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COURSE MATERIAL

Book: NNH = Nielson, Nielson and Hankin Principles of Program Analysis

Slides: downloadable from course home page.

Reading for lectures 2 and 7 December:

» Read and understand NNH sections 1.1, 1.2, 1.3, 1.7, 1.8.
» Skim 1.4, 1.5, 1.6.
» Read and understand NNH section 2.1.

The compiler construction course project may have some application-oriented
work based on Chapters 1 and 2.



SOURCES

How is program analysis done?

» Many people: decades of practical experience in writing compilers

(though correctness issues are rarely addressed by compiler hackers)

» Engineering methodology: program analysis by fix-point computations.

» This was developed by informal, pragmatic, ad hoc methods from the
1950s called data flow analysis.

Semantics-based program analysis:

» Methods formally based in program semantics developed by Cousot-
+Cousot, Jones, Muchnick, Nielson+Nielson, Hankin, many others.

» Research since 1970’s under the name of Abstract Interpretation
» Capture a significant part of data flow analysis (but not all).

» January 2008 conference in San Francisco:

“30 Years of Abstract Interpretation.”
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MOTIVATION, ORIGINS

Optimising transformations for compilers.

Compiler structure:

sourcecode — intermediatecode — intermediatecode — targetcode

The Optimisation phase:

intermediatecode — intermediatecode

Intermediate code is usually (some version of) simple flow chart programs.
These contain

» program points (also called labels),
» with an elementary statement or test at each point, and

» control transitions from one program point to another.



WHAT AND HOW

What: program transformation to improve efficiency
» Based on program flow analysis

» Must be correct (and just what does this mean?)
» Complex

» Important: efficiency, complex hardware, limits to what humans can
improve, etc

How: several steps in program optimisation. First: program analysis.
» Choose a data flow lattice to describe program properties

» Build a system of data flow equations from the program

» Solve the system of data flow equations

Then transform the program, usually to optimise it
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TOWARDS UNDERSTANDING THE PROBLEM |

Consider a transformation
[x := al® = [skipl®

to eliminate code. (It sounds trivial, but it’s significant in practice!)

Some possible reasons it can be correct:

1. Point £ is unreachable: control cannot flow from the program'’s start to
[x := a]®

2. Point ¢ is dead: control cannot flow from [x := alf to the program’s
exit. For example

» The program will definitely loop after point £. Or

» The program will definitely abort execution after point /.

3. Variable x is dead at £ (even though point £ is not dead): For instance

» x is never referenced again; or

» x may be used to compute y, z, ... but they are never used again, ...
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TOWARDS UNDERSTANDING THE PROBLEM 1l

More possible reasons for correctness of the transformation
[x := a]® = [skipl*

to eliminate code.

4. x is already equal to a (if control ever gets to £)

5. Mathematical reasons relating x and a, e.g., Matiyasevich’s theorem etc.

6. a is an uninitialised variable: so the value of x is completely undepend-
able

7. Some patchwork combination of the above.

(Eg, reason 3 applies if x is even, reason 4 applies if x is odd,...)



ALAS, MOST OF THESE REASONS ARE
AS UNDECIDABLE AS THE HALTING PROBLEM (!)

Remark: many (most!) of the above program behavior properties are un-
decidable (if you insist on exact answers).
Proof See Rice’'s Theorem from Computability Theory.

So what do we do?

» The practice of program analysis and the theory of abstract interpreta-
tion: find safe descriptions of program behavior. Meaning of safety:

e if the analysis says that a program has a certain behavior (e.g., that
x is dead at point ¢),

e then it definitely has that behavior in all computations.

» However the analysis may be imprecise in this sense:

it can answer “don’t know” even when the property is true.



WHAT KIND OF REASONING CAN BE USED TO
DISCOVER PROGRAM PROPERTIES?

They can involve

» Control flow, e.g., that point £ is unreachable

» Data flow, e.g., that the value of variable x at point £ cannot affect the
program'’s final output.

A useful classification: dimension 1 = past/future, dimension 2 = may/must.

