Compiler Construction 2009/2010:

Intermediate Representation

Annette Bieniusa

November 24, 2009

0 Contexts

Using Expressions in different Contexts

Compare the translation for x > 3 in
@y = x > 3;
@ if (x > 3) sl else s2

In C-like languages, what about x = 3in
@ x = 35
@ if (x = 3) sl else s2

Contexts

You have an expression and want to use it as
@ an expression: no problem
@ a statement: new EXP (...)

@ a conditional branch: create branch instruction with test
against 0

You have a statement and want to use it as ...
@ in Minidava only as statement!

ExCtx(exp) context where a value is required
NxCtx(stm) context where no value is required
CxCtx context with condition (abstract)
RelCxCtx(op,left,right) relational operations
IfThenElseCtx context of if-then-else construct

We will keep the approach here a bit more general as there
might be other kinds of ASTs. Conversion operations allow to
use a form in the context of another :

unEx converts to IR expression that evaluates inner tree
and returns its value

unNx converts to IR statement that evaluates inner tree
but returns no value

unCx(t,f) converts to IR statement that evaluates inner tree
and branches to true destination if non-zero, to
false destination otherwise

Translating Minidava Expressions

Simple variables For now, we declare them as temporaries
ExCix(TEMP 1)
Arithmetic operations Choose the right binary operation!
a op b — ExCtx(BINOP (op,a.unEx,b.unEx))
Unary operations are translated with a trick:

@ negation of integers — subtraction from zero
@ unary complement — XOR with all ones

Translating Minidava Expressions

Array elements Arrays are allocated on the heap.

e[i] — ExCtx(MEM (ADD(e.unEx(), MUL(i.unEx(),
CONST w))))

Here, w is the target machine’s word size.

In Minidava, all values are word-sized.

Array bounds check: Check that array index i is

between 0 and e.size. To this end, we will save the

size in the word preceding the base.

Object fields Objects are allocated on the heap.
e.f — ExCtx(MEM (ADD(e.unEx(), CONST 0)))

where o is the byte offset of field f in the object.
Null pointer check: Check that object expression
is non-null.

Translating Minidava Expressions

Array allocation Arrays are allocated on the heap.

@ Call external memory allocation function with
needed size.

@ Add size of array in the first memory chunk.

@ Initialize then all fields with default values.

@ Return address of first field as base of array.

Object allocation Objects are allocated on the heap.

@ In constructor, call first external memory
allocation function with needed size.

@ Initialize pointer to the corresponding vtable
(virtual method table).

@ Initialize then all fields with default values.

@ Return address of first field as base of object.

Translating Minidava Expressions

Method call In OO language, this is an implicit variable. The
pointer of the calling object will be added as
parameter to each function!

@ Fetch the class descriptor at offset 0 from
object c.

@ Fetch the method-instance pointer p from the
(constant) offset f.

e Call p.

ExCtx (CALL (MEM(+ (MEM (- (e0.unEx (), CONST (w))
*(m.index ,CONST (w))),
e0.unEx (),el.unkEx (), ...,en.unkEx ()

Null pointer check: Check that object expression is non-null.
For static methods, the function label/address can be done at
compile time.

Translating Minidava Control Structures

Code is structured into basic blocks:

@ a maximal sequence of instructions without branches
(straight-line code)

@ a label starts a new basic block
For implementing control structures:
@ Link up the basic blocks!
@ Implementation requires bookkeeping (labels!).

While loops

while(c) s

@ evaluate ¢

@ if true, jump to loop body, else jump to next statement after
loop

@ evaluate loop body s

@ jump to conditional

@ if true, jump back to loop body

NxCtx (SEQ(SEQ(
LABREL (cond), c.unCx (body,done)),

SEQ (SEQ(
LABEL (body)

