Compiler Construction 2009/2010 SSA—Static Single Assignment Form

Peter Thiemann

March 15, 2010

Outline

- Static Single-Assignment Form
- Converting to SSA Form
- Optimization Algorithms Using SSA
- 4 Dependencies
- 6 Converting Back from SSA Form

Static Single-Assignment Form

- Important data structure: <u>def-use chain</u>
 links definitions and uses to flow-graph nodes
- Improvement: SSA form
 - Intermediate representation
 - Each variable has exactly one (static) definition

Usefulness of SSA Form

- Dataflow analysis becomes simpler
- Optimized space usage for def-use chains
 N uses and M definitions of var: N · M pointers required
- Uses and defs are related to dominator tree
- Unrelated uses of the same variable are made different

SSA Example

$$\begin{array}{rcl}
a & \leftarrow & x + y \\
b & \leftarrow & a - 1 \\
a & \leftarrow & y + b \\
b & \leftarrow & x \cdot 4 \\
a & \leftarrow & a + b
\end{array}$$

straight-line program

$$a_1 \leftarrow x + y$$

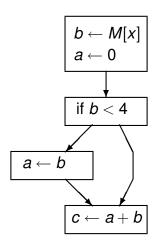
$$b_1 \leftarrow a_1 - 1$$

$$a_2 \leftarrow y + b_1$$

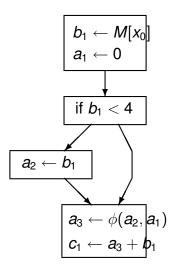
$$b_2 \leftarrow x \cdot 4$$

$$a_3 \leftarrow a_2 + b_2$$

program in SSA form

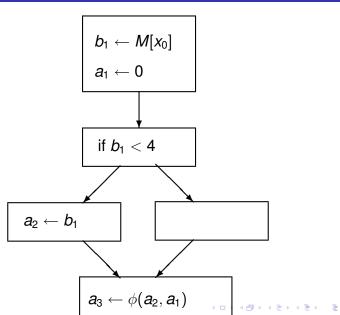


... transformed to SSA form

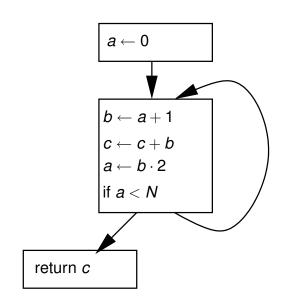


ϕ -Functions

.. to edge-split SSA form

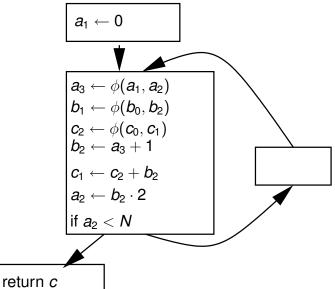


ϕ -Functions Program with a loop



ϕ -Functions

.. transformed to edge-split SSA form



Features of SSA Form

- SSA renames variables
- SSA introduces φ-functions
 - not "real" functions, just notation
 - implemented by move instruction on incoming edges
 - can often be ignored by optimization

Outline

- Static Single-Assignment Form
- 2 Converting to SSA Form
- Optimization Algorithms Using SSA
- 4 Dependencies
- 5 Converting Back from SSA Form

Converting to SSA Form

- Program → CFG
- Insert ϕ -functions could add a ϕ -function for each variable at each join point
- Rename variables
- Perform edge splitting

Inserting ϕ -functions The Path-Convergence Criterion

Add a ϕ -function for varible a at node z of the flow graph iff

- There is a block x containing a definition of a.
- 2 There is a block $y \neq x$ containing a definition of a.
- **1** There is a non-empty path π_{xz} from x to z.
- **1** There is a non-empty path π_{vz} from y to z.
- **5** Paths π_{xz} and π_{yz} have only z in common.
- Node z does not appear in both π_{xz} and π_{yz} prior to the end, but it may appear before in one of them.

Iterated Path-Convergence Criterion

Remarks

- Start node contains an implicit definition of each variable
- A ϕ -function counts as a definition
- Compute by fixpoint iteration

Algorithm

while there are nodes x, y, z satisfying conditions 1–5 and z does not contain a ϕ -function for a do insert $a \leftarrow \phi(a_1, \dots, a_p)$ where p = number of predecessors of z

Dominance Property of SSA Form

In SSA, each definition dominates all its uses

- If x is the ith argument of a ϕ -function in block n, then the definition of x dominates the ith predecessor of node n.
- ② If x is used in a non- ϕ statement in block n, then the definition of x dominates node n.