» computational pasts, e.g., that x equals a if control point £ is reached
» computational futures, e.g., that variable x is dead at control point £
» all-path, or “must” properties, e.g., a past all-path property:
“variable x is initialised”
i.e., x was set on every computation path from start to current point ¢

» some-path, or “may” properties, e.g., a future some-path property:

“variable x is live”, i.e., there exists a computation path from current
point £ to the program end



OVERVIEW

A program analysis will compute a “program-point-centric” analysis that
binds information to each program point £.

The program properties at a program point £ are

» determined by

e the computational future
(of computations that get as far as £); or

e the computational past

» determined by the set of

e all computation paths from (or to) ¢, or by

e the existence of at least one computation path from (or to) ¢




OVERVIEW

A program analysis will compute a “program-point-centric” analysis that
binds information to each program point £.

Such information (almost always in the literature)
» is finitely (and feasibly!) computable
» is computed uniformly, i.e., for all the source program’s program points.

» Adjacent program points will have properties that are related, e.g., by
classic flow equations of dataflow analysis for compiler construction.

An analogy: heat flow equations.
(though heat flows 2-ways, while program flows are asymmetric.)



SOME NOTATIONS USED IN THE BOOK

£ € Lab |the set of all labels
x,Yy,z € Var the set of all variables
S € Stmt the set of all statements
a € AExp the set of all arithmetic expressions

b € BExp | the set of all Boolean expressions

e € Exp the set of all expressions (arithmetic or Boolean)




ABSTRACT SYNTAX

a = x| n|a op; as
b ::= true | false | not b | by op, b | a1 op, as
S = [z := a]® | [skip]® | S ;S-

| if [b]* then S else Sy | while [b]®do S
B ::= [z := a]* | [skip]® | [b]*

For our slides: we only think of flow charts containing labeled blocks B,
don’t deal with statements that contain other statements. (Doesn’t lose
information, and saves notation!)

Generic versus concrete:

[ := a]®* Math font for generic program fragments, e.g.,
ax ranges over all variables

[x:=x+1]7 Teletype font for concrete program fragments, e.g.,
the LHS is the concrete variable “x”




A FEW MORE NOTATIONS

Lab, the set of all labels in the program currently being analysed

Var, the set of all variables in the program currently being analysed
Stmt, the set of all statements in the program currently being analysed
AExp, the set of all arithmetic expressions in the program currently being a

BExp, the set of all Boolean expressions in the program currently being ana




4 USEFUL EXAMPLES OF DATA FLOW ANALYSIS

Type of flow equations: What's analysed
Time Path

F : Lab, — dataflow lattice L | dependency | modality
RD : Lab, — P(Var, x Lab) | past 3
LV : Lab, — P(Var,) future 3
AFE : Lab, — P(Exp,) past v
VB : Lab, — P(Exp,) future v
RD = Reaching definitions (used for constant propagation)
LV = Live variables (used for dead code elimination)
AFE = Auvailable expressions (to avoid recomputing expressions)
V B = Very busy expressions (save expression values for later use)



INTUITIVE EXPLANATION: LIVE VARIABLES

Type of flow equations: What’s analysed | How it’s computed
Time Path Data Kind of

F' : Lab, — dataflow lattice L | dependency | modality | flow fixpoint

LV :Lab, — P(Var,) future = backward | least

Variable x is live at program point £ if there exists a flow chart path from
£ to some usage of variable x. Things to notice:

» it's about what can happen in the future
» along at least one path (J)
Optimisation enabled by live variable analysis:

If  is not live at point ¢, then the register / memory cell containg
the value of £ may be used for another value

Net effect: to reduce memory or register usage.



INTUITIVE EXPLANATION: AVAILABLE EXPRESSIONS

Type of flow equations: What'’s analysed | How it’s computed

Time Path Data Kind of
F' : Lab, — dataflow lattice L | dependency | modality | flow fixpoint

AFE : Lab, — P(Exp,) past \ forward | greatest

Expression e is available at program point £ if on all flow chart paths to 2
the value of e has been computed, and no variable in e has been changed.
Things to notice:

» it’s about what did happen in the past
» and along all paths to £ (V)
Optimisation enabled by live variable analysis:

If e is available at point ¢, then (generate code to) fetch the value
that has already been computed.

