
The role of the parser

code
source tokens

errors

scanner parser IR

Parser� performs context-free syntax analysis� guides context-sensitive analysis� constructs an intermediate representation� produces meaningful error messages� attempts error correction

For the next few weeks, we will look at parser construction

Copyright c
2001 by Antony L. Hosking. Permission to make digital or hard copies of part or all of this
work for personal or classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and full citation on the first page. To
copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission
and/or fee. Request permission to publish from hosking@cs.purdue.edu.

1

Syntax analysis

Context-free syntax is specified with a context-free grammar.

Formally, a CFG G is a 4-tuple (Vn;Vt;P;S), where:

Vn, the nonterminals, is a set of syntactic variables that denote sets of
(sub)strings occurring in the language.
These are used to impose a structure on the grammar.

Vt is the set of terminal symbols in the grammar.
For our purposes, Vt is the set of tokens returned by the scanner.

P is a finite set of productions specifying how terminals and non-terminals
can be combined to form strings in the language.
Each production must have a single non-terminal on its left hand side.

S is a distinguished nonterminal (S 2Vn) denoting the entire set of strings
in L(G).
This is sometimes called a goal symbol.

The set V =Vt [Vn is called the vocabulary of G

2

Notation and terminology

� a;b;c; : : : 2Vt� A;B;C; : : : 2Vn� U;V;W; : : : 2V� α;β;γ; : : : 2V �� u;v;w; : : : 2V �
t

If A! γ then αAβ) αγβ is a single-step derivation using A! γ

Similarly,)� and)+ denote derivations of � 0 and � 1 steps

If S)� β then β is said to be a sentential form of G

L(G) = fw 2V �

t j S)+ wg, w 2 L(G) is called a sentence of G

Note, L(G) = fβ 2V � j S)� βg\V�

t

3

Syntax analysis

Grammars are often written in Backus-Naur form (BNF).

Example:

1 hgoali ::= hexpri

2 hexpri ::= hexprihopihexpri

3 j num

4 j id
5 hopi ::= +
6 j �
7 j �
8 j =

This describes simple expressions over numbers and identifiers.

In a BNF for a grammar, we represent

1. non-terminals with angle brackets or capital letters
2. terminals with typewriter font or underline
3. productions as in the example

4

Scanning vs. parsing

Where do we draw the line?

term ::= [a�zA�z℄([a�zA�z℄ j [0�9℄)�j 0 j [1�9℄[0�9℄�

op ::= + j � j � j =

expr ::= (term op)�term

Regular expressions are used to classify:� identifiers, numbers, keywords� REs are more concise and simpler for tokens than a grammar� more efficient scanners can be built from REs (DFAs) than grammars

Context-free grammars are used to count:� brackets: (), begin. . . end, if. . . then. . . else� imparting structure: expressions

Syntactic analysis is complicated enough: grammar for C has around 200
productions. Factoring out lexical analysis as a separate phase makes
compiler more manageable.

5

Derivations

We can view the productions of a CFG as rewriting rules.

Using our example CFG:hgoali) hexpri) hexprihopihexpri) hexprihopihexprihopihexpri) hid,xihopihexprihopihexpri) hid,xi+ hexprihopihexpri) hid,xi+ hnum,2ihopihexpri) hid,xi+ hnum,2i� hexpri) hid,xi+ hnum,2i� hid,yi
We have derived the sentence x + 2 � y.
We denote this hgoali)� id + num � id.

Such a sequence of rewrites is a derivation or a parse.

The process of discovering a derivation is called parsing.

6

Derivations

At each step, we chose a non-terminal to replace.

This choice can lead to different derivations.

Two are of particular interest:

leftmost derivation
the leftmost non-terminal is replaced at each step

rightmost derivation
the rightmost non-terminal is replaced at each step

The previous example was a leftmost derivation.

7

Rightmost derivation

For the string x + 2 � y:hgoali) hexpri) hexprihopihexpri) hexprihopihid,yi) hexpri� hid,yi) hexprihopihexpri� hid,yi) hexprihopihnum,2i� hid,yi) hexpri+ hnum,2i� hid,yi) hid,xi+ hnum,2i� hid,yi
Again, hgoali)� id + num � id.

8

Precedence

goal

expr

expr op expr

expr op expr * <id,y>

<num,2>+<id,x>

Treewalk evaluation computes (x + 2) � y
— the “wrong” answer!

Should be x + (2 � y)

9

Precedence

These two derivations point out a problem with the grammar.

It has no notion of precedence, or implied order of evaluation.

To add precedence takes additional machinery:

1 hgoali ::= hexpri

2 hexpri ::= hexpri+ htermi

3 j hexpri�htermi

4 j htermi
5 htermi ::= htermi � hfactori

6 j htermi=hfactori

7 j hfactori
8 hfactori ::= num
9 j id

This grammar enforces a precedence on the derivation:� terms must be derived from expressions� forces the “correct” tree

10

Precedence

Now, for the string x + 2 � y:hgoali) hexpri) hexpri+ htermi) hexpri+ htermi � hfactori) hexpri+ htermi � hid,yi) hexpri+ hfactori � hid,yi) hexpri+ hnum,2i� hid,yi) htermi+ hnum,2i� hid,yi) hfactori+ hnum,2i� hid,yi) hid,xi+ hnum,2i� hid,yi

Again, hgoali)� id + num � id, but this time, we build the desired tree.

11

Precedence

expr

expr

+

term

factor

<id,x>

goal

term

*term

<num,2>

factor

factor

<id,y>

Treewalk evaluation computes x + (2 � y)

12

Ambiguity

If a grammar has more than one derivation for a single sentential form,
then it is ambiguous

Example:hstmti ::= if hexprithen hstmtij if hexprithen hstmtielse hstmtij other stmts
Consider deriving the sentential form:if E1 then if E2 then S1 else S2

It has two derivations.

This ambiguity is purely grammatical.

It is a context-free ambiguity.

13

Ambiguity

May be able to eliminate ambiguities by rearranging the grammar:hstmti ::= hmatchedij hunmatchedihmatchedi ::= if hexpri then hmatchedi else hmatchedij other stmtshunmatchedi ::= if hexpri then hstmtij if hexpri then hmatchedi else hunmatchedi

This generates the same language as the ambiguous grammar, but
applies the common sense rule:

match each else with the closest unmatched then
This is most likely the language designer’s intent.

14

Ambiguity

Ambiguity is often due to confusion in the context-free specification.

Context-sensitive confusions can arise from overloading.

Example:a = f(17)
In many Algol-like languages, f could be a function or subscripted
variable.

Disambiguating this statement requires context:� need values of declarations� not context-free� really an issue of type

Rather than complicate parsing, we will handle this separately.

15

Parsing: the big picture

parser

generator

code

parser

tokens

IR

grammar

Our goal is a flexible parser generator system

16

Top-down versus bottom-up

Top-down parsers� start at the root of derivation tree and fill in� picks a production and tries to match the input� may require backtracking� some grammars are backtrack-free (predictive)

Bottom-up parsers� start at the leaves and fill in� start in a state valid for legal first tokens� as input is consumed, change state to encode possibilities
(recognize valid prefixes)� use a stack to store both state and sentential forms

17

Top-down parsing

A top-down parser starts with the root of the parse tree, labelled with the
start or goal symbol of the grammar.