The Dominance Frontier

A more efficient algorithm for placing ϕ -functions

Conventions

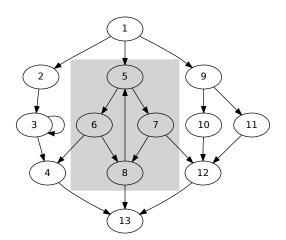
- x strictly dominates y if x dominates y and $x \neq y$.
- Successor and predecessor for graph edges.
- <u>Parent</u> and <u>child</u> for dominance tree edges, <u>ancestor</u> for paths.
- The <u>dominance frontier</u> of a node x is the set of all nodes w such that x dominates a predecessor of w, but does not strictly dominate w.

Dominance Frontier Criterion

If node x contains a definition fo some variable a, then any node z in the dominance frontier of x needs a ϕ -function for a.

Dominance Frontier

Consider node 5



Iterated Dominance Frontier

• The dominance frontier criterion must be iterated: each inserted ϕ -function counts as a new definition

Theorem

The iterated dominance frontier criterion and the iterated path-convergence criterion specify the same set of nodes for placing ϕ -functions.

Computing the Dominance Frontier

- DF[n], the dominance frontier of n, can be computed in one pass through the dominator tree.
- $DF_{local}[n]$ successors of n not strictly dominated by n. $DF_{local}[n] = \{y \in succ[n] \mid idom(y) \neq n\}$
- $DF_{up}[n, c]$ nodes in the dominance frontier of c that are not strictly dominated by c's immediate dominator n. $DF_{up}[n, c] = \{y \in DF[c] \mid idom(y) \neq n\}$
- It holds that

$$DF[n] = DF_{local}[n] \cup \bigcup_{c \in children[n]} DF_{up}[n, c]$$

Computing the Dominance Frontier

```
\begin{array}{l} \mathsf{computeDF}[\mathsf{n}] = \\ \mathcal{S} \leftarrow \emptyset \\ \textbf{for} \ \ \mathsf{each} \ \mathsf{node} \ y \in \mathit{succ}[n] \ \textbf{do} \ \{\mathsf{compute} \ \mathit{DF}_{local}(n)\} \\ & \ \mathsf{if} \ \mathit{idom}(y) \neq n \ \textbf{then} \\ & \ \mathcal{S} \leftarrow \mathcal{S} \cup \{y\} \\ \textbf{for} \ \ \mathsf{each} \ \mathsf{child} \ c \ \mathsf{with} \ \mathit{idom}(c) = n \ \textbf{do} \ \{\mathsf{compute} \ \mathit{DF}_{up}(n,c)\} \\ & \ \mathsf{computeDF}[c] \\ & \ \mathsf{for} \ \ \mathsf{each} \ w \in \mathit{DF}[c] \ \textbf{do} \\ & \ \mathsf{if} \ n = w \ \mathsf{or} \ n \ \mathsf{does} \ \mathsf{not} \ \mathsf{dominate} \ w \ \textbf{then} \\ & \ \mathcal{S} \leftarrow \mathcal{S} \cup \{w\} \end{array}
```

Inserting ϕ -Functions

```
Place-\phi-Functions =
   for each node n do
      for each variable a \in A_{oria}[n] do
         defsites[a] \leftarrow defsites[a] \cup \{n\}
   for each variable a do
      W \leftarrow defsites[a]
      while W \neq \emptyset do
         remove some node n from W
         for each y \in DF[n] do
            if a \notin A_{\phi}[y] then
               insert statement a \leftarrow \phi(a, ..., a) at top of block y,
               where the number of arguments is |pred[y]|
               A_{\phi}[y] \leftarrow A_{\phi}[y] \cup \{a\}
               if a \notin A_{orig}[y] then
                  W \leftarrow W \cup \{y\}
```

Renaming Variables

- Top-down traversal of the dominator tree
- Rename the different definitions (including ϕ) of variable a to $a_1, a_2, ...$
- Rename each use of a in a statement to the closest definition of an a that is above a in the dominator tree
- For ϕ -functions look ahead in the successor nodes

Edge Splitting

- Some analyses and transformations are simpler if no control flow edge leads from a node with multiple successors to on with multiple predecessors.
- Edge splitting achieves the <u>unique successor or</u> predecessor property.
- If there is a control-flow edge $a \to b$ where |succ[a]| > 1 and |pred[b]| > 1, then create new, empty node z and replace edge $a \to b$ by $a \to z$ and $z \to b$.