Net effect: generate smaller code.

17—



INTUITIVE EXPLANATION: VERY BUSY EXPRESSIONS

Type of flow equations: What's analysed | How it’s computed
Time Path Data Kind of

F' : Lab, — dataflow lattice L | dependency | modality | flow fixpoint

VB : Lab, — P(Exp,) future \4 backward | greatest

Expression e is very busy at program point £ if the value of e will be used
on all flow chart paths from £. Things to notice:

» it’s about what will happen in the future

» and along all paths from ¢ (V)

Optimisation enabled by very busy expression analysis:

It can pay to keep the value of e in a register instead of memory.

Net effect: generate faster code.




INTUITIVE EXPLANATION: REACHING DEFINITIONS

Type of flow equations: What's analysed | How it’s computed

Time Path Data Kind of
F : Lab, — dataflow lattice L | dependency  modality | flow fixpoint

RD : Lab, — P(Var, X Labi) past = forward | least

A pair (x, £y) can reach program point £ if

» there is a statement [z := e]%, and

» there is a path from £, to ¢, and

» variable x is not changed on the path

Things to notice:

» it’s about what happened in the past along at least one path to £ (3)

Optimisation enabled by reaching definition analysis: constant propagation

Net effect: generate faster code.



SEMANTIC FOUNDATION

» State: a state is a function o : Var — Z. Also known as a store.

Idea: the current value of variable x is o (x).

» A computational configuration is a pair (S, o) where S is a statement
(what is remaining to execute) and o is the current state.

» A one-step transition has form
(S,0) — (S’,d’) or, if program stops: (S,o) — o’

Details omitted today, but what you would expect. Here there is a data

flow from o to o’
» Each program defines a set of computations. A computation is either

e a terminating computation: a finite sequence

(S1,01) — (S2,02) — ... (Spy0n) — Opi
or

e a looping computation: an infinite sequence

(Sl,0'1> — <SQ, 0'2> —> e e



THE MAIN PROBLEM OF DFA

Given a program, to find a description of the data flow at each label £. In
this book, for analysis A:

» Acniry(€) = flow information at the entry to statement [B]*

» A..i:(£) = flow information at the exit from statement [B]*

Suppose program has the form:

[B1] [Bo]% ... [By]™

Then a program description will have the form:
Aentry : Lab, — L and A,y : Lab, — L

where L is a complete lattice. Different lattices for different flow properties.

Flow lattice: a structure L = (L,C, L, M, L, T)).



A PAST ANALYSIS: REACHING DEFINITIONS FOR X!

Program:
[y:=X]1; [z:=1]%; while [y>1:|3 do ([z:=z*y]4; [y:=y-1] 5); [y:=0]6;
Reaching definitions lattice:

L=(P{xy,z} x{1,2,3,4,5,6,7}) ,C,u, M, L, T)
(x,£y) € RD (£) if for some computation path from £, to ¢

» x was assigned at point £;, and (jargon: “defined”)

» x was not re-assigned before point £ (i.e., the assighment “reaches” /)

Uninitalised variables: are “reached” from point “?”

£\ RDpiry(£) RD..;:(£)

L{(x7)(y57)5 (2, 7)} {(%7),(y,1),(2,7)}

2 {(x,7),(y,1),(2,7)} {(%,7),(y,1),(2,2)}
34{(x7),(y,1),(y,5),(2,2),(z,4) } {(x,7),(y,1),(y,5),(2,2),(2,4) }
4{(x,7),(y,1),(y,5)5(2,2),(2z,4) } {(x,7)5(y,1), (¥,5),(2,4)}
5{(x,7),(y,1),(y,5),(z,4)} {(%,7),(y,5),(z,4)}

6 {(x,7),(y,1),(y,5),(2,2),(z,4) } | {(x,7), (v,6), (2,2),(z,4) }




A FUTURE ANALYSIS: LIVE VARIABLES
(for the same program to compute x!)