To build a parse, it repeats the following steps until the fringe of the parse
tree matches the input string

1. At a node labelled A, select a production A! α and construct the
appropriate child for each symbol of α

2. When a terminal is added to the fringe that doesn’t match the input
string, backtrack

3. Find the next node to be expanded (must have a label in Vn)

The key is selecting the right production in step 1) should be guided by input string

18

Simple expression grammar

Recall our grammar for simple expressions:

1 hgoali ::= hexpri

2 hexpri ::= hexpri + htermi

3 j hexpri �htermi

4 j htermi

5 htermi ::= htermi � hfactori

6 j htermi =hfactori

7 j hfactori
8 hfactori ::= num
9 j id

Consider the input string x � 2 � y

19

Example
Prod’n Sentential form Input

– hgoali "x � 2 � y

1 hexpri "x � 2 � y

2 hexpri + htermi "x � 2 � y

4 htermi + htermi "x � 2 � y

7 hfactori + htermi "x � 2 � y

9 id + htermi "x � 2 � y

– id + htermi x " � 2 � y

– hexpri "x � 2 � y

3 hexpri � htermi "x � 2 � y

4 htermi � htermi "x � 2 � y

7 hfactori � htermi "x � 2 � y

9 id � htermi "x � 2 � y

– id � htermi x " � 2 � y

– id � htermi x � "2 � y

7 id � hfactori x � "2 � y

8 id � num x � "2 � y

– id � num x � 2 " � y

– id � htermi x � "2 � y
5 id � htermi � hfactori x � "2 � y
7 id � hfactori � hfactori x � "2 � y
8 id � num � hfactori x � "2 � y
– id � num � hfactori x � 2 " � y
– id � num � hfactori x � 2 � "y
9 id � num � id x � 2 � "y
– id � num � id x � 2 � y "

20

Example

Another possible parse for x � 2 � y

Prod’n Sentential form Input
– hgoali "x � 2 � y

1 hexpri "x � 2 � y

2 hexpri + htermi "x � 2 � y

2 hexpri + htermi + htermi "x � 2 � y

2 hexpri + htermi + � � � "x � 2 � y

2 hexpri + htermi + � � � "x � 2 � y

2 � � � "x � 2 � y
If the parser makes the wrong choices, expansion doesn’t terminate.
This isn’t a good property for a parser to have.

(Parsers should terminate!)

21

Top-down parsing with pushdown automaton

A top-down parser for grammar G = (Vn;Vt;P;S) is a pushdown automaton
A = (Q;Vt;Vk;δ;q0;k0) that accepts input with empty pushdown where

� Q = fq0g is the set of states� Vk =Vn[Vt is the alphabet of pushdown symbols� δ : Q�Vt [fεg�Vk! Q�V�
k� q0 is the initial state� k0 = S is the initial pushdown symbol

where

� δ(q0;ε;A) = (q0;α) for each production A! α 2 P� δ(q0;x;x) = (q0;ε)

22

Pushdown automaton example

Pushdown (rev) Input Prod’nhgoali x-2*y 1hexpri x-2*y 3htermi� hexpri x-2*y 4htermi� htermi x-2*y 7htermi� hfactori x-2*y 9htermi� id x-2*y shifthtermi� -2*y shifthtermi 2*y 5hfactori� htermi 2*y 7hfactori� hfactori 2*y 8hfactori� num 2*y shifthfactori� *y shifthfactori y 9id y shift
accepted

23

Left-recursion

Top-down parsers cannot handle left-recursion in a grammar

Formally, a grammar is left-recursive if

9A 2Vn such that A)+ Aα for some string α

Our simple expression grammar is left-recursive

24

Eliminating left-recursion

To remove left-recursion, we can transform the grammar

Consider the grammar fragment:hfooi ::= hfooiαj β

where α and β do not start with hfooi
We can rewrite this as: hfooi ::= βhbarihbari ::= αhbarij ε

where hbari is a new non-terminal

This fragment contains no left-recursion

25

Example
Our expression grammar contains two cases of left-recursionhexpri ::= hexpri+ htermij hexpri�htermij htermihtermi ::= htermi � hfactorij htermi=hfactorij hfactori

Applying the transformation giveshexpri ::= htermihexpr0ihexpr0i ::= +htermihexpr0ij εj �htermihexpr0ihtermi ::= hfactorihterm0ihterm0i ::= �hfactorihterm0ij εj =hfactorihterm0i
With this grammar, a top-down parser will� terminate� backtrack on some inputs

26

Example

This cleaner grammar defines the same language

1 hgoali ::= hexpri

2 hexpri ::= htermi + hexpri

3 j htermi�hexpri

4 j htermi

5 htermi ::= hfactori � htermi

6 j hfactori=htermi

7 j hfactori

8 hfactori ::= num
9 j id

It is� right-recursive� free of ε-productions

Unfortunately, it generates different associativity
Same syntax, different meaning

27

Example

Our long-suffering expression grammar:

1 hgoali ::= hexpri

2 hexpri ::= htermihexpr0i

3 hexpr0i ::= +htermihexpr0i

4 j �htermihexpr0i

5 j ε
6 htermi ::= hfactorihterm0i

7 hterm0i ::= �hfactorihterm0i

8 j =hfactorihterm0i

9 j ε
10 hfactori ::= num
11 j id

Recall, we factored out left-recursion
28

How much lookahead is needed?

We saw that top-down parsers may need to backtrack when they select
the wrong production

Do we need arbitrary lookahead to parse CFGs?� in general, yes� use the Earley or Cocke-Younger, Kasami algorithms

Fortunately� large subclasses of CFGs can be parsed with limited lookahead� most programming language constructs can be expressed in a
grammar that falls in these subclasses

Among the interesting subclasses are:

LL(1): left to right scan, left-most derivation, 1-token lookahead; and
LR(1): left to right scan, right-most derivation, 1-token lookahead

29

Predictive parsing

Basic idea:

For any two productions A! α j β, we would like a distinct way of
choosing the correct production to expand.

For α 2V � and k 2 N, define FIRSTk(α) as the set of terminal strings of
length less than or equal to k that appear first in a string derived from α.
That is, if α)� w 2V�

t , then wjk 2 FIRSTk(α). .

Key property:
Whenever two productions A! α and A! β both appear in the grammar,
we would like

FIRSTk(α)\ FIRSTk(β) = φ

for some k. If k = 1, then the parser could make a correct choice with a
lookahead of only one symbol!

The example grammar has this property!

30

Left factoring

What if a grammar does not have this property?

Sometimes, we can transform a grammar to have this property.

For each non-terminal A find the longest prefix
α common to two or more of its alternatives.

if α 6= ε then replace all of the A productions
A! αβ1 j αβ2 j � � � j αβn

with
A! αA0

A0! β1 j β2 j � � � j βn

where A0 is a new non-terminal.

Repeat until no two alternatives for a single
non-terminal have a common prefix.

