types.
@ Every alternative has an unique, explicit name.

@ General syntax:
type typename =
Namey of type;
| Names of type,

| Name, of type,

@ The names Name; are called constructors; they must start
with a capital letter.

@ The part of type; is optional.

31/40

Compound Datatypes

type number =
Zero
| Integer of int
| Fraction of (int * int);;
type number = Zero | Integer of int
| Fraction of (int = int)

Zero;;

— : number = Zero

Integer 1;;

— : number = Integer 1

let semi = Fraction (1, 2);;

val semi number = Fraction (1, 2)

32/40

Compound Datatypes Compound Datatypes

Pattern Matching with Algebraic Datatypes Binary Trees
type 'a tree = Node of (‘a * "a tree * ’"a tree) | Leaf;;
type 'a tree = Node of (“a * "a tree x "a tree) | Leaf
let float of number = function # let rec insert x = function
Leaf -> Node (x, Leaf, Leaf)
Zero | Node (y, 1, r) —>
-> 0.0 if x <y
| Integer 1 then Node (y, insert x 1, r)

else if x > y then Node (y, 1, insert x r)

—> float_of_int i
else Node (y, 1, r);;

| Fraction (i, J)

val insert : 'a -> 'a tree -> 'a tree = <fun>
-> float_of_int i /. float_of_int j;; # let tree = Node (5, Node (1, Leaf, Leaf),
val float_of number : number -> float = <fun> Node (7, Leaf, Leaf));;

val tree : int tree = Node (5, Node (1, Leaf, Leaf),

float_of_ number semi;;
Node (7, Leaf, Leaf))

- : float = 0.5

let tree’ = insert 6 tree;;
val tree’ : int tree =
Node (5, Node (1, Leaf, Leaf),
Node (7, Node (6, Leaf, Leaf), Leaf))

33/40 34/40

Compound Datatypes Compound Datatypes

The Option Type Records

Labeled collections of values with arbitrary types
Record types must be declared

type point = { point_x : int; point_y : int};;
type point = { point_x : int; point_y : int; } J

@ Important builtin type

Label names must be globally unique

Record construction:
let p = { point_x = 5; point_y = 3 };;
val p : point = {point_x = 5; point_y = 3}

@ Used to write partial functions

type "a option = Some of ’a | Nonej;;
type 'a option = Some of "a | None

Field selection:
let move pl p2 =
{ point_x = pl.point_x + p2.point_x;
point_y = pl.point_y + p2.point_y };;
val move : point -> point -> point = <fun>
move p p;;
- : point = {point_x = 10; point_y = 6}

35/40 36/40

1/0 and Compilation

Some functions for doing 1/O:

val print_string
val print_endline
val prerr_string string —-> unit
val prerr_endline string —-> unit
val read_line unit -> string

string -> unit
string —-> unit

val open_out string —-> out_channel
val output_string out_channel -> string -> unit

val open_in
val input_line

string -> in_channel
in_channel -> string

37/40

1/0 and Compilation

Compilation

Files with OCaml source code have the extension .ml
Compiler ocamlc: produces portable bytecode
Compiler ocamlopt: produces fast native code

Compiled program executes definitions in order of their
appearance in the source file(s)

@ Functions in some other source file foo.m1 must be qualified
with the prefix Foo.

@ If file bar .ml uses functions from foo.ml, then bar.ml
must come after foo.ml on the commandline. No cycles are
allowed!

38/40

1/0 and Compilation

Compilation Example

@ File fib.ml:
let fib = ... }

@ Filemain.ml:

let =
let _ = print_string "Input some number: " in
let line = read_line () in
let i = int_of_string line in
let j = Fib.fib i in

print_endline ("Result: " » string_of_int j)

@ Compilation: ocamlc -o fib fib.ml main.ml

@ Produces file £ib:
$./fib 6 J

Input some number: 6
Result: 8

39/40

Resources

Resources

@ OCaml Homepage: http://caml.inria.fr/
@ Language Manual: http:

//caml.inria.fr/pub/docs/manual-ocaml/index.html

@ The standard library:
http://caml.inria.fr/pub/docs/manual-ocaml/libref/

@ Jason Hickey: Introduction to the Objective Caml
Programming Language. (The slides are based on this script)
http://files.metaprl.org/doc/ocaml-book.pdf

@ Emmanuel Chailloux, Pascal Manoury and Bruno Pagano:
Developing Applications with Objective Caml
http://caml.inria.fr/pub/docs/oreilly-book/html

/index.html

40/40