Program:
[y:=x1';[z:=1]% while [y>1]° do ([z:=z*yl*;[y:=y-11°); [y:=0]%;

Live variable lattice:
L = ( P({Xa NE Z}) , L, Ly, L, T)

Variable x is live if 4 computation path with a future reference to x.
Assume: no variables are live at program exit.

L‘/:entry (E) LVeyit (E)
{x} {v}
{v} {v,z}

{y,z} 1y, 2z}
{y,z} 1y, 2z}

{y,z} 1y, 2z}
0 0

S UL N =S




LIVE VARIABLE FLOW EQUATIONS:
(for the same program to compute x!)

[y:=x]11;[z:=11%; while [y>1]° do ([z:=z*y]4;[y:=y—1]5);[y:=0]6;

LVentry(1) = LVerir(1) \ {y} U {x}
L‘/:entry(z) — L‘/:e:mt(2) \ {Z}
L‘/entry(g) — L‘/e.:mt(?’) U {Y}
L‘/ent'ry(4) — L‘/ea;zt(4) U {y, Z}
LVentry(5) = LVerit(5) U {y}

LVentry(6) = LVeyit(6) \ {y}
L‘/:e:m't(]-) — L‘/:ent’ry(Z)

L‘/:ea:it(z) — L‘/:entry(g)

L‘/;;m't(g) — L‘/:entry(él) U L‘/;nt"“y(ﬁ)
L‘/e:mt(él) — L‘/entry(5)

LVezit(5) = LVentry(3)

LVeyi1(6) = 0



WHAT ON EARTH IS GOING ON?

» What is being defined by these equations ?
» What data flow logic is being expressed?

» How can the equations be solved ?

The equations define the values of in all 12 program point descriptions
L‘/:entry(l)a ey L‘/entry(ﬁ)a L‘/e:m't(l)a ey L‘/:ewit(ﬁ)

in terms of each other.

This is a recursive system of data flow equations to describe the program’s
computational behavior.

Solution to the equation system: This is called a fixpoint.

Type of a solution to the equation system: L%, where L is the description
data flow lattice.

Type of the equation system itself:
F:LY? - ['?



FLOW EQUATION DIMENSIONS

» Time dependence. Possibilities:

e Future analysis: the property depends on the computational future.
Computed by backward data flow.

e Past analysis: the property depends on the computational past.
Computed by forward data flow. — “must” or “may” dependence:

» Path modality dependence. Possibilities:

e may path dependence (for some path)

e must path dependence (for all paths)

» These make |[four combinations|. For example:

e Both LV and RD are may path dependencies
e Live variables LV is a future analysis (= backward data flow)

e Reaching definitions RD is a past analysis (= forward data flow)



FLOW EQUATIONS: REFLECT THE 4 COMBINATIONS

Future/past: what is defined in terms of what in the equations, e.g.,

future: L‘/ent’ry('e) ¢ o L‘/ea:zt(e) oo
past: LVeyit(£) = ... LVeptry(£) ...

All-paths/some-path: find greatest or least fixpoint solution to equations

Fixpoints: [fp (least fixpoint) for 3 path dependence
ifp(F)= | | F(L,1,...,1)

n—aoo

gfp (greatest fixpoint) for V path dependence
gfp(F) — I_ln—>oan(T7 Tyeen, T)

Combining flows from several blocks into one:

» Use LI when computing least fixpoint (some-path properties)

» Use M when computing greatest fixpoint (all-path properties)
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4 EXAMPLES OF THE 4 COMBINATIONS

Type of flow equations: What's analysed | How it’s computed
Time Path Data Kind of

F' : Lab, — dataflow lattice L | dependency  modality | flow fixpoint
RD : Lab, — P(Var, X Labi) past 3 forward |least
LV :Lab, — P(Var,) future = backward | least
AFE : Lab, — P(Exp,) past \ forward | greatest
VB : Lab, — P(Exp,) future \4 backward | greatest
RD = Reaching definitions