31

Example

Consider a right-recursive version of the expression grammar:

1 hgoali ::= hexpri

2 hexpri ::= htermi+ hexpri

3 j htermi�hexpri

4 j htermi

5 htermi ::= hfactori � htermi

6 j hfactori=htermi

7 j hfactori

8 hfactori ::= num
9 j id

To choose between productions 2, 3, & 4, the parser must see past thenum or id and look at the +, �, �, or =.

FIRST1(2)\ FIRST1(3)\ FIRST1(4) 6= /0

This grammar fails the test.

Note: This grammar is right-associative.

32

Example

There are two nonterminals that must be left-factored:hexpri ::= htermi+ hexprij htermi�hexprij htermihtermi ::= hfactori � htermij hfactori=htermij hfactori
Applying the transformation gives us:hexpri ::= htermihexpr0ihexpr0i ::= +hexprij �hexprij εhtermi ::= hfactorihterm0ihterm0i ::= �htermij =htermij ε

33

Example

Substituting back into the grammar yields

1 hgoali ::= hexpri

2 hexpri ::= htermihexpr0i

3 hexpr0i ::= +hexpri

4 j �hexpri

5 j ε
6 htermi ::= hfactorihterm0i

7 hterm0i ::= �htermi

8 j =htermi
9 j ε

10 hfactori ::= num
11 j id

Now, selection requires only a single token lookahead.

Note: This grammar is still right-associative.

34

Example

Sentential form Input
– hgoali "x � 2 � y

1 hexpri "x � 2 � y

2 htermihexpr0i "x � 2 � y

6 hfactorihterm0ihexpr0i "x � 2 � y

11 idhterm0ihexpr0i "x � 2 � y

– idhterm0ihexpr0i x "- 2 � y

9 idε hexpr0i x "- 2

4 id� hexpri x "- 2 � y

– id� hexpri x � "2 � y

2 id� htermihexpr0i x � "2 � y

6 id� hfactorihterm0ihexpr0i x � "2 � y

10 id� numhterm0ihexpr0i x � "2 � y

– id� numhterm0ihexpr0i x � 2 "* y

7 id� num� htermihexpr0i x � 2 "* y

– id� num� htermihexpr0i x � 2 � "y

6 id� num� hfactorihterm0ihexpr0i x � 2 � "y

11 id� num� idhterm0ihexpr0i x � 2 � "y
– id� num� idhterm0ihexpr0i x � 2 � y"
9 id� num� idhexpr0i x � 2 � y"
5 id� num� id x � 2 � y"

The next symbol determined each choice correctly.

35

Back to left-recursion elimination

Given a left-factored CFG, to eliminate left-recursion:

if 9 A! Aα then replace all of the A productions
A! Aα j β j : : : j γ

with
A! NA0
N! β j : : : j γ
A0! αA0 j ε

where N and A0 are new productions.

Repeat until there are no left-recursive productions.

36

Generality

Question:

By left factoring and eliminating left-recursion, can we transform
an arbitrary context-free grammar to a form where it can be
predictively parsed with a single token lookahead?

Answer:

Given a context-free grammar that doesn’t meet our conditions, it
is undecidable whether an equivalent grammar exists that does
meet our conditions.

Many context-free languages do not have such a grammar:fan0bn j n� 1g[fan1b2n j n� 1g
Must look past an arbitrary number of a’s to discover the 0 or the 1 and so
determine the derivation.

37

Recursive descent parsing

General idea: Turn the grammar into a set of mutually recursive functions!
� Each non-terminal maps to a function

� The body of the function for A 2Vn is determined by the productions
A! α1 j : : : j αk

– on function entry, use lookahead to determine the correct RHS
α = α j, say

– in the body, generate code for each symbol of α in sequence

– for a terminal symbol, the code consumes a matching input token

– for a non-terminal symbol, the code invokes the non-terminal’s
function

38

Recursive descent parsing

In that manner, we can produce a simple recursive descent parser from
the (right-associative) grammar.goal:token next token();if (expr() = ERROR j token 6= EOF) thenreturn ERROR;expr:if (term() = ERROR) thenreturn ERROR;else return expr prime();expr prime:if (token = PLUS) thentoken next token();return expr();else if (token = MINUS) thentoken next token();return expr();else return OK;

39

Recursive descent parsingterm:if (fa
tor() = ERROR) thenreturn ERROR;else return term prime();term prime:if (token = MULT) thentoken next token();return term();else if (token = DIV) thentoken next token();return term();else return OK;fa
tor:if (token = NUM) thentoken next token();return OK;else if (token = ID) thentoken next token();return OK;else return ERROR;

40

Building the tree

One of the key jobs of the parser is to build an intermediate
representation of the source code.

To build an abstract syntax tree, we have each function return the AST for
the word parsed by it. The function for a production gobbles up the ASTs
for the non-terminal’s on the RHS and applies the appropriate AST
constructor.

Alternatively, the functions use an auxiliary stack for AST fragments.

41

Non-recursive predictive parsing

Observation:

Our recursive descent parser encodes state information in its
run-time stack, or call stack.

Using recursive procedure calls to implement a stack abstraction may not
be particularly efficient.

This suggests other implementation methods:� explicit stack, hand-coded parser� stack-based, table-driven parser

42

Non-recursive predictive parsing

Now, a predictive parser looks like:

scanner
table-driven

parser
IR

parsing

tables

stack

source

code

tokens

Rather than writing code, we build tables.

Building tables can be automated!

43

Table-driven parsers

A parser generator system often looks like:

scanner
table-driven

parser
IR

parsing

tables

stack

source

code

tokens

parser

generator
grammar

This is true for both top-down (LL) and bottom-up (LR) parsers

44

Non-recursive predictive parsing

Input: a string w and a parsing table M for Gtos 0Sta
k[tos℄ EOFSta
k[++tos℄ Start Symboltoken next token()repeatX Sta
k[tos℄if X is a terminal or EOF thenif X = token thenpop Xtoken next token()else error()else /* X is a non-terminal */if M[X,token℄ = X ! Y1Y2� � �Yk thenpop Xpush Yk;Yk�1; � � � ;Y1else error()until X = EOF

45

Non-recursive predictive parsing

What we need now is a parsing table M.

Our expression grammar:

1 hgoali ::= hexpri
2 hexpri ::= htermihexpr0i
3 hexpr0i ::= +hexpri
4 j �hexpri
5 j ε
6 htermi ::= hfactorihterm0i
7 hterm0i ::= �htermi
8 j =htermi
9 j ε

10 hfactori ::= num

11 j id
Its parse table:id num + � � = $†hgoali 1 1 – – – – –hexpri 2 2 – – – – –hexpr0i – – 3 4 – – 5htermi 6 6 – – – – –hterm0i – – 9 9 7 8 9hfactori 11 10 – – – – –

† we use $ to represent EOF

46

Computing FIRST = FIRST1

For a string of grammar symbols α, define FIRST(α) as:� the set of terminal symbols that begin strings derived from α:fa 2Vt j α)� aβg� If α)� ε then ε 2 FIRST(α)
FIRST(α) contains the set of tokens valid in the initial position in α

To compute FIRST(α) it is sufficient to know FIRST(X), for all X 2V :

FIRST(Y1Y2 : : :Yk) = FIRST(Y1)� FIRST(Y2)� : : :� FIRST(Yk)

where

M�N =� M ε =2M(M nfεg)[N ε 2M

Clearly, FIRST(a) = fag for a 2Vt.

