Bottom-up parsing

Recall

For a grammar G, with start symbol S, any string α such that $S \Rightarrow^{*} \alpha$ is a sentential form

- If $\alpha \in V_{t}^{*}$, then α is a sentence in $L(G)$

A left-sentential form is a sentential form that occurs in the leftmost derivation of some sentence.

A right-sentential form is a sentential form that occurs in the rightmost derivation of some sentence.

Bottom-up parsing

Goal:

Given an input string w and a grammar G, construct a parse tree by starting at the leaves and working to the root.

The parser repeatedly matches a right-sentential form of the language against the tree's upper frontier.

At each match, it applies a reduction to build on the frontier:

- each reduction matches an upper frontier of the partially built tree to the RHS of some production
- each reduction adds a node on top of the frontier

The final result is a rightmost derivation, in reverse.

Example

Consider the grammar

1	$S \rightarrow \mathrm{a} A B \mathrm{e}$	
2	$A \rightarrow A \mathrm{bc}$	
3		$\mid \mathrm{b}$
4	$B \rightarrow \mathrm{~d}$	

and the input string abbcde

Prod'n.	Sentential Form
3	ab bcde
2	$\mathrm{a} A \mathrm{bc} \mathrm{de}$
4	aADde
1	aABe
-	S

Scan the input and find prefixes of sentential forms!

Handles

What are we trying to find?
A substring α of the tree's upper frontier that
matches some production $A \rightarrow \alpha$ where reducing α to A is one step in the reverse of a rightmost derivation

We call such a string a handle.
Formally:
In a right-sentential form $\alpha \beta w$, the string β is a handle for production $A \rightarrow \beta$
i.e., if $S \Rightarrow_{\mathrm{rm}}^{*} \alpha A w \Rightarrow{ }_{\mathrm{rm}} \alpha \beta w$ then β is a handle for $A \rightarrow \beta$ in $\alpha \beta w$

All right-sentential forms have a suffix containing only terminal symbols.

Handles

The handle $A \rightarrow \beta$ in the parse tree for $\alpha \beta w$

Handles

Theorem:

If G is unambiguous then every right-sentential form has a unique handle.

Proof: (by definition)

1. G is unambiguous \Rightarrow rightmost derivation is unique
2. \Rightarrow a unique production $A \rightarrow \beta$ applied to take γ_{i-1} to γ_{i}
3. \Rightarrow a unique position k at which $A \rightarrow \beta$ is applied
4. \Rightarrow a unique handle $A \rightarrow \beta$

Example

The left-recursive expression grammar (original form)

Prod'n. Sentential Form

$1 \mid\langle$ goal \rangle	$::=\langle$ expr \rangle
$2\langle$ expr \rangle	$::=\langle$ expr $\rangle+\langle$ term \rangle
3	$\mid\langle$ expr $\rangle-\langle$ term \rangle
4	$\mid\langle$ term \rangle
5	\langle term \rangle
6	$::=\langle$ term $\rangle *\langle$ factor \rangle
7	$\mid\langle$ term \rangle /\langle factor \rangle
8	$\mid\langle$ factor $\rangle::=$ num
9	

-	\langle goal \rangle
1	\langle expr \rangle
3	$\left\langle\frac{\text { expr }\rangle}{}-\langle\right.$ term \rangle
5	$\frac{\langle\text { expr }\rangle-\langle\text { term }\rangle}{} *\langle$ factor \rangle
9	\langle expr $\rangle-\overline{\langle\text { term }\rangle} * \underline{\text { id }}$
7	\langle expr $\rangle-\langle$ factor \rangle id
8	\langle expr $\rangle-\underline{\text { num } * \text { id }}$
4	\langle term $\rangle-$ num $*$ id
7	\langle factor $\rangle-$ num $*$ id
9	$\underline{\text { id }- \text { num } * \text { id }}$

Stack implementation

One scheme to implement a handle-pruning, bottom-up parser is called a shift-reduce parser.