LV = Live variables
AFE = Available expressions
VB Very busy expressions




RELATIONS TO LATTICES ETC. FROM APPENDIX A

Form of the data flow equation system:
(X1, Xoyenny Xop) = (€1(X), e2(X),...,em(X))
where set expressions e, ..., ey, are built from X;, X,5,..., X5, by set

operations such as U, N, \ and constants.
This defines a function

F : P(D)* — P(D)*"
(where D = set of descriptions, n = number of labels)

on the lattice
L=(L,Cunl,T))=(PWD),C,uU,n,0,D))

Fixpoints: Ifp(F) = || F™(L,L,..., L), gfp(F)="hoocF"(T,..., T)

1. P(D) is a lattice, so F (X1, X2,..., X2,) exists.

2. P(D) is complete, so Ifp(F), gfp(F') both exist.

3. Ascending (descending) chain condition: ensures that
Ifp(F), gfp(F) are finitely computable.



CHAOTIC ITERATION

Effect is to compute the least (or greatest) fixpoint by repeatedly applying
the equations

» Apply them in any order
» until no sets can be changed
» Initialisation of the sets:

e Least fixpoint: start with every set empty (L of the lattice)

e Greatest fixpoint: start with every set equal to (T of the lattice)

» Amazing fact: it doesn’t matter what order is chosen (hence the name
“chaotic”)



HAND SOLUTION: LIVE VARIABLE ANALYSIS OF THE
FACTORIAL PROGRAM BY CHAOTIC ITERATION 1

[y:=x11;[z:=1]% while [y>1]° do ([z:=z*yl*;[y:=y-11°);[y:=0]15;

L‘/:entry(]-) — L‘/:e:mt(]-) \ {Y} U {X}
LVeniry(2) = LVerit(2) \ {2}

LVentry(3) = LVezit(3) U {y}

L‘/;antry(4) — L‘/;xit(4) U {Y,Z} f LV;gn(Zry(e) L%Cgt(ﬁ)
LVentry(5) = LVezit(5) U {y} X g p
LVentry(6) = LVeyit(6) \ {y} 5 y )
LV¢ezit(1) = LVentry(2) . ’ )
LV¢2it(2) = LVentry(3) - ) )
LV.it(3) = LViury(4) U LV, p4,(6) ; ) )
LVeyit(4) = LVeniry(5)

LVerit(5) = LVentry(3)

LV (6) =0



HAND SOLUTION: LIVE VARIABLE ANALYSIS OF THE
FACTORIAL PROGRAM BY CHAOTIC ITERATION 2

[y:=x11;[z:=1]% while [y>1]° do ([z:=z*yl*;[y:=y-11°);[y:=0]15;

L‘/:entry(]-) — L‘/:e:mt(]-) \ {Y} U {X}
LVeniry(2) = LVerit(2) \ {2}

LVentry(3) = LVezit(3) U {y}

L‘/:antry(4) = LV_3it(4) U {y, z} f L‘/;f;;"iy(e) L‘/:Zazt(e)
LVentry(5) = LVezit(5) U {y} X ; p
LVentry(6) = LVezit(6) \ {y} 3 1y) y
LVeyit(1) = LVintry(2) AR YZ} )
LVerit(2) = LVeniry(3) - ?} ’
LV.it(3) = LViury(4) U LV, p4,(6) ; é’) )
LVeyit(4) = LVeniry(5)

LVerit(5) = LVentry(3)

LV (6) =0



HAND SOLUTION: LIVE VARIABLE ANALYSIS OF THE
FACTORIAL PROGRAM BY CHAOTIC ITERATION 3

[y:=x11;[z:=1]% while [y>1]° do ([z:=z*yl*;[y:=y-11°);[y:=0]15;

L‘/:entry(]-) — L‘/:e:mt(]-) \ {Y} U {X}
LVeniry(2) = LVerit(2) \ {2}

LVentry(3) = LVezit(3) U {y}

L‘/:antry(4) - L‘/;;mt(él) U {y, z} f L‘/;f;;’;/(e) L‘/eazt(ﬁ)
LVentry(5) = LVezit(5) U {y} X ; ()
LVentry(6) = LVezit(6) \ {y} 3 1y) %
LVeyit(1) = LVintry(2) AR YZ} )
LVezit(2) = LVentry(3) - z[”} )
LVerit(3) = LVeniry(4) U LVentry(6) é’) )
LVeyit(4) = LVeniry(5)