47

Computing FIRST� Initialize FIRST(A) = /0, for all A 2Vn� Repeat the following steps for all productions until no further additions
can be made:

1. If A! ε then:
FIRST(A) FIRST(A)[fεg

2. If A! Y1Y2 � � �Yk:
FIRST(A) FIRST(A)[(FIRST(Y1)� FIRST(Y2)� : : :� FIRST(Yk))

48

FOLLOW

For a non-terminal A, define FOLLOW(A) as

the set of terminals that can appear immediately to the right of A

in some sentential form

That is, FOLLOW(A) = fa j S$)� αAaβg

Thus, a non-terminal’s FOLLOW set specifies the tokens that can legally
appear after it, with $ acting as end of input marker.

A terminal symbol has no FOLLOW set.

To build FOLLOW(A):
1. Initialize FOLLOW(A) = /0, for A 2Vn, A 6= S, and FOLLOW(S) = f$g

2. Repeat the following steps for all productions A! αBβ until no further
additions can be made:

(a) FOLLOW(B) FOLLOW(B)[(FIRST(β)�fεg)
(b) If ε 2 FIRST(β), then

FOLLOW(B) FOLLOW(B)[FOLLOW(A)
49

LL(1) grammars

Previous definition

A grammar G has a deterministic unambiguous predictive parser
if for all non-terminals A, each distinct pair of productions A! β
and A! γ satisfy the condition FIRST(β)TFIRST(γ) = φ.

What if A)� ε?

Revised definition

A grammar G is LL(1) iff. for each set of productions
A! α1 j α2 j � � � j αn:

1. FIRST(α1);FIRST(α2); : : : ;FIRST(αn) are all pairwise disjoint

2. If αi)� ε then FIRST(α j)TFOLLOW(A) = φ;81� j � n; i 6= j.

If G is ε-free, condition 1 is sufficient.

50

LL(1) grammars

Provable facts about LL(1) grammars:

1. No left-recursive grammar is LL(1)

2. No ambiguous grammar is LL(1)

3. Some languages have no LL(1) grammar

4. An ε–free grammar where each alternative expansion for A begins
with a distinct terminal is a simple LL(1) grammar.

Example� S! aS j a is not LL(1) because FIRST(aS) = FIRST(a) = fag� S! aS0

S0! aS0 j ε
accepts the same language and is LL(1)

51

LL(1) parse table construction

Input: Grammar G

Output: Parsing table M

Method:

1. 8 productions A! α:

(a) 8a 2 FIRST(α), add A! α to M[A;a℄

(b) If ε 2 FIRST(α):
i. 8b 2 FOLLOW(A), add A! α to M[A;b℄

ii. If $2 FOLLOW(A) then add A! α to M[A;$℄

2. Set each undefined entry of M to error
If 9M[A;a℄ with multiple entries then grammar is not LL(1).

Note: recall a;b 2Vt, so a;b 6= ε

52

Example

Our long-suffering expression grammar:

S! E T ! FT 0

E! T E 0 T 0!�T j =T j ε
E 0!+E j �E j ε F ! id j num

FIRST FOLLOW

S fnum;idg f$g
E fnum;idg f$g
E 0 fε;+;�g f$g
T fnum;idg f+;�;$g
T 0 fε;�;=g f+;�;$g
F fnum;idg f+;�;�;=;$gid fidg �num fnumg �� f�g �= f=g �+ f+g �� f�g �

id num + � � = $
S S ! E S ! E � � � � �

E E ! T E 0 E ! T E 0 � � � � �

E 0 � � E 0 !+E E 0 !�E � � E 0 ! ε
T T ! FT 0 T ! FT 0 � � � � �

T 0 � � T 0 ! ε T 0 ! ε T 0 !�T T 0 ! =T T 0 ! ε
F F ! id F ! num � � � � �

53

Building the tree

Again, we insert code at the right points:tos 0Sta
k[tos℄ EOFSta
k[++tos℄ root nodeSta
k[++tos℄ Start Symboltoken next token()repeatX Sta
k[tos℄if X is a terminal or EOF thenif X = token thenpop Xtoken next token()
pop and fill in nodeelse error()else /* X is a non-terminal */if M[X,token℄ = X ! Y1Y2 � � �Yk thenpop X

pop node for X
build node for each child and
make it a child of node for Xpush nk;Yk;nk�1;Yk�1; � � � ;n1;Y1else error()until X = EOF

54

A grammar that is not LL(1)hstmti ::= if hexpri then hstmtij if hexpri then hstmti else hstmtij : : :

Left-factored: hstmti ::= if hexpri then hstmti hstmt0i j : : :hstmt0i ::= else hstmti j ε
Now, FIRST(hstmt0i) = fε;elseg
Also, FOLLOW(hstmt0i) = felse;$g
But, FIRST(hstmt0i)TFOLLOW(hstmt0i) = felseg 6= φ

On seeing else, conflict between choosinghstmt0i ::= else hstmti and hstmt0i ::= ε) grammar is not LL(1)!

The fix:

Put priority on hstmt0i ::= else hstmti to associate else with
closest previous then.

55

Error recovery

Key notion:� For each non-terminal, construct a set of terminals on which the
parser can synchronize� When an error occurs looking for A, scan until an element of
SYNCH(A) is found

Building SYNCH:

1. a 2 FOLLOW(A)) a 2 SYNCH(A)
2. place keywords that start statements in SYNCH(A)

3. add symbols in FIRST(A) to SYNCH(A)
If we can’t match a terminal on top of stack:

1. pop the terminal

2. print a message saying the terminal was inserted

3. continue the parse

(i.e., SYNCH(a) =Vt�fag)
56

Some definitions

Recall

For a grammar G, with start symbol S, any string α such that S)� α is
a sentential form

� If α 2V �
t , then α is a sentence in L(G)

A left-sentential form is a sentential form that occurs in the leftmost
derivation of some sentence.

A right-sentential form is a sentential form that occurs in the rightmost
derivation of some sentence.

57

Bottom-up parsing

Goal:

Given an input string w and a grammar G, construct a parse tree
by starting at the leaves and working to the root.

The parser repeatedly matches a right-sentential form from the language
against the tree’s upper frontier.

At each match, it applies a reduction to build on the frontier:

� each reduction matches an upper frontier of the partially built tree to
the RHS of some production

� each reduction adds a node on top of the frontier

The final result is a rightmost derivation, in reverse.

58

Example

Consider the grammar

1 S ! aABe

2 A ! Ab

3 j b

4 B ! d

and the input string abb
de
Prod’n. Sentential Form

3 a b b
de
2 a Ab
 de
4 aA d e

1 aABe
– S

Scan the input and find valid sentential forms!

59

Handles

What are we trying to find?

A substring α of the tree’s upper frontier that

matches some production A! α where reducing α to A is one
step in the reverse of a rightmost derivation

We call such a string a handle.