, SEQ(s.unNx (), JUMP (cond)))),
LABEL (done)))

for(i, ¢, u) s

@ evaluate initialization statement i

@ evaluate ¢

@ if true, jump to loop body, else jump to next statement after
loop

@ evaluate loop body s

@ evaluate update statement u

@ jump to condition statement

NxCtx (SEQ(i.unNx(),

SEQ (SEQ (
LABEL (cond) , c.unCx (body, done)),
SEQ (SEQ (
LABEL (body) SEQ (s.unNx (), SEQ (u.unNx (),

JUMP (cond)))),
LABEL (done)))))

Break statement

@ when translating a loop, push the done label on some stack
@ break simply jumps to label on top of stack

@ when done with translating the loop and its body, pop the
label from the stack

Switch statement

case E of Vy: S ... V,: S, end
@ evaluate the expression
@ find value in case list equal to value of expression
@ execute statement associated with value found
@ jump to next statement after case
Key issue: finding the right case!
@ sequence of conditional jumps (small case set): O(|cases|)

@ binary search of an ordered jump table (sparse case set):
O(log, |cases|)

@ hash table (dense case set): O(1)

Switch statement

evaluate E into t
iftl=Vj jump L4
code for S;
jump next

L1: if tl= V2 ijp Lz
code for S,
jump next

Lp—y: iftl= Vyjump L,

code for S,

jump next
Ln: code to raise run-time exception
next:

Switch statement

evaluate E into t
jump test

Lq: code for Sy
jump next

Lo: code for S,
jump next

Lp: code for S,
jump next

test: ift=Vj jump L,
ift= V2 ijp Lg

ift=V,jump L,
code to raise run-time exception
next:

Multi-dimensional arrays

Array allocation
@ constant bounds:

e allocate in static area, stack, or heap
@ no run-time descriptor is needed

@ dynamic arrays: bounds fixed at run-time

o allocate in stack or heap
e descriptor is needed

@ dynamic arrays: bounds can change at run-time

e allocate in heap
e descriptor is needed

Multi-dimensional arrays

Array layout
@ Contiguous:
e Row major: Rightmost subscript varies most quickly
A[1l,11, A[1,2],
A[2,11, A[2,2],
Used in PL/1, Algol, Pascal, C, Ada, Modula, Modula-2,
Modula-3
e Column major: Leftmost subscript varies most quickly

All,1]1, A[2,1],
All,2], A[2,2],
Used in FORTRAN
@ By vectors:

e Contiguous vector of pointers to (non-contiguous)
subarrays

Multi-dimensional arrays: Row-major layout

@ Array [1..N,1..M] of T corresponds to array [1..N] of array
[1..M] of T

@ Number of elt’s in dim j:
Dj = Uj — Lj + 1
@ Position of A[iy, ..., in]:

(in — Ln) 4 (in—1 — Ln—1)Dn + - - - + (it — L1)DnDp—1 ... D
= ip+in_1Dn+---+i4DnaDp_q...D>

—(Ln +Lhp 1Dy +---—LiDpDp_ ... Dg)
= variable part

—constant part

@ Address of Ali, ..., In]:

address(A) + ((variable part - constant part) * element size)

Kinds of Contextis

ExCtx(exp) context where a value is required
NxCtx(stm) context where no value is required
CxCtx context with condition (abstract)
RelCxCtx(op,left,right) relational operations
IfThenElseCtx context of if-then-else construct
Conversion operations allow to use a form in the context of
another :

unEx converts to IR expression that evaluates inner tree
and returns its value

unNx converts to IR statement that evaluates inner tree
but returns no value

unCx(t,f) converts to IR statement that evaluates inner tree
and branches to true destination if non-zero, to
false destination otherwise

Implementation

1 interface Ctx {

2 Exp unkEx () ;

3 Stm unNx () ;

4 Stm unCx (Label t, Label f);

5 }

1 class ExCtx implements Ctx {

2 Exp exp;

3 ExCtx (Exp e) {exp = e;}

4 Exp unEx () {return exp;}
Stm unNx () {return new EXP (exp);}

6 Stm unCx (Label t, Label f)

7 { ... 2 ...} // homework ;)

Implementation

1 class NxCtx implements Ctx {

2 Stm stm;

3 NxCtx (Stm s) {stm = s;}

q Exp unEx () { ... 2?2 ...} // never needed in MiniJav
5 Stm unNx () {return stm;}