Efficient Computation of the Dominator Tree

- There are efficient, almost linear-time algorithms for computing the dominator tree [Lengauer, Tarjan 1979] [Harel 1985] [Buchsbaum 1998] [Alstrup 1999].
- But there are easy variations of the naive algorithm that perform better in practice. [Cooper, Harvey, Kennedy 2006]

Outline

- Static Single-Assignment Form
- Converting to SSA Form
- Optimization Algorithms Using SSA
- 4 Dependencies
- Converting Back from SSA Form

Optimization Algorithm Using SSA

Representation of SSA Form

Statement assignment, ϕ -function, fetch, store, branch. Fields: containing block, previous/next statement in block, variables defined, variables used Variable definition site, list of use sites

Block list of statements, ordered list of predecessors, one or more successors

SSA: Dead-Code Elimination

SSA Liveness

A variable definition is live iff its list of uses is non-empty.

Algorithm

```
W \leftarrow list of all variables in SSA program
while W \neq \emptyset do
  remove some variable v from W
  if v's list of uses is empty then
     let S be v's defining statement
     if S has no side effects other than the assignment to v
    then
       delete S from program
       for each variable x_i used by S do
         delete S from list of uses of x_i {in constant time}
          W \leftarrow W \cup \{x_i\}
```

SSA: Simple Constant Propagation

- If v is defined by v ← c (a constant) then each use of v can be replaced by c.
- The ϕ -function $v \leftarrow \phi(c, \dots, c)$ can be replaced by $v \leftarrow c$

Algorithm

```
W \leftarrow \text{list of all statements in SSA program}
\mathbf{while} \ W \neq \emptyset \ \mathbf{do}
\mathbf{vext{remove some statement } S \ \text{from } W
\mathbf{if} \ S \ \text{is } v \leftarrow \phi(c, \ldots, c) \ \text{for constant } c \ \mathbf{then}
\mathbf{vext{replace } S \ \text{by } v \leftarrow c
\mathbf{if} \ S \ \text{is } v \leftarrow c \ \text{for constant } c \ \mathbf{then}
\mathbf{delete} \ S
\mathbf{for} \ \mathbf{each} \ \mathbf{statement} \ T \ \mathbf{that} \ \mathbf{uses} \ v \ \mathbf{do}
\mathbf{substitute} \ c \ \mathbf{for} \ v \ \mathbf{in} \ T
\mathbf{W} \leftarrow \mathbf{W} \cup \{T\}
```

SSA: Further Linear-Time Transformations

Copy propagation

If some S is $x \leftarrow \phi(y)$ or $x \leftarrow y$, then remove S and substitute y for every use of x.

Constant folding

If S is $v \leftarrow c \oplus d$ where c and d are constants, then compute $e = c \oplus d$ at compile time and replace S by $b \leftarrow e$.

SSA: Further Linear-Time Transformations

Constant conditions

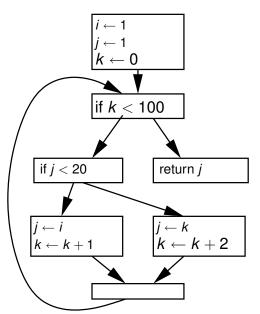
Let **if** $a \sharp b$ **goto** L_1 **else** L_2 be at the end of block L with a and b constants and \sharp a comparison operator.

- Replace the conditional branch by goto L₁ or goto L₂ depending on the compile-time value of a#b
- Delete the control flow edge $L \rightarrow L_2$ (L_1 respectively)
- Adjust the ϕ functions in L_2 (L_1) by removing the argument associated to predecessor L.

Unreachable code

Deleting an edge from a predecessor may cause block L_2 to become unreachable.

- Delete all statements of L_2 , adjusting the use lists of the variables used in these statements.
- Delete block L₂ and the edges to its successors.