Formally:

In a right-sentential form αβw, the string β is a handle for
production A! β

i.e., if S)�

rm αAw)rm αβw then β is a handle for A! β in αβw

All right-sentential forms have a suffix containing only terminal symbols.

60

Handles

S

α

A

wβ
The handle A! β in the parse tree for αβw

61

Handles

Theorem:

If G is unambiguous then every right-sentential form has a unique
handle.

Proof: (by definition)

1. G is unambiguous) rightmost derivation is unique

2.) a unique production A! β applied to take γi�1 to γi

3.) a unique position k at which A! β is applied

4.) a unique handle A! β

62

Example

The left-recursive expression grammar (original form)

1hgoali ::= hexpri
2hexpri ::= hexpri+ htermi
3 j hexpri�htermi
4 j htermi
5htermi ::= htermi � hfactori
6 j htermi=hfactori
7 j hfactori
8hfactori ::=num

9 j id
Prod’n. Sentential Form

– hgoali

1 hexpri

3 hexpri � htermi

5 hexpri � htermi � hfactori

9 hexpri � htermi � id

7 hexpri � hfactori � id

8 hexpri � num � id

4 htermi � num � id

7 hfactori � num � id

9 id � num � id
63

Handle-pruning

The process to construct a bottom-up parse is called handle-pruning.

To construct a rightmost derivation

S = γ0) γ1) γ2) ���) γn�1) γn = w

we set i to n and apply the following simple algorithm

for i = n downto 1
1. find the handle Ai! βi in γi

2. repla
e βi with Ai to generate γi�1

This takes 2n steps, where n is the length of the derivation

64

Stack implementation

One scheme to implement a handle-pruning, bottom-up parser is called a
shift-reduce parser.

Shift-reduce parsers use a stack and an input buffer

1. initialize stack with $

2. Repeat until the top of the stack is the goal symbol and the input
token is $

a) find the handle
if we don’t have a handle on top of the stack, shift an input symbol
onto the stack

b) prune the handle
if we have a handle for A! β on the stack, reduce:

i) pop j β j symbols off the stack

ii) push A onto the stack

65

Example: back to x � 2 � y

1hgoali ::= hexpri
2hexpri ::= hexpri+ htermi
3 j hexpri�htermi
4 j htermi
5htermi ::= htermi � hfactori
6 j htermi=hfactori
7 j hfactori
8hfactori ::=num
9 j id

Stack Input Action
$ id � num � id shift
$id � num � id reduce 9
$hfactori � num � id reduce 7
$htermi � num � id reduce 4
$hexpri � num � id shift
$hexpri � num � id shift
$hexpri � num � id reduce 8
$hexpri � hfactori � id reduce 7
$hexpri � htermi � id shift
$hexpri � htermi � id shift
$hexpri � htermi � id reduce 9
$hexpri � htermi � hfactori reduce 5
$hexpri � htermi reduce 3
$hexpri reduce 1
$hgoali accept

1. Shift until top of stack is the right end of a handle

2. Find the left end of the handle and reduce

5 shifts + 9 reduces + 1 accept

66

Shift-reduce parsing

Shift-reduce parsers are simple to understand

A shift-reduce parser has just four canonical actions:

1. shift — next input symbol is shifted onto the top of the stack

2. reduce — right end of handle is on top of stack;
locate left end of handle within the stack;
pop handle off stack and push appropriate non-terminal LHS

3. accept — terminate parsing and signal success

4. error — call an error recovery routine

But how do we know� that there is a complete handle on the stack?� which handle to use?

67

LR parsing: key insight

Recognize handles with a DFA [Knuth1965]
� DFA transitions shift states instead of symbols

� accepting states trigger reductions

68

LR parsing

The skeleton parser:push s0token next token()repeat forevers top of sta
kif a
tion[s,token℄ = "shift si" thenpush sitoken next token()else if a
tion[s,token℄ = "redu
e A! β"thenpop j β j statess0 top of sta
kpush goto[s0,A℄else if a
tion[s, token℄ = "a

ept" thenreturnelse error()

This takes k shifts, l reduces, and 1 accept, where k is the length of the
input string and l is the length of the reverse rightmost derivation

69

Example tables

state ACTION GOTOid + � $ hexpri htermi hfactori

0 s4 – – – 1 2 3
1 – – – acc – – –
2 – s5 – r3 – – –
3 – r5 s6 r5 – – –
4 – r6 r6 r6 – – –
5 s4 – – – 7 2 3
6 s4 – – – – 8 3
7 – – – r2 – – –
8 – r4 – r4 – – –

The Grammar
1 hgoali ::= hexpri
2 hexpri ::= htermi+ hexpri
3 j htermi

4 htermi ::= hfactori � htermi
5 j hfactori

6 hfactori ::= id

Note: This is a simple little right-recursive grammar; not the same as in previous lectures.

70

Example using the tables

Stack Input Action
$ 0 id� id+ id$ s4
$ 0 4 � id+ id$ r6
$ 0 3 � id+ id$ s6
$ 0 3 6 id+ id$ s4
$ 0 3 6 4 + id$ r6
$ 0 3 6 3 + id$ r5
$ 0 3 6 8 + id$ r4
$ 0 2 + id$ s5
$ 0 2 5 id$ s4
$ 0 2 5 4 $ r6
$ 0 2 5 3 $ r5
$ 0 2 5 2 $ r3
$ 0 2 5 7 $ r2
$ 0 1 $ acc

71

LR(k) grammars

Informally, we say that a grammar G is LR(k) if, given a rightmost
derivation

S = γ0) γ1) γ2) ���) γn = w;

we can, for each right-sentential form in the derivation,

1. isolate the handle of each right-sentential form, and

2. determine the production by which to reduce

by scanning γi from left to right, going at most k symbols beyond the right
end of the handle of γi.

72

LR(k) grammars

Formally, a grammar G is LR(k) iff.:

1. S)�
rm αAw)rm αβw, and

2. S)�
rm γBx)rm αβy, and

3. FIRSTk(w) = FIRSTk(y)
impliers αAy = γBx

i.e., Assume sentential forms αβw and αβy, with common prefix αβ and
common k-symbol lookahead FIRSTk(y) = FIRSTk(w), such that αβw
reduces to αAw and αβy reduces to γBx.

But, the common prefix means αβy also reduces to αAy, for the same
result.

Thus αAy = γBx.

73

Why study LR grammars?

LR(1) grammars are often used to construct parsers.

We call these parsers LR(1) parsers.� virtually all context-free programming language constructs can be
expressed in an LR(1) form� LR grammars are the most general grammars parsable by a
deterministic, bottom-up parser� efficient parsers can be implemented for LR(1) grammars� LR parsers detect an error as soon as possible in a left-to-right scan
of the input� LR grammars describe a proper superset of the languages
recognized by predictive (i.e., LL) parsers

LL(k): recognize use of a production A! β seeing first k symbols
derived from β

LR(k): recognize the handle β after seeing everything derived from β
plus k lookahead symbols

74

LR parsing

Three common algorithms to build tables for an “LR” parser:

1. SLR(1)� smallest class of grammars� smallest tables (number of states)� simple, fast construction

2. LR(1)� full set of LR(1) grammars� largest tables (number of states)� slow, large construction

3. LALR(1)� intermediate sized set of grammars� same number of states as SLR(1)� canonical construction is slow and large� better construction techniques exist

An LR(1) parser for either Algol or Pascal has several thousand states,
while an SLR(1) or LALR(1) parser for the same language may have
several hundred states.