LVerit(5) = LVentry(3)

LV (6) =0



HAND SOLUTION: LIVE VARIABLE ANALYSIS OF THE
FACTORIAL PROGRAM BY CHAOTIC ITERATION 4

[y:=x11;[z:=1]% while [y>1]° do ([z:=z*yl*;[y:=y-11°);[y:=0]15;

L‘/:entry(]-) — L‘/:e:mt(]-) \ {Y} U {X}
LVeniry(2) = LVerit(2) \ {2}

LVentry(3) = LVezit(3) U {y}

L‘/:antry(4) - L‘/;;mt(él) U {y, z} f L‘/;f;;’;/(e) L‘/eazt(ﬁ)
LVentry(5) = LVezit(5) U {y} X ; ()
LVentry(6) = LVeyit(6) \ {y} 5 P ( YZ}
LV¢ezit(1) = LVentry(2) N yz} Y(ab
LVeyit(2) = LVentry(3) - z[”} )
LVerit(3) = LVeniry(4) U LVentry(6) é’) )
LVeyit(4) = LVeniry(5)

LVerit(5) = LVentry(3)

LV (6) =0



HAND SOLUTION: LIVE VARIABLE ANALYSIS OF THE
FACTORIAL PROGRAM BY CHAOTIC ITERATION 5

[y:=x11;[z:=1]% while [y>1]° do ([z:=z*yl*;[y:=y-11°);[y:=0]15;

L‘/:entry(]-) — L‘/:e:mt(]-) \ {Y} U {X}
LVeniry(2) = LVerit(2) \ {2}

LVentry(3) = LVerit(3) U {y}

L‘/:antry(4) = LV_3it(4) U {y, z} f L‘/;f;;"iy(e) L‘/:Zazt(e)
LVentry(5) = LVezit(5) U {y} X ; ()
LVentry(6) = LVeyit(6) \ {y} 5 v} ; YZ}
LV¢ezit(1) = LVentry(2) N yz} ?{77}
LVe2it(2) = LVentry(3) - ?{”} é’)
LV.it(3) = LViury(4) U LV, p4,(6) ; é’) )
LVeyit(4) = LVeniry(5)

LVerit(5) = LVentry(3)

LV (6) =0



HAND SOLUTION: LIVE VARIABLE ANALYSIS OF THE
FACTORIAL PROGRAM BY CHAOTIC ITERATION 6

[y:=x11;[z:=1]% while [y>1]° do ([z:=z*yl*;[y:=y-11°);[y:=0]15;

L‘/:entry(]-) — L‘/:e:mt(]-) \ {Y} U {X}
LVeniry(2) = LVerit(2) \ {2}

LVentry(3) = LVerit(3) U {y}

L‘/:antry(4) = LV_3it(4) U {y, z} f L‘/;f;;"iy(e) L‘/:Zazt(e)
LVentry(5) = LVezit(5) U {y} X ; ()
LVentry(6) = LVeyit(6) \ {y} 5 v} ; YZ}
LV¢ezit(1) = LVentry(2) N yz} ?{77}
LV 3it(2) = LVeptry(3) - 2[”} {y}
LV.it(3) = LViury(4) U LV, p4,(6) ; é’) (BZ;
LVeyit(4) = LVeniry(5)

LVerit(5) = LVentry(3)

LV (6) =0



HAND SOLUTION: LIVE VARIABLE ANALYSIS OF THE
FACTORIAL PROGRAM BY CHAOTIC ITERATION 7

[y:=x11;[z:=1]% while [y>1]° do ([z:=z*yl*;[y:=y-11°);[y:=0]15;