6 Stm unCx (Label t, Label f)

7 { ... ?2 ...} // never needed in MiniJava

Implementation

1 abstract class CxCtx implements Ctx {
2 Exp unEx () { ... 2 ...} // next slide
3 Stm unNx () { ... 2 ...} // homework ;)

! abstract Stm unCx (Label t, Label f);

Implementation

abstract class CxCtx implements Ctx {

1

2 Exp unkEx () {

3 Temp r = new Temp();

4 Label t = new Label();

5 Label f = new Label();

6 return ESEQ (

7 SEQ(MOVE (TEMP (r), CONST (1)),
3 SEQ(this.unCx (t, f),

9 SEQ(LABEL (f),

10 SEQ(MOVE (TEMP (r), CONST(0)),
11 LABEL(t))))),

12 TEMP (r))) ;

13 }

14 Stm unNx () { ... 2 ...} // homework ;)

15 abstract Stm unCx (Label t, Label f);

Implementation

For comparisons (e.g. x < 5):

1 class RelCxCtx extends CxCtx {

2 RelOp o; Exp left; Exp right;

3 RelCxCtx (RelOp o, Exp left, Exp right) {...}
4 Stm unCx (Label t, Label f) {

5 return CJUMP (o, left,right,t, f);

Implementation

Translate short-circuiting boolean operators as if they were
conditionals. May use if-then-else construct/conditional
expression e17e> : es.

Example
x < 5 && y > 0istreated as

(x < 5) 2 (y > 0) : 0

We translate ei?e» : e3 into an IfThenElseCtx(eq,e»,€3) :

class IfThenElseCtx implements Ctx{
Exp el; Exp e2; Exp e3;
IfThenElseCtx (Exp el, Exp e2, Exp e3)
{this.el = el; this.e2 = e2; this.e3 = e3;}
Exp unEx () { ... 2 ...}
Stm unNx () { .02 o0}
Stm unCx (Label t, Label f)
{ ... 2?2 .0}

W W U G W N

Implementation

When using a IfThenElseCtx as an expression:

Exp unkEx () {
Label t = new Label ();
Label f = new Label ();
Temp r = new Temp();
return ESEQ (
SEQ(el.unCx(t,f),
SEQ(SEQ (LABEL (t),
SEQ(MOVE (TEMP (r), e2.unEx()),

g4 o e W N e

©

9 JUMP (3))),

10 SEQ (LABEL(f), SEQ(MOVE (TEMP (r), e3.unEx()),
11 JUMP (3)))),

12 LABEL (3)),

13 TEMP (r));
14 }
15 }

Implementation

When using a [fThenElseCtx as a conditional:

Stm unCx (Label t, Label f) {
Label tt = new Label();
Label ff = new Label ();
return SEQ (el.unCx(tt,ff),
SEQ (SEQ (LABEL(tt),e2.unCx(t,f)),
SEQ (LABEL (ff), e3.unCx(t,f))));

g4 o g e w N e

e Canonical Trees

Mismatches between IR and machine code
@ Evaluation order of ESEQ’s within expressions must be
made explicit, same for CALL nodes.
@ CALL nodes at argument expression of other CALLS cause
problems with registers.
@ CJuMP may jump to either of two labels, conditional jumps
of machines “fall through” if condition is false.

Motivation

Yet another tree re-writing step!
@ Eliminate sEQ and ESEQ nodes = simple list of

statements!

@ CALL can only be subtree of EXP (. ..) or MOVE (TEMP
t,...).

@ Group sequences into basic blocks without internal jumps
or labels.

@ Arrange basic blocks where every cJump is followed by
false branch.