75

LR(k) items

The table construction algorithms use sets of LR(k) items or
configurations to represent the possible states in a parse.

An LR(k) item is a pair [α;β℄, where

α is a production from G with a � at some position in the RHS, marking
how much of the RHS of a production has already been seen

β is a lookahead string containing k symbols (terminals or $)

Two cases of interest are k = 0 and k = 1:

LR(0) items play a key role in the SLR(1) table construction algorithm.
LR(1) items play a key role in the LR(1) and LALR(1) table construction

algorithms.

76

Example

The � indicates how much of an item we have seen at a given state in the
parse:[A!�XYZ℄ indicates that the parser is looking for a string that can be

derived from XYZ[A! XY �Z℄ indicates that the parser has seen a string derived from XY
and is looking for one derivable from Z

LR(0) items: (no lookahead)

A! XY Z generates 4 LR(0) items:

1. [A!�XYZ℄
2. [A! X �YZ℄

3. [A! XY �Z℄

4. [A! XYZ�℄

77

The characteristic finite state machine (CFSM)

The CFSM for a grammar is a DFA which recognizes viable prefixes of
right-sentential forms:

A viable prefix is any prefix that does not extend beyond the
handle.

It accepts when a handle has been discovered and needs to be reduced.

To construct the CFSM we need two functions:�
losure0(I) to build its states� goto0(I;X) to determine its transitions

78

closure0

Given an item [A! α�Bβ℄, its closure contains the item and any other
items that can generate legal substrings to follow α.

Thus, if the parser has viable prefix α on its stack, the input should reduce
to Bβ (or γ for some other item [B!�γ℄ in the closure).fun
tion
losure0(I)repeatif [A! α�Bβ℄ 2 Iadd [B!�γ℄ to Iuntil no more items
an be added to Ireturn I

79

goto0

Let I be a set of LR(0) items and X be a grammar symbol.

Then, GOTO(I;X) is the closure of the set of all items[A! αX �β℄ such that [A! α�Xβ℄ 2 I

If I is the set of valid items for some viable prefix γ, then GOTO(I;X) is the
set of valid items for the viable prefix γX .

GOTO(I;X) represents state after recognizing X in state I.fun
tion goto0(I,X)let J be the set of items [A! αX �β℄su
h that [A! α�Xβ℄ 2 Ireturn
losure0(J)

80

Building the LR (0) item sets

We start the construction with the item [S0!�S$℄, where

S0 is the start symbol of the augmented grammar G0

S is the start symbol of G

$ represents EOF
To compute the collection of sets of LR(0) itemsfun
tion items(G0)

s0
losure0(f[S0!�S$℄g)
S fs0grepeatfor ea
h set of items s 2 Sfor ea
h grammar symbol Xif goto0(s;X) 6= φ and goto0(s;X) 62 Sadd goto0(s;X) to Suntil no more item sets
an be added to Sreturn S

81

LR(0) example

1 S ! E$
2 E ! E +T
3 j T
4 T ! id
5 j (E)

The corresponding CFSM:

0 5 6

1

2

3

4

7

8

9
T

T

EE

T

(

(

)$

id

id id

+ +

(

I0 : S!�E$
E!�E +T
E!�T
T !�id

T !�(E)

I1 : S! E �$
E! E �+T

I2 : S! E$�

I3 : E! E +�T
T !�id

T !�(E)

I4 : E! E +T�

I5 : T ! id�

I6 : T ! (�E)

E!�E +T
E!�T
T !�id

T !�(E)

I7 : T ! (E�)

E! E �+T
I8 : T ! (E)�

I9 : E! T�
82

Constructing the LR (0) parsing table

1. construct the collection of sets of LR(0) items for G0

2. state i of the CFSM is constructed from Ii

(a) [A! α�aβ℄ 2 Ii and goto0(Ii;a) = I j) ACTION[i;a℄ “shift j”

(b) [A! α�℄ 2 Ii;A 6= S0) ACTION[i;a℄ “reduce A! α”, 8a
(c) [S0! S$�℄ 2 Ii) ACTION[i;a℄ “accept”, 8a

3. goto0(Ii;A) = I j) GOTO[i;A℄ j

4. set undefined entries in ACTION and GOTO to “error”

5. initial state of parser s0 is
losure0([S0!�S$℄)
83

LR(0) example

0 5 6

1

2

3

4

7

8

9
T

T

EE

T

(

(

)$

id

id id

+ +

(

state ACTION GOTOid () + $ S E T

0 s5 s6 – – – – 1 9
1 – – – s3 s2 – – –
2 acc acc acc acc acc – – –
3 s5 s6 – – – – – 4
4 r2 r2 r2 r2 r2 – – –
5 r4 r4 r4 r4 r4 – – –
6 s5 s6 – – – – 7 9
7 – – s8 s3 – – – –
8 r5 r5 r5 r5 r5 – – –
9 r3 r3 r3 r3 r3 – – –

84

Conflicts in the ACTION table

If the LR(0) parsing table contains any multiply-defined ACTION entries
then G is not LR(0)
Two conflicts arise:

shift-reduce: both shift and reduce possible in same item set

reduce-reduce: more than one distinct reduce action possible in same
item set

Conflicts can be resolved through lookahead in ACTION. Consider:� A! ε j aα) shift-reduce conflict� a:=b+
*d

requires lookahead to avoid shift-reduce conflict after shifting

(need to see * to give precedence over +)

85

SLR(1): simple lookahead LR

Add lookaheads after building LR(0) item sets

Constructing the SLR(1) parsing table:

1. construct the collection of sets of LR(0) items for G0

2. state i of the CFSM is constructed from Ii
(a) [A! α�aβ℄ 2 Ii and goto0(Ii;a) = I j) ACTION[i;a℄ “shift j”, 8a 6= $

(b) [A! α�℄ 2 Ii;A 6= S0) ACTION[i;a℄ “reduce A! α”, 8a 2 FOLLOW(A)

(c) [S0! S�$℄ 2 Ii) ACTION[i;$℄ “accept”

3. goto0(Ii;A) = I j) GOTO[i;A℄ j

4. set undefined entries in ACTION and GOTO to “error”

5. initial state of parser s0 is
losure0([S0!�S$℄)
86

From previous example

1 S ! E$
2 E ! E +T
3 j T
4 T ! id
5 j (E)

0 5 6

1

2

3

4

7

8

9
T

T

EE

T

(

(

)$

id

id id

+ +

(

FOLLOW(E) = FOLLOW(T) = f$;+;)g

state ACTION GOTOid () + $ S E T

0 s5 s6 – – – – 1 9
1 – – – s3 acc – – –
2 – – – – – – – –
3 s5 s6 – – – – – 4
4 – – r2 r2 r2 – – –
5 – – r4 r4 r4 – – –
6 s5 s6 – – – – 7 9
7 – – s8 s3 – – – –
8 – – r5 r5 r5 – – –
9 – – r3 r3 r3 – – –