L‘/:entry(]-) — L‘/:e:mt(]-) \ {Y} U {X}
LVeniry(2) = LVerit(2) \ {2}

LVentry(3) = LVerit(3) U {y}

L‘/:antry(4) - L‘/;;mt(él) U {y,z} f L‘/;f;;’;/(e) L‘/eazt(ﬁ)
LVentry(5) = LVezit(5) U {y} X i ()
LVeriry (6) = LViait(6) \ {1} IR
e e 1 {nar )
LV¢2it(2) = LVentry(3) - {’} o
LVerit(3) = LVeniry(4) U LVentry(6) é’) (Bz;
LVeyit(4) = LVeniry(5)

LVepit(5) = LVeniry(3)

LV (6) =0



HAND SOLUTION: LIVE VARIABLE ANALYSIS OF THE
FACTORIAL PROGRAM BY CHAOTIC ITERATION 8

[y:=x11;[z:=1]% while [y>1]° do ([z:=z*yl*;[y:=y-11°);[y:=0]15;

L‘/:entry(]-) — L‘/:e:mt(]-) \ {Y} U {X}
LVeniry(2) = LVerit(2) \ {2}

LVentry(3) = LVerit(3) U {y}

L‘/:antry(4) = LV_3it(4) U {y, z} f L‘/;f;;"iy(e) L‘/:Zazt(e)
LVentry(5) = LVezit(5) U {y} X i ()
LVentry(6) = LVezit(6) \ {y} 3 q yz} ( YZ}
LV¢ezit(1) = LVentry(2) . {y’z} ?{77}
LV 3it(2) = LVeptry(3) - 2[”} {y}
LV.it(3) = LViury(4) U LV, p4,(6) ; é’) (BZ;
LVeyit(4) = LVeniry(5)

LVerit(5) = LVentry(3)

LV (6) =0



HAND SOLUTION: LIVE VARIABLE ANALYSIS OF THE
FACTORIAL PROGRAM BY CHAOTIC ITERATION 9

[y:=x11;[z:=1]% while [y>1]° do ([z:=z*yl*;[y:=y-11°);[y:=0]15;
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LV 3it(2) = LVeptry(3) - 2[”} {y}
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LV (6) =0
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THE ITERATION PROCESS CONVERGED! (AT LAST)

Chaotic iteration:

» this always works, i.e., it always converges and to the same fixpoint
» the final result is a safe description of the program’s data flow.

» some iteration orders converge faster than others.



LOOKS LIKE MAGIC!
WHERE DO THE FLOW EQUATIONS COME FROM?

Short answer: the result of much experience in writing analysis phases for
real compilers. We’'ll see some examples.

Future/past: what is defined in terms of what in the equations, e.g.,

future: L‘/:entry('e) = .. L‘/:e:mt(e) oo
past: LVeyit(€) = ... LVepiry(€) ...

All-paths/some-path: find greatest or least fixpoint solution to the equations

» Ifp (least fixpoint) for 3 path dependence

» gfp (greatest fixpoint) for V path dependence

Combining flows from several blocks into one:

» Use LI when computing least fixpoint (some-path properties)

» Use M when computing greatest fixpoint (all-path properties)



SEVERAL APPROACHES TO DATA FLOW ANALYSIS

» Data flow equations over a lattice (what we just saw)

» The “kill/gen” approach to data flow equations (a traditional compiler-
writer’s approach)

» Constraint based analysis

» Monotone frameworks (unified lattice-theoretic viewpoint; notationally
complex)

» Type and effect systems

» Abstract interpretation



“KILL/GEN” DATA FLOW EQUATIONS

For a future analysis AIV:
ANepntry(€) = ANezir(£) \ killan(B*) U genan(BY)

For a past analysis AN:
AN,zit(€) = ANepiry(£) \ kill g4 (B®) U genan(BY)

Idea, reasoning:

» kill s (B*) expresses the data flow information

that is over-written by statement B¢

» gen n(B*) expresses the

new data flow information that is added by statement B¢

Example for live variable analysis: statement [x:=y+z]? will

» Generate {y,z}, so genpy ([x:=y+z]1°) = {y, z}

» Kill x, so killpy([x:=y+z]3) = {x}

47—



MORE CONCRETELY: LIVE VARIABLE FLOW EQUATIONS

[y:=x]1';[z:=1]%; while

LVentry(1)
LVentry(2)
LVeniry(3)
LVeniry(4)
LVeniry(5)
LVeniry(6)
L‘/:e:m’t ( 1)
L‘/:ewit(z)
L‘/ea:zt(g)
LVt (4)
LVt (5)
LV (6)