Re-writing of ESEQ(1)

ESEQ ESEQ
/ N\ /N
S1 ESEQ SEQ e
/ \ / A\
So e 51 So

ESEQ(s1, ESEQ(s2,6)) = ESEQ(SEQ(s1,52),€)

Re-writing of ESEQ(2)

BINOP

/N

op ESEQ

1

BINOP(op, ESEQ(s,e1),e2)

MEM(ESEQ(s,ey)
JUMP(ESEQ(s,eq
CJUMP(op,ESEQ

)
)
(

)
s,e1),62,l1,b)

R

ESEQ

/N

] BINOP

N

op S1 (7]

ESEQ(s,BINOP(op,e1,e2))
ESEQ(s,MEM(ey))
ESEQ(s,JUMP(e;))
SEQ(s,CJUMP(op, 1,62,k b))

Re-writing of ESEQ(3)

ESEQ
/N
MOVE ESEQ
/N /N
BINOP TEMP €1 s BINOP
P RN | RN
op €1 ESEQ t op TEMP ez
/\ |
S (=73 t
BINOP(op, e1,ESEQ(s,e2)) = ESEQ(MOVE(TEMP t,ey),

ESEQ(s,

BINOP(op, TEMP t,e2)))
CJUMP(op,e1,ESEQ(s,e2),l1,b) = SEQ(MOVE(TEMP t,e),

SEQ(s,

CJUMP(op, TEMP t,e0,h,k)))

Re-writing of ESEQ(4)

If s and e; commute, we can optimize:

BINOP ESEQ
PN /N
op e ESEQ s BINOP
/\ RN
s € op €4 €2
BINOP(op, e1,ESEQ(s,€)) = ESEQ(s,BINOP(op,é1,€e2))

CJUMP(op,e1,ESEQ(s,€2),l1,b) = SEQ(s,CJUMP(op,e1,ex,li,k))

@ MOVE(MEM(x),y) commutes with MEM(z) iff x £ z.

@ Any statement commutes with CONST(n).

General Rewriting Rules

From the examples so far, we can derive this somewhat general
approach:

@ Extract recursively all ESEQ’s out of all subexpressions.

@ Generate statement sequences where sub-expressions
are evaluated into temporaries.

@ Rebuild original construct.
Use similar technique to eliminate nested function calls:

CALL(f,args) = ESEQ(MOVE(TEMP t, CALL(f,args)),TEMP 1)

Basic Blocks and Traces

A basic block

@ starts with a LABEL,

@ end with a JUMP or CJUMP, and

@ there are no other LABELs, JUMPs, or CJUMPs
A trace

@ is a sequence of statements that could be consecutively
executed in the program.

Arrange the blocks to get “optimal” traces!

Generating Traces

@ Divide the list of statements of a function body into blocks.

@ Put all the blocks into a list Q.
@ While Q is not empty:
e Start new (empty) trace T.
e Remove head element b from Q.
e While b is not marked:
e Mark b.
@ Append b to the end of the current trace T.

@ Examine the blocks to which b branches:
If there is any unmarked successor c, let it be the next b.

End the current trace T.

Finishing up

@ Make sure that every CJUMP is followed by its false label.

o If followed by true label, negate condition and swap labels.
o If followed by neither label, insert dummy label f* and jump.

CJUMP (cond,a,b,t,f’)
LABEL f’
JUMP (NAME f)

@ Remove jumps that are immediately followed by their
target label.

Building Traces of Basic Blocks

prologue statements

prologue statements

prologue statements

JUMPINAME({test)) JUMPINAME{test)) JUMP(NAME test)
LABEL(test) LABEL (test) LABEL(body)
CJUMP(>,i, N,done,body) | CJUMP(<,i, N,body,done) | loop body statements
LABEL (body) LABEL(done) JUMPNAME{test))

loop body statements epilogue statements LABEL(test)
JUMP(NAME test) LABEL (body) CJUMP(<,i, N,body,done)
LABEL(done) loop body statements LABEL(done)

epilogue statements JUMP(NAME test) epilogue statements

Alternative Intermediate Representations

@ Directed acyclic graphs (DAGs): identifies common
subexpression

@ Three-address code: at most one operator at the right side
of an instruction

@ Static single assignment form (SSA): all assignments are
to variables with distinct names

	Contexts
	Canonical Trees