87

Example: A grammar that is not LR (0)

1 S ! E$
2 E ! E +T
3 j T
4 T ! T �F
5 j F
6 F ! id
7 j (E)

FOLLOW

E f+;);$g

T f+;�;);$g

F f+;�;);$g
I0 : S!�E$

E!�E +T
E!�T
T !�T �F
T !�F
F !�id

F !�(E)

I1 : S! E �$
E! E �+T

I2 : S! E$�
I3 : E! E +�T

T !�T �F
T !�F
F !�id
F !�(E)

I4 : T ! F�
I5 : F ! id�

I6 : F ! (�E)

E!�E +T
E!�T
T !�T �F
T !�F
F !�id

F !�(E)

I7 : E! T�

T ! T ��F
I8 : T ! T ��F

F !�id

F !�(E)

I9 : T ! T �F�

I10 : F ! (E)�

I11 : E! E +T�

T ! T ��F
I12 : F ! (E�)

E! E �+T

88

Example: But it is SLR (1)

state ACTION GOTO+ � id () $ S E T F

0 – – s5 s6 – – – 1 7 4
1 s3 – – – – acc – – – –
2 – – – – – – – – – –
3 – – s5 s6 – – – – 11 4
4 r5 r5 – – r5 r5 – – – –
5 r6 r6 – – r6 r6 – – – –
6 – – s5 s6 – – – 12 7 4
7 r3 s8 – – r3 r3 – – – –
8 – – s5 s6 – – – – – 9
9 r4 r4 – – r4 r4 – – – –
10 r7 r7 – – r7 r7 – – – –
11 r2 s8 – – r2 r2 – – – –
12 s3 – – – s10 – – – – –

89

Example: A grammar that is not SLR (1)

Consider:

S ! L = Rj R
L ! �Rj id
R ! L

Its LR(0) item sets:
I0 : S0!�S$

S!�L = R
S!�R
L!��R
L!�id

R!�L
I1 : S0! S�$
I2 : S! L�= R

R! L�
I3 : S! R�
I4 : L! id�

I5 : L!��R
R!�L
L!��R
L!�id

I6 : S! L = �R
R!�L
L!��R
L!�id

I7 : L!�R�

I8 : R! L�

I9 : S! L = R�

Now consider I2: = 2 FOLLOW(R) (S) L = R)�R = R)

90

LR(1) items

Recall: An LR(k) item is a pair [α;β℄, where

α is a production from G with a � at some position in the RHS, marking
how much of the RHS of a production has been seen

β is a lookahead string containing k symbols (terminals or $)

What about LR(1) items?� All the lookahead strings are constrained to have length 1� Look something like [A! X �Y Z;a℄

91

LR(1) items

What’s the point of the lookahead symbols?� carry along to choose correct reduction when there is a choice� lookaheads are bookkeeping, unless item has � at right end:

– in [A! X �YZ;a℄, a has no direct use

– in [A! XYZ�;a℄, a is useful� allows use of grammars that are not uniquely invertible†

The point : For [A! α�;a℄ and [B! α�;b℄, we can decide between
reducing to A or B by looking at limited right context

†No two productions have the same RHS

92

closure1 (I)
Given an item [A! α�Bβ;a℄, its closure contains the item and any other
items that can generate legal substrings to follow α.

Thus, if the parser has viable prefix α on its stack, the input should reduce
to Bβ (or γ for some other item [B!�γ;b℄ in the closure).fun
tion
losure1(I)repeatif [A! α�Bβ;a℄ 2 Iadd [B!�γ;b℄ to I, where b 2 first(βa)until no more items
an be added to Ireturn I

93

goto1 (I)
Let I be a set of LR(1) items and X be a grammar symbol.

Then, GOTO(I;X) is the closure of the set of all items[A! αX �β;a℄ such that [A! α�Xβ;a℄ 2 I

If I is the set of valid items for some viable prefix γ, then GOTO(I;X) is the
set of valid items for the viable prefix γX .

goto(I;X) represents state after recognizing X in state I.fun
tion goto1(I,X)let J be the set of items [A! αX �β;a℄su
h that [A! α�Xβ;a℄ 2 Ireturn
losure1(J)

94

Building the LR (1) item sets for grammar G

We start the construction with the item [S0!�S;$℄, where

S0 is the start symbol of the augmented grammar G0

S is the start symbol of G

$ represents EOF
To compute the collection of sets of LR(1) itemsfun
tion items(G0)

s0
losure1(f[S0!�S;$℄g)
S fs0grepeatfor ea
h set of items s 2 Sfor ea
h grammar symbol Xif goto1(s;X) 6= φ and goto1(s;X) 62 Sadd goto1(s;X) to Suntil no more item sets
an be added to Sreturn S

95

Constructing the LR (1) parsing table

Build lookahead into the DFA to begin with

1. construct the collection of sets of LR(1) items for G0

2. state i of the LR(1) machine is constructed from Ii
(a) [A! α�aβ;b℄ 2 Ii and goto1(Ii;a) = I j) ACTION[i;a℄ “shift j”
(b) [A! α�;a℄ 2 Ii;A 6= S0) ACTION[i;a℄ “reduce A! α”
(c) [S0! S�;$℄ 2 Ii) ACTION[i;$℄ “accept”

3. goto1(Ii;A) = I j) GOTO[i;A℄ j

4. set undefined entries in ACTION and GOTO to “error”

5. initial state of parser s0 is
losure1([S0!�S;$℄)
96

Back to previous example (62 SLR(1))
S ! L = Rj R
L ! �Rj id
R ! L

I0 : S0!�S; $
S!�L = R; $
S!�R; $
L!��R; =

L!�id; =

R!�L; $
L!��R; $
L!�id; $

I1 : S0! S�; $
I2 : S! L�= R; $

R! L�; $
I3 : S! R�; $
I4 : L!��R; = $

R!�L; = $
L!��R; = $
L!�id; = $

I5 : L! id�; = $
I6 : S! L = �R; $

R!�L; $
L!��R; $
L!�id; $

I7 : L!�R�; = $
I8 : R! L�; = $
I9 : S! L = R�; $
I10 : R! L�; $
I11 : L!��R; $

R!�L; $
L!��R; $
L!�id; $

I12 : L! id�; $
I13 : L!�R�; $

I2 no longer has shift-reduce conflict: reduce on $, shift on =
97

Example: back to SLR (1) expression grammar

In general, LR(1) has many more states than LR(0)/SLR(1):
1 S ! E
2 E ! E +T
3 j T

4 T ! T �F
5 j F
6 F ! id

7 j (E)

LR(1) item sets:
I0 :

S!�E; $
E!�E +T;+$
E!�T; +$
T !�T �F; �+$
T !�F; �+$
F !�id; �+$
F !�(E); �+$

I00 :shifting (
F ! (�E); �+$
E!�E +T;+)
E!�T; +)
T !�T �F; �+)
T !�F; �+)
F !�id; �+)
F !�(E); �+)

