
Compiler Construction 2009/2010:
Intermediate Representation

Annette Bieniusa

November 17, 2009



Outline

1 Intermediate representation

2 Registers, heap and stack frames

3 Memory layout



Motivation

We could go directly from the AST to machine code, but ...

Java
C

C++
Pascal

ML

Sparc

MIPS

Pentium

Java
C

C++
Pascal

ML

IR

Sparc

MIPS

Pentium

Intermediate representation
front end: lexical analysis, parsing, semantic analysis
back end: machine specific optimization, translation to
machine language
intermediate code: machine and language independent
optimization



Specifics of Intermediate Representation

A good IR is
convenient to produce from AST;
convenient to translate into machine language;
small, with clear and simple semantics.

Main differences: AST vs. IR
Conditionals: if-then-else vs. comparisons and conditional
jumps
Method calls: various number of arguments vs. simple call
(→ activation frames)
Memory layout: array and field deferencing vs. load/store
on heap or stack



IR: Expressions

CONST(i) integer constant i

NAME(n) symbolic constant n [code label]

TEMP(t) temporary t , one of arbitrary many ”regis-
ters”

BINOP(o,e1,e2) binary operator o with operands e1 and e2

MEM(e) contents of a word of memory at address e

CALL(f ,[e1, . . . , en]) procedure call

ESEQ(s,e) expression sequence; evaluate statement s
for side-effects, expression e for result



IR: Statements

MOVE(TEMP(t), e) Evaluate e and move it into t .

MOVE(MEM (e1),e2) Evaluate e1 yielding address a; evaluate e2
and move it into a.

EXP(e) Evaluate e and discard result.

JUMP(e,[l1, . . . , ln]) Transfer control (jump) to address e;
l1, . . . , ln are all possible values for e. Of-
ten used: JUMP(l).

CJUMP(o,e1,e2,t ,f ) Evaluate e1, then e2; compare their results
using relational operator o. If true, jump to
label t , else jump to label f .

SEQ(s1,s2) Statement s1 followed by statement s2.

LABEL(n) Define constant value of name n as current
code address. NAME(n) can then be used
as targets of jumps, calls, etc.



IR: Operators

Binary arithmetic and logical operators:

PLUS, MINUS, MUL, DIV integer arithmetic operators

AND, OR, XOR integer bitwise logical operators

LSHIFT, RSHIFT integer logical shift operators

ARSHIFT integer arithmetic right-shift

Relational operators:
EQ, NE integer equality and non-equality (signed or

unsigned)

LT, GT, LE, GE integer inequalities (signed)

ULT, UGT, ULE, UGE integer inequalities (unsigned)



Examples

Translate the following MiniJava statements to IR:
1 if (x < y) x = y; else x = 0;

2 y = z[4];



Examples

1 if (x < y) x = y; else x = 0;

Assume, x corresponds to TEMP 5, y corresponds to
TEMP 27.
Define three (new) label names L1, L2, and L3.

CJUMP (LT, TEMP 5, TEMP 27, L1, L2)
L1 MOVE (TEMP 5, TEMP 27)

JUMP L3
L2 MOVE (TEMP 5, CONST 0)
L3 ...



Examples

2 y = z[4];

Assume y corresponds to TEMP 27, and the array z is at
memory location MEM a.
Let w be the word size of MiniJava (e.g. 4 bytes).
Calculate the offset for array index i .

MOVE (TEMP 27, +(MEM a, *(CONST 4, CONST w)))

Here, we use o(e1,e2) as abbreviation for
BINOP(o,e1,e2).



Outline

1 Intermediate representation

2 Registers, heap and stack frames

3 Memory layout



Concepts of Memory layout

Registers store local variables and temporary results; pass
parameters and return results (for function calls),
depending on the architecture’s calling
conventions.

Heap area of memory used for dynamic memory
allocation (e.g. arrays, objects)

Stack frames maintained in program’s virtual address space

Non-local data can be either referenced via static links to stack
locations (also as local data of other frames), or to heap
locations.



Traditional heap - stack arrangement

stack

free memory

heap

static data

code

high address

low address



Stack frames

argument n

...

argument 2

argument 1

static link

local variables

return address

temporaries

saved registers

argument m

...

argument 2

argument 1

static link

↑higher addresses

↓lower address

previous frame

next frame

current frame

incoming arguments

outgoing arguments

frame pointer →

stack pointer →



When calling a function...

The following actions are divided between the caller and the
callee:

1 Evaluates actual arguments and puts values on the top of
the caller’s SF.

2 Stores return address in caller’s SF (sometimes in the
callee’s SF).

3 Stores the caller’s frame pointer register in callee’s SF.
4 Modifies the frame pointer fp, making it point to callee’s SF.
5 Modifies the stack pointer sp, making it point to the to top

of the stack.
6 Go to callee’s first instruction.
7 Callee begins execution.



When exciting a function...

1 Caller needs to retrieve the function return value.
2 Restores saved stack pointer for caller.
3 Restores saved register contents for caller.
4 Return to the caller.



Calling conventions

Modern machines have a large set of registers (typically 32
registers).
Register access is faster than memory loads and stores.
Most functions have few parameters. Therefore, use small
number of registers to pass parameters. The rest of the
parameters, if any, can be passed in the stack.
Returning function’s results through registers.
Caller-safe registers: caller is responsible to save and
restore register contents.
Callee-safe registers: callee is responsible to save and
restore register contents.
Convention is described in machine architecture manual.



When are variables written to memory?

Variables passed by reference need to have a memory
address (→ escaping vars).
Variables accessed by a procedure nested inside the
current one.
Values which are too big to fit into a single register.
Variable is an array (→ address arithmetic).
Register holding the variable is needed for specific
purpose.
There are too many local variables and temporary values
to fit all in registers (→ spilling).



Outline

1 Intermediate representation

2 Registers, heap and stack frames

3 Memory layout



Memory layout

Pointers/References
Size is given by the natural word size of the given machine
architecture.

Basic data types
Integers are scalar, i.e. they occupy one word each.
Boolean false is represented as 0, true by every non-zero
value (e.g. 1).
Other data types may be padded.



Memory layout

Strings
Typically implemented statically at constant address of a
segment of memory.
In Java byte code, strings are collectively put into the
constant pool.
In assembly language, referred to by a label.
PASCAL: fixed-length arrays of characters
C: zero-terminated array of characters, variable length



Memory layout

Arrays (one-dimensional)
1 Size: reserve one word for the size of the array.
2 Entries: reserve space for entry of the array.

E.g. new int[4]

4

0

0

0

0

size
array base



Memory layout

Objects
1 Methods: pointer to the vtable (virtual method table) of the

corresponding class.
2 Fields: reserve space for fields of the class and for fields of

the super classes



Memory layout

For OO languages with single-inheritance, a prefixing
technique is used.

1 class A {int x = 0; int f() {...} }
2 class B extends A {int g() {...} }
3 class C extends B {int g() {...} }
4 class D extends C {int y = 0; int f() {...} }

x x x x
y

x
y

A A f B A f
B g

C A f
C g

D D f
C g


	Intermediate representation
	Registers, heap and stack frames
	Memory layout