Shift-reduce parsers use a stack and an input buffer

1. initialize stack with $\$$
2. Repeat until the top of the stack is the goal symbol and the input token is \$
a) find the handle
if we don't have a handle on top of the stack, shift an input symbol onto the stack
b) prune the handle if we have a handle for $A \rightarrow \beta$ on the stack, reduce:
i) pop | β | symbols off the stack
ii) push A onto the stack

Example：back to $\mathrm{x}-2 * \mathrm{y}$

$1\langle$ goal \rangle	$::=\langle$ expr \rangle
$2\langle$ expr \rangle	$::=\langle$ expr $\rangle+\langle$ term \rangle
3	\langle expr $\rangle-\langle$ term \rangle
4	〈term＞
$5\left\langle\right.$ term ${ }^{\text {d }}$	$::=\langle$ term $\rangle *\langle$ factor \rangle
6	〈term $/ /\langle$ factor \rangle
7	〈factor〉
8〈factor〉 ：	$::=$ num
9	id

Stack	Input	Action
\＄	id－num＊id	shift
\＄id	－num＊id	reduce 9
\＄ \factor＞	－num＊id	reduce 7
\＄$\left\langle\right.$ term ${ }^{\text {der }}$	－num＊id	reduce 4
\＄$\overline{\text { expr }\rangle}$	－num＊id	shift
\＄\langle expr \rangle－	num＊id	shift
\＄＜expr＞－num	＊id	reduce 8
\＄\langle expr $\rangle-\langle$ factor \rangle	＊id	reduce 7
\＄\langle expr $\rangle-\overline{\langle t e r m\rangle}$	＊id	shift
\＄\langle expr $\rangle-\langle$ term $\rangle *$	id	shift
\＄\langle expr $\rangle-\langle$ term $\rangle * \underline{\text { id }}$		reduce 9
\＄ expr $\rangle-\langle$ term $\rangle *\langle$ factor \rangle		reduce 5
\＄\langle expr $\rangle-\overline{\langle t e r m\rangle}$		reduce 3
\＄\langle expr \rangle		reduce 1
\＄$\overline{\langle\mathrm{goal}\rangle}$		accept

1．Shift until top of stack is the right end of a handle
2．Find the left end of the handle and reduce

5 shifts＋ 9 reduces +1 accept

Shift-reduce parsing

Shift-reduce parsers are simple to understand
A shift-reduce parser has just four canonical actions:

1. shift - next input symbol is shifted onto the top of the stack
2. reduce - right end of handle is on top of stack; locate left end of handle within the stack; pop handle off stack and push appropriate non-terminal LHS
3. accept - terminate parsing and signal success
4. error - call an error recovery routine

But how do we know

- that there is a complete handle on the stack?
- which handle to use?

LR parsing: key insight

Recognize handles with a DFA [Knuth1965]

- DFA transitions shift states instead of symbols
- accepting states trigger reductions

LR parsing

The skeleton parser:

```
push so
token \leftarrow next_token()
repeat forever
    s \leftarrow top of stack
    if action[s,token] = "shift si" then
        push si
        token \leftarrow next_token()
    else if action[s,token] = "reduce A -> \beta"
        then
        pop | | | states
        s'}\leftarrow top of stack
        push goto[s',A]
    else if action[s, token] = "accept" then
        return
    else error()
```

This takes k shifts, l reduces, and 1 accept, where k is the length of the input string and l is the length of the reverse rightmost derivation

Example tables

state	ACTION				GOTO		
	id	+	$*$	\$	\langle expr \rangle	\langle term \rangle	\langle factor \rangle
0	s4	-	-	-	1	2	3
1	-	-	-	acc	-	-	-
2	-	s5	-	r3	-	-	-
3	-	r5	s6	r5	-	-	-
4	-	r6	r6	r6	-	-	-
5	s4	-	-	-	7	2	3
6	s4	-	-	-	-	8	3
7	-	-	-	r2	-	-	-
8	-	r4	-	r4	-	-	-

The Grammar

1	\langle goal \rangle	$::=$	\langle expr \rangle
2	\langle expr \rangle	$::=$	\langle term $\rangle+\langle$ expr \rangle
3		\mid	\langle term \rangle
4	\langle term \rangle	$::=$	\langle factor $\rangle *\langle$ term \rangle
5		\mid	\langle factor \rangle
6	\langle factor \rangle	$::=$	id

Note: This is a simple little right-recursive grammar; not the same as in previous lectures.