I000 :shifting (

F ! (�E); �+)

E!�E +T;+)

E!�T; +)

T !�T �F; �+)

T !�F; �+)

F !�id; �+)

F !�(E); �+)
98

Another example

Consider:
0 S0 ! S
1 S ! CC
2 C ! cC
3 j d

state ACTION GOTO
c d $ S C

0 s3 s4 – 1 2
1 – – acc – –
2 s6 s7 – – 5
3 s3 s4 – – 8
4 r3 r3 – – –
5 – – r1 – –
6 s6 s7 – – 9
7 – – r3 – –
8 r2 r2 – – –
9 – – r2 – –

LR(1) item sets:
I0 : S0!�S; $

S!�CC; $
C!�cC; cd
C!�d; cd

I1 : S0! S�; $
I2 : S!C �C; $

C!�cC; $
C!�d; $

I3 : C! c�C; cd
C!�cC; cd
C!�d; cd

I4 : C! d�; cd
I5 : S!CC�; $
I6 : C! c�C; $

C!�cC; $
C!�d; $

I7 : C! d�; $
I8 : C! cC�; cd
I9 : C! cC�; $

99

LALR (1) parsing

Define the core of a set of LR(1) items to be the set of LR(0) items
derived by ignoring the lookahead symbols.

Thus, the two sets� f[A! α�β;a℄; [A! α�β;b℄g, and� f[A! α�β;
℄; [A! α�β;d℄g
have the same core.

Key idea:

If two sets of LR(1) items, Ii and I j, have the same core, we can
merge the states that represent them in the ACTION and GOTO
tables.

100

LALR (1) table construction

To construct LALR(1) parsing tables, we can insert a single step into the
LR(1) algorithm

(1.5) For each core present among the set of LR(1) items, find all sets
having that core and replace these sets by their union.

The goto function must be updated to reflect the replacement sets.

The resulting algorithm has large space requirements.

101

LALR (1) table construction

The revised (and renumbered) algorithm

1. construct the collection of sets of LR(1) items for G0

2. for each core present among the set of LR(1) items, find all sets
having that core and replace these sets by their union (update thegoto function incrementally)

3. state i of the LALR(1) machine is constructed from Ii.

(a) [A! α�aβ;b℄ 2 Ii and goto1(Ii;a) = I j) ACTION[i;a℄ “shift j”

(b) [A! α�;a℄ 2 Ii;A 6= S0) ACTION[i;a℄ “reduce A! α”

(c) [S0! S�;$℄ 2 Ii) ACTION[i;$℄ “accept”

4. goto1(Ii;A) = I j) GOTO[i;A℄ j

5. set undefined entries in ACTION and GOTO to “error”

6. initial state of parser s0 is
losure1([S0!�S;$℄)
102

Example

Reconsider:

0 S0 ! S
1 S ! CC
2 C ! cC
3 j d

Merged states:
I36 : C! c�C; cd$

C!�cC; cd$
C!�d; cd$

I47 : C! d�; cd$
I89 : C! cC�; cd$

I0 : S0!�S; $
S!�CC; $
C!�cC; cd
C!�d; cd

I1 : S0! S�; $
I2 : S!C �C; $

C!�cC; $
C!�d; $

I3 : C! c�C; cd
C!�cC; cd
C!�d; cd

I4 : C! d�; cd
I5 : S!CC�; $

I6 : C! c�C; $
C!�cC; $
C!�d; $

I7 : C! d�; $
I8 : C! cC�; cd
I9 : C! cC�; $

state ACTION GOTO
c d $ S C

0 s36 s47 – 1 2
1 – – acc – –
2 s36 s47 – – 5
36 s36 s47 – – 8
47 r3 r3 r3 – –
5 – – r1 – –
89 r2 r2 r2 – –

103

More efficient LALR (1) construction

Observe that we can:
� represent Ii by its basis or kernel:

items that are either [S0!�S;$℄
or do not have � at the left of the RHS

� compute shift, reduce and goto actions for state derived from Ii
directly from its kernel

This leads to a method that avoids building the complete canonical
collection of sets of LR(1) items

104

The role of precedence

Precedence and associativity can be used to resolve shift/reduce conflicts
in ambiguous grammars.� lookahead with higher precedence) shift� same precedence, left associative) reduce

Advantages:� more concise, albeit ambiguous, grammars� shallower parse trees) fewer reductions

Classic application: expression grammars

105

The role of precedence

With precedence and associativity, we can use:

E ! E �Ej E=Ej E +Ej E�Ej (E)j -Ej idj num
This eliminates useless reductions (single productions)

106

Error recovery in shift-reduce parsers

The problem� encounter an invalid token� bad pieces of tree hanging from stack� incorrect entries in symbol table

We want to parse the rest of the file

Restarting the parser� find a restartable state on the stack� move to a consistent place in the input� print an informative message to stderr (line number)

107

Error recovery in yacc/bison/Java CUP

The error mechanism� designated token error� valid in any production� error shows syncronization points

When an error is discovered� pops the stack until error is legal� skips input tokens until it successfully shifts 3� error productions can have actions

This mechanism is fairly general

See xError Recovery of the on-line CUP manual

108

Example

Using errorstmt list : stmtj stmt list ; stmt

can be augmented with errorstmt list : stmtj errorj stmt list ; stmt
This should� throw out the erroneous statement� synchronize at “;” or “end”� invoke yyerror("syntax error")
Other “natural” places for errors� all the “lists”: FieldList, CaseList� missing parentheses or brackets (yy
har)� extra operator or missing operator

109

Left versus right recursion

Right Recursion:� needed for termination in predictive parsers� requires more stack space� right associative operators

Left Recursion:� works fine in bottom-up parsers� limits required stack space� left associative operators

Rule of thumb:� right recursion for top-down parsers� left recursion for bottom-up parsers

110

Parsing review

Recursive descent

A hand coded recursive descent parser directly encodes a grammar
(typically an LL(1) grammar) into a series of mutually recursive
procedures. It has most of the linguistic limitations of LL(1).

LL(k)

An LL(k) parser must be able to recognize the use of a production
after seeing only the first k symbols of its right hand side.

LR(k)

An LR(k) parser must be able to recognize the occurrence of the right
hand side of a production after having seen all that is derived from
that right hand side with k symbols of lookahead.

111

Complexity of parsing: grammar hierarchy

LL(1)

LL(k)

LL(0)

Knuth’s algorithm: O(n)
LR(k)

LR(1)

LALR(1)

SLR(1)

LR(0)

ambiguous

α−>β
type-0:

type-1: context-sensitive
αΑβ−>αδβ
Linear-bounded automaton: PSPACE complete

type-2: context-free
Α−>α
Earley’s algorithm: O(n³)

type-3: regular
A->wX
DFA: O(n)

O(n²)

unambiguous

Note: this is a hierarchy of grammars not languages

112

Language vs. grammar

For example, every regular language has a grammar that is LL(1), but not
all regular grammars are LL(1). Consider:

S ! ab
S ! ac

Without left-factoring, this grammar is not LL(1).

113

