Scanner

- maps characters into tokens - the basic unit of syntax

$$
x=x+y ;
$$

becomes
$<i d, \mathrm{x}\rangle=\langle\mathrm{id}, \mathrm{x}\rangle+\langle\mathrm{id}, \mathrm{y}\rangle$;

- character string value for a token is a lexeme
- typical tokens: number, id, +, -, *, /, do, end
- eliminates white space (tabs, blanks, comments)
- a key issue is speed
\Rightarrow use specialized recognizer (as opposed to lex)
Copyright (C)2012 by Antony L. Hosking. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and full citation on the first page. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or fee. Request permission to publish from hosking@cs.purdue.edu.

Specifying patterns

A scanner must recognize the units of syntax Some parts are easy:
white space

keywords and operators
specified as literal patterns: do, end
comments
opening and closing delimiters: /* ... */

Specifying patterns

A scanner must recognize the units of syntax Other parts are much harder:
identifiers alphabetic followed by k alphanumerics ($(, \$, \&, \ldots$)
numbers
integers: 0 or digit from 1-9 followed by digits from 0-9
decimals: integer '. ' digits from 0-9
reals: (integer or decimal) ' E ' (+ or -) digits from 0-9 complex: '('real ', ' real ')'

We need a powerful notation to specify these patterns

Regular expressions

Patterns are often specified as regular languages
Notations used to describe a regular language include both regular expressions and regular grammars

Regular expressions $\operatorname{RE}(\Sigma)$ (over an alphabet Σ):

1. $\underline{\varepsilon} \in R E(\Sigma)$ is a RE denoting the set $\{\varepsilon\}$
2. if $a \in \Sigma$, then $\underline{a} \in \operatorname{RE}(\Sigma)$ denoting $\{a\}$
3. if r and s are $\in \operatorname{RE}(\Sigma)$, denoting $L(r)$ and $L(s)$, then:

$$
\begin{aligned}
& (r \mid s) \in R E(\Sigma) \text { denoting } L(r) \cup L(s) \\
& (r s) \in R E(\Sigma) \text { denoting } L(r) L(s) \\
& \left(r^{*}\right) \in R E(\Sigma) \text { denoting } L(r)^{*}
\end{aligned}
$$

If we adopt a precedence for operators, the extra parentheses can go away. We assume closure, then concatenation, then alternation as the order of precedence.

Reminder: Operations on languages

$\left.\begin{array}{c|c}\text { Operation } & \text { Definition } \\ \hline \text { union of } L \text { and } M \\ \text { written } L \cup M\end{array}\right) L \cup M=\{s \mid s \in L$ or $\left.s \in M\}\right\}$

Examples

Let $\Sigma=\{a, b\}$

1. $a \mid b$ denotes $\{a, b\}$
2. $(a \mid b)(a \mid b)$ denotes $\{a a, a b, b a, b b\}$
i.e., $(a \mid b)(a \mid b)=a a|a b| b a \mid b b$
3. a^{*} denotes $\{\varepsilon, a, a a, a a a, \ldots\}$
4. $(a \mid b)^{*}$ denotes the set of all strings of a 's and b 's (including ε)
i.e., $(a \mid b)^{*}=\left(a^{*} b^{*}\right)^{*}$
5. $a \mid a^{*} b$ denotes $\{a, b, a b, a a b, a a a b, a a a a b, \ldots\}$

Algebraic properties of REs

Axiom	Description
$r\|s=s\| r$	\mid is commutative
$r\|(s \mid t)=(r \mid s)\| t$	\mid is associative
$(r s) t=r(s t)$	concatenation is associative
$r(s \mid t)=r s \mid r t$	concatenation distributes over \mid
$(s \mid t) r=s r \mid t r$	
$\varepsilon r=r$	ε is the identity for concatenation
$r \varepsilon=r$	
$r^{*}=(r \mid \varepsilon)^{*}$	relation between * and ε
$r^{* *}=r^{*}$	* is idempotent

Sometimes \emptyset is also considered an RE

$$
\begin{array}{c|c}
r|\theta=0| r=r & 0 \text { is unit for } \mid \\
r \theta=0 r=0 & 0 \text { is zero for } . \\
0^{*}=\varepsilon & \text { relation between * and } \theta
\end{array}
$$