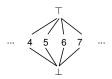


- does not assume that a block can be executed until there is evidence for it
- does not assume a variable is non-constant until there is evidence for it

Data Structures

Constant Propagation Lattice

- $V[v] = \bot$ no assignment to v has been seen (initially)
- V[v] = c an assignment $v \leftarrow c$ (constant) has been seen
- $V[v] = \top$ conflicting assignments have been seen



Block Reachability

- E[B] = false no control transfer to B has been seen (initially)
- E[B] = true a control transfer to B has been seen

Abstract Lattice Operations

Least upper bound operation

$$\begin{array}{rcl}
\bot \sqcup \alpha & = & \alpha \sqcup \bot = \alpha \\
\top \sqcup \alpha & = & \alpha \sqcup \top = \top
\end{array}$$

$$a \sqcup b & = \begin{cases}
a & a = b \\
\top & a \neq b
\end{cases}$$

Primitive operation

Algorithm Initialization

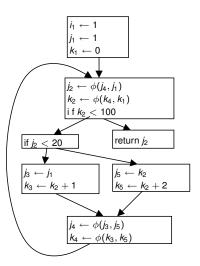
- Initialize $V[v] = \bot$ for all variables v and E[B] = false for all blocks B
- ② If v has no definition, then set $V[v] \leftarrow \top$ (must be input or uninitialized)
- **③** The entry block is reachable: $E[B_0]$ ← *true*

Algorithm

- For each B with E[B] and B has only one successor C, then set E[C] = true.
- **②** For each reachable assignment $v \leftarrow x \oplus y$ set $V[v] \leftarrow V[x] \hat{\oplus} V[y]$.
- **③** For each reachable assignment $v \leftarrow \phi(x_1, ..., x_p)$ set $V[v] \leftarrow \bigsqcup \{V[x_j] \mid j \text{th predecessor is reachable}\}$
- For each reachable assignment v ← M[...] or v ← CALL(...) set V[v] ← T.
- For each reachable branch if $x \not\equiv y$ goto L_1 else L_2 consider $\beta = V[x] \not\equiv V[y]$.
 - If $\beta = true$, then set $E[L_1] \leftarrow true$.
 - If $\beta = \text{false}$, then set $E[L_2] \leftarrow \text{true}$.
 - If $\beta = \top$, then set $E[L_1], E[L_2] \leftarrow true$.

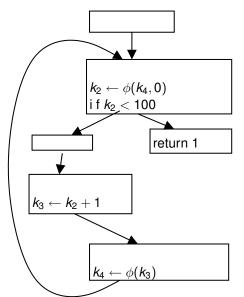
Conditional Constant Propagation

Example



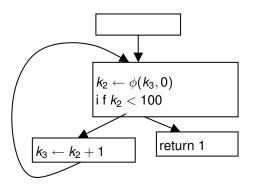
Conditional Constant Propagation

Example after propagation



Conditional Constant Propagation

Example after cleanup



Outline

- Static Single-Assignment Form
- Converting to SSA Form
- Optimization Algorithms Using SSA
- 4 Dependencies
- 6 Converting Back from SSA Form

Dependencies Between Statements

B depends on A

Read-after-write A defines variable v and B uses v
Write-after-write A defines variable v and B defines v
Write-after-read A uses v and then B defines v
Control A controls whether B executes

In SSA form

- all dependencies are Read-after-write or Control
- Read-after-write is evident from SSA graph
- Control needs to be analyzed

Memory Dependence

- Memory does not enjoy the single assignment property
- Consider

$$\begin{array}{rccccc}
1 & M[i] & \leftarrow & 4 \\
2 & x & \leftarrow & M[j] \\
3 & M[k] & \leftarrow & j
\end{array}$$

Depending on the values of i, j, and k

- 2 may have a read-after-write dependency with 1 (if i = j)
- 3 may have a write-after-write dependency with 1 (if i = k)
- 3 may have a write-after-read dependency with 2 (if j = k) so 2 and 3 may not be exchanged

Approach

- No attempt to track memory dependencies
- Store instructions always live
- No attempt to reorder memory instructions

Control Dependence Graph

Control Dependence

- Node y is control dependent on x if
 - x has successors u and v
 - there exists a path from u to exit that avoids y
 - every path from v to exit goes through y
- The <u>control-dependence graph</u> (CDG) has an edge from x to y if y is control dependent on x.
- y postdominates v if y is on every path from v to exit, i.e.,
 if y dominates v in the reverse CFG.