[y>1]1° do ([z:=z*yl%;[y:=y-11°);[y:=0]%;

LVeyit(1) \ {y} U {x}
LVerit(2) \ {z}
LVei(3) U {y}
LVeyit(4) \ {z} U {y, z}
LVerit(5) \ {y} U {y}

LVerit(6) \ {y}
L‘/:entry(z)

LVontry (3)
LVintry(4) U LVt (6)
LVontry (5)

LVontry (3)

]

Examples: killpy([z:=zxy]?) = {2z} and genpy([z:=zxy]?*) = {y, z}



GENERAL DATA FLOW EQUATIONS: LIVE VARIABLES

LViu(t) — 0 if [B1¢ a final block
et ) U{LVeniry(£) | € — £ in flow chart} otherwise
L‘/;ntry(e) — (L‘/e:mt(e) \ k’l,llLv(Bﬂ)) U genLV(Be)

where B is a block

» A future analysis, thus data flows backwards (from LV, to LV y.y)

» An 3 path analysis, thus Ifp and use ] to merge branches

Some auxiliary definitions
killpy([z := al®) = {z}

killpy([skipl?) = 0
killry ([b1%) =0
genry([z := al?) = FreeVariables(a)
genpy([skipl®) =0
genry([bl%) = FreeVariables(b)



GENERAL FLOW EQUATIONS: REACHING DEFINITIONS

RD (£) = {(x,?) | © € FreeVariables(S)} if [B]¢ initial block
s U{RD.;i:(¢') | £ — £ in flow chart} otherwise

RDewz‘t(f) = (RDentry(e) \ kﬁ’LllRD(Be)) U genRD(Be)
where Bf is a block

» A past analysis, thus data flows forwards (from RD,y,, to RD,yi)
» An 3 path analysis, thus Ifp and use ] to merge branches

Some auxiliary definitions

killgrp([z := al®) = {(x,?)} U {(z,¢') | I assignment [z := .. .]E,}
killpp([skipl®) = 0

killrp([b]°) =0

gengp(lz = al®) = {(z,£)}

gengp([skipl?) =0

gengp([bl¥) =0



CONSTRAINT SYSTEMS

Express flow equations in terms of set containments. LV example:

[y:=x11;[z:=11%; while [y>1]° do ([z:=z*y]4;[y:=y—1]5);[y:=0]6;

LVentry(1) O LVeri(1) \ {y}

— LViyit(1) O LVgntry(2
v S () Vezit(1) O LVepiry(2)
L‘/:entry(z) 2 L‘/;:mt(2)\{z} LYV, t(2) 2 LV,.; (3)

exi = entry
LVentry(3) D LVipit(3) LV2it(3) D LVuniry(4)

N exi — entr
L‘fentry(g) — {Y} L‘/em-t(3) D) L‘/ent'ry(G)
L‘/;antry(él) 2 L‘/e:mt(4) L‘/e:mt(4) D) L‘/entT (5)
L‘/entry(él) 2 {Y?Z} B ’
L‘/:entry(g)) D L‘/:e:mt(5)

e LV .i1(5) O LVeniry(3
LVentry(5) 2 {y} )= o

L‘/:entry(ﬁ) 2 L‘/:e:mt(ﬁ) \ {Y}

Exactly equivalent in this context. More generally: constraints can express
more sophisticated flow analyses that are hard to describe by equations.



SEMANTIC CORRECTNESS, OR “SAFETY”

To show: that what the analysis says, is actually true of any computation.

» Starting point: the semantics of the programming language.

» Given a program S and an initial store o, the semantics defines the set
of possible (finite or infinite) computations

(S,0) — (S1,01) — (S3,02) — ...

» Given: an analysis AN of one (arbitrary) program
» Needed: a (logical and natural) connection between

e the result of the analysis; and

e the program’s possible computations

This is the start of the field:

Semantics-based program manipulation