Examples

identifier

$$
\begin{aligned}
& \text { letter } \rightarrow(a|b| c|\ldots| z|A| B|C| \ldots \mid Z) \\
& \text { digit } \rightarrow(0|1| 2|3| 4|5| 6|7| 8 \mid 9) \\
& \text { id } \rightarrow \text { letter (letter } \mid \text { digit })^{*}
\end{aligned}
$$

numbers
integer $\rightarrow(+|-| \varepsilon)\left(0 \mid(1|2| 3|\ldots| 9)\right.$ digit $\left.^{*}\right)$
decimal \rightarrow integer . (digit)*
real $\rightarrow($ integer \mid decimal $) \mathrm{E}(+\mid-)$ digit * complex \rightarrow ' (' real , real ')'

Numbers can get much more complicated

Most tokens in programming languages can be described with REs
We can use REs to build scanners automatically

Recognizers

From a regular expression we can construct a deterministic finite automaton (DFA)
Recognizer for identifier:

identifier
letter $\rightarrow(a|b| c|\ldots| z|A| B|C| \ldots \mid Z)$
digit $\rightarrow(0|1| 2|3| 4|5| 6|7| 8 \mid 9)$
id \rightarrow letter (letter | digit) ${ }^{*}$

Code for the recognizer

```
char \leftarrow next_char();
state \leftarrow INITIAL_STATE; /* 0 */
done \leftarrow false;
token_value \leftarrow ""; /* empty string */
while( not done ) {
    class \leftarrow char_class[char];
    state \leftarrow next_state[class,state];
    switch(state) {
        case BUILDING_ID_STATE: /* 1 */
            token_value \leftarrow token_value + char;
            char \leftarrow next_char();
            break;
            case ACCEPT_STATE:
                token_type \leftarrow IDENTIFIER; /* 2 */
            done }\leftarrow true
            break;
            case ERROR_STATE: /* 3 */
            token_type \leftarrow ERROR;
            done }\leftarrow true
            break;
    }
}
return token_type;
```


Tables for the recognizer

Two tables control the recognizer

char_class: | | $a-z$ | $A-Z$ | $0-9$ | other |
| :--- | :--- | :--- | :--- | :--- |
| value | letter | letter | digit | other |

next_state: | class | 0 | 1 | 2 | 3 | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| letter | 1 | 1 | - | - | |
| digit | 3 | 1 | - | - | |
| | other | 3 | 2 | - | - |

To change languages, we can just change tables

From recognizers to scanners

1. Scanner runs multiple recognizers is parallel, one for each class of lexemes
2. Scanner reads input until all recognizers indicate error or accept (one character lookahead)
3. The recognizer, which accepts the longest prefix of the input, wins Principle of the longest match
4. If two recognizers accept the same prefix, then position in the specification breaks the tie

Consider the keyword do:

- door_closing — identifier (longer than prefix do)
- do - keyword (same length, do must precede identifier specification)

Automatic construction

Scanner generators automatically construct code from RE-like descriptions

- construct a DFA
- use state minimization techniques
- emit code for the scanner (table driven or direct code)

A key issue in automation is an interface to the parser
lex is a scanner generator supplied with UNIX

- emits C code for scanner
- provides macro definitions for each token (used in the parser)

Grammars for regular languages

Can we place a restriction on the form of a grammar to ensure that it describes a regular language?

Provable fact:
For any RE r, \exists a grammar g such that $L(r)=L(g)$
Grammars that generate regular sets are called regular grammars:
They have productions in one of 2 forms:

1. $A \rightarrow a A$
2. $A \rightarrow a$
where A is any non-terminal and a is any terminal symbol

These are also called type 3 grammars (Chomsky)

More regular languages

Example: the set of strings containing an even number of zeros and an even number of ones

The RE is $(00 \mid 11)^{*}\left((01 \mid 10)(00 \mid 11)^{*}(01 \mid 10)(00 \mid 11)^{*}\right)^{*}$

More regular expressions

What about the RE $(a \mid b)^{*} a b b$?

State s_{0} has multiple transitions on a !
\Rightarrow nondeterministic finite automaton

	a	b
s_{0}	$\left\{s_{0}, s_{1}\right\}$	$\left\{s_{0}\right\}$
s_{1}	-	$\left\{s_{2}\right\}$
s_{2}	-	$\left\{s_{3}\right\}$

Finite automata

A non-deterministic finite automaton (NFA) consists of:

1. a set of states $S=\left\{s_{0}, \ldots, s_{n}\right\}$
2. a set of input symbols Σ (the alphabet)
3. a transition function move mapping state-symbol pairs to sets of states
4. a distinguished start state s_{0}
5. a set of distinguished accepting or final states F

A Deterministic Finite Automaton (DFA) is a special case of an NFA:

1. no state has a ε-transition, and
2. for each state s and input symbol a, there is at most one edge labelled a leaving s

A DFA accepts x iff. \exists a unique path through the transition graph from s_{0} to a final state such that the edges spell x.