Let G be a CFG

- Add new entry node r to G with edge $r \to s$ (the original start node) and an edge $r \to exit$.
- 2 Let G' be the reverse control-flow graph with the same nodes as G, all edges reversed, and with start node exit.
- Construct the dominator tree of G' with root exit.
- Calculate the dominance frontiers DF_G of G.
- **5** The CDG has edge $x \to y$ if $x \in DF_{G'}[y]$.

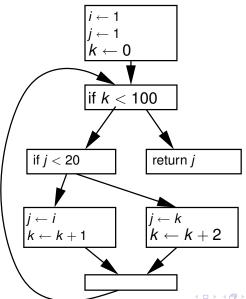
Use of the CDG

A must be executed before B if

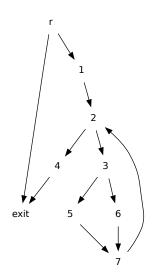
there is a path $A \rightarrow B$ using SSA use-def edges and CDG edges.

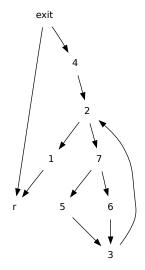
I.e., there are data- and control dependencies that require *A* to be executed before *B*.

Example

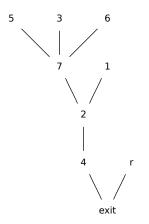


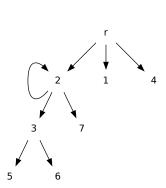
CFG and reverse CFG





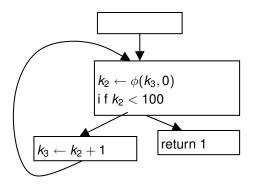
Postdominators and CDG





Aggressive Dead-Code Elimination

- Application of the CDG
- Consider



- k₂ is live because it is used in defining k₃
- k_3 is live because it is used in defining k_2

Aggressive Dead-Code Elimination

Algorithm

Exhaustively mark a <u>live</u> any statement that

- Performs I/O/, stores into memory, returns from the function, calls another function that may have side effects.
- Oefines some variable v that is used by another live statement.
- Is a conditional branch, on which some other live statement is control dependent.

Then delete all unmarked statements.

Result on example: return 1; loop is deleted

Outline

- Static Single-Assignment Form
- Converting to SSA Form
- Optimization Algorithms Using SSA
- 4 Dependencies
- Converting Back from SSA Form

Converting Back from SSA Form

- ϕ -functions are not executable and must be replaced to generate code
- $y \leftarrow \phi(x_1, x_2, x_3)$ is interpreted as
 - move x₁ to y if arriving from predecessor #1
 - move x₂ to y if arriving from predecessor #2
 - move x₃ to y if arriving from predecessor #3
- Insert these instructions at the end of the respective predecessor (possible due to edge-split assumption)
- Next step: register allocation

Liveness Analysis for SSA

```
LivenessAnalysis() =
   for each variable v do
     M \leftarrow \emptyset
     for each statement s using v do
        if s is a \phi-function with ith argument v then
          let p be the ithe predecessor of s's block
          LiveOutAtBlock(p, v)
        else
          LiveInAtStatement(s, v)
LiveOutAtBlock(n, v) =
   {v is live-out at n}
   if n \notin M then
     M \leftarrow M \cup \{n\}
     let s be the last statement in n
     LiveOutAtStatement(s, v)
```

Liveness Analysis for SSA

```
LiveInAtStatement(s, v) =
   {v is live-in at s}
   if s is first statement of block n then
     \{v \text{ is live-in at } n\}
     for each p \in pred[n] do
       LiveOutAtBlock(p, v)
   else
     let s' be the statement preceding s
     LiveOutAtStatement(s', v)
LiveOutAtStatement(s, v) =
   {v is live-out at s}
   let W be the set of variables defined in s
   for each variable w \in W \setminus \{v\} do
     add (v, w) to interference graph {needed if v defined?}
   if v \notin W then
     LiveInAtStatement(s, v)
                                                4D > 4B > 4B > 4B > 900
```