DFAs and NFAs are equivalent

1. DFAs are clearly a subset of NFAs
2. Any NFA can be converted into a DFA, by simulating sets of simultaneous states:

- each DFA state corresponds to a set of NFA states
- possible exponential blowup

NFA to DFA using the subset construction: example 1

	a	b
$\left\{s_{0}\right\}$	$\left\{s_{0}, s_{1}\right\}$	$\left\{s_{0}\right\}$
$\left\{s_{0}, s_{1}\right\}$	$\left\{s_{0}, s_{1}\right\}$	$\left\{s_{0}, s_{2}\right\}$
$\left\{s_{0}, s_{2}\right\}$	$\left\{s_{0}, s_{1}\right\}$	$\left\{s_{0}, s_{3}\right\}$
$\left\{s_{0}, s_{3}\right\}$	$\left\{s_{0}, s_{1}\right\}$	$\left\{s_{0}\right\}$

Constructing a DFA from a regular expression

RE \rightarrow NFA w/\& moves
build NFA for each term
connect them with ε moves
NFA w/\& moves to DFA
construct the simulation
the "subset" construction
DFA \rightarrow minimized DFA
merge compatible states
DFA \rightarrow RE

$$
\text { construct } R_{i j}^{k}=R_{i k}^{k-1}\left(R_{k k}^{k-1}\right)^{*} R_{k j}^{k-1} \cup R_{i j}^{k-1}
$$

RE to NFA

RE to NFA: example

NFA to DFA: the subset construction

Input: NFA N
Output: A DFA D with states Dstates and transitions Dtrans such that $L(D)=L(N)$
Method: Let s be a state in N and T be a set of states, and using the following operations:

Operation	Definition
ε-closure (s)	set of NFA states reachable from NFA state s on ε-transitions alone
ε-closure (T)	set of NFA states reachable from some NFA state s in T on ε-transitions alone
$\operatorname{move}(T, a)$	set of NFA states to which there is a transition on input symbol a from some NFA state s in T

add state $T=\varepsilon$-closure $\left(s_{0}\right)$ unmarked to Dstates
while \exists unmarked state T in Dstates
mark T
for each input symbol a
$U=\varepsilon$-closure $(\operatorname{move}(T, a))$
if $U \notin$ Dstates then add U to Dstates unmarked
Dtrans $[T, a]=U$
endfor
endwhile
ε-closure $\left(s_{0}\right)$ is the start state of D
A state of D is final if it contains at least one final state in N

NFA to DFA using subset construction: example 2

$$
\begin{array}{lll|l|l}
A=\{0,1,2,4,7\} & D=\{1,2,4,5,6,7,9\} & A & B & C \\
\cline { 2 - 2 } & E=\{1,2,4,5,6,7,10\} & B & B & D \\
C=\{1,2,4,5,6,7\} & & C & B & C \\
& D & B & E \\
& E & B & C
\end{array}
$$

Limits of regular languages

Not all languages are regular
One cannot construct DFAs to recognize these languages:

- $L=\left\{p^{k} q^{k}\right\}$
- $L=\left\{w c w^{r} \mid w \in \Sigma^{*}\right\}$

Note: neither of these is a regular expression!
(DFAs cannot count!)

So what is hard?

Language features that can cause problems:
reserved words
PL/I had no reserved words
if then then then = else; else else = then;
insignificant blanks
FORTRAN and Algol68 ignore blanks
do 10 i $=1,25$
do 10 i $=1.25$
string constants
special characters in strings
newline, tab, quote, comment delimiter
finite closures
some languages limit identifier lengths
adds states to count length
FORTRAN $66 \rightarrow 6$ characters

These can be swept under the rug in the language design

How bad can it get?

1		INTEGERFUNCTIONA
2		PARAMETER ($\mathrm{A}=6, \mathrm{~B}=2$)
3		IMPLICIT CHARACTER* (A-B) (A-B)
4		INTEGER FORMAT(10), IF (10), D09E1
5	100	FORMAT (4H)= (3)
6	200	FORMAT (4) = (3)
7		D09E1=1
8		D09E1=1,2
9		$\operatorname{IF}(\mathrm{X})=1$
10		IF (X) $\mathrm{H}=1$
11		IF (X)300, 200
12	300	CONTINUE
13		END
	C	this is a comment
		\$ FILE (1)
14		END

Example due to Dr. F.K. Zadeck of IBM Corporation

Scanning MiniJava

White space:

- ' ', '’t', '\n', '\r', '\f'

Tokens:

- Operators, keywords (straightforward)
- Identifiers (straightforward)
- Integers (straightforward)
- Strings (tricky for escapes)