Example using the tables

Stack	Input	Action
\$ 0	id* id+ id\$	s4
\$ 04	* id+ id\$	r6
\$ 03	* id+id\$	s6
\$ 036	id+id\$	s4
\$ 0364	+ id\$	r6
\$ 0363	+ id\$	r5
\$ 0368	+ id\$	r4
\$ 02	+ id\$	s5
\$ 025	id\$	s4
\$ 0254	\$	r6
\$ 0253	\$	r5
\$ 0252	\$	r3
\$ 0257	\$	r2
\$ 01	\$	acc

LR(k) grammars

Informally, we say that a grammar G is $\operatorname{LR}(k)$ if, given a rightmost derivation

$$
S=\gamma_{0} \Rightarrow \gamma_{1} \Rightarrow \gamma_{2} \Rightarrow \cdots \Rightarrow \gamma_{n}=w,
$$

we can, for each right-sentential form in the derivation,

1. isolate the handle of each right-sentential form, and
2. determine the production by which to reduce
by scanning γ_{i} from left to right, going at most k symbols beyond the right end of the handle of γ_{i}.

LR (k) grammars

Formally, a grammar G is $\operatorname{LR}(k)$ iff

1. $S \Rightarrow{ }_{\mathrm{rm}}^{*} \alpha A w \Rightarrow{ }_{\mathrm{rm}} \alpha \beta w$, and
2. $S \Rightarrow{ }_{\mathrm{rm}}^{*} \gamma B x \Rightarrow{ }_{\mathrm{rm}} \alpha \beta y$, and
3. $\mathrm{FIRST}_{k}(w)=\operatorname{FIRST}_{k}(y)$
implies $\alpha A y=\gamma B x$
i.e., consider sentential forms $\alpha \beta w$ and $\alpha \beta y$, with common prefix $\alpha \beta$ and common k-symbol lookahead $\mathrm{FIRST}_{k}(y)=\mathrm{FIRST}_{k}(w)$, where there might be two choices, $\alpha A w$ and $\gamma B x$, that reduce to $\alpha \beta w$ and $\alpha \beta y$, respectively.

In an $\operatorname{LR}(k)$ grammar, there is no such choice: It must be that $\alpha A y=\gamma B x$.

Why study LR grammars?

LR(1) grammars are often used to construct parsers.
We call these parsers LR(1) parsers.

- virtually all context-free programming language constructs can be expressed in an LR(1) form
- LR grammars are the most general grammars parsable by a deterministic, bottom-up parser
- efficient parsers can be implemented for LR(1) grammars
- LR parsers detect an error as soon as possible in a left-to-right scan of the input
- LR grammars describe a proper superset of the languages recognized by predictive (i.e., LL) parsers
$\operatorname{LL}(k)$: recognize use of a production $A \rightarrow \beta$ seeing first k symbols derived from β
$\mathbf{L R}(k)$: recognize the handle β after seeing everything derived from β plus k lookahead symbols

LR parsing

Three common algorithms to build tables for an "LR" parser:

1. $\operatorname{SLR}(1)$

- smallest class of grammars
- smallest tables (number of states)
- simple, fast construction

2. $L R(1)$

- full set of LR(1) grammars
- largest tables (number of states)
- slow, large construction

3. LALR(1)

- intermediate sized set of grammars
- same number of states as SLR(1)
- canonical construction is slow and large
- better construction techniques exist

An $\mathrm{LR}(1)$ parser for a realistic language has several thousand states, while an SLR(1) or LALR(1) parser for the same language may have several hundred states.

LR (k) items

The table construction algorithms use sets of $\operatorname{LR}(k)$ items or configurations to represent the possible states in a parse.

An $\operatorname{LR}(k)$ item is a pair $[A \rightarrow \alpha \bullet \beta, \gamma]$, where
$A \rightarrow \alpha \beta$ is a production of G where the position of the \bullet is arbitrary; it marks how much of the RHS of a production has already been seen γ is a lookahead string containing k symbols (terminals or $\$$)

Two cases of interest are $k=0$ and $k=1$:
LR(0) items play a key role in the SLR(1) table construction algorithm.
$\operatorname{LR}(1)$ items play a key role in the LR(1) and LALR(1) table construction algorithms.

Example

The • indicates how much of an item we have seen at a given state in the parse:
[$A \rightarrow \bullet X Y Z]$ indicates that the parser is looking for a string that can be derived from $X Y Z$
$[A \rightarrow X Y \bullet Z]$ indicates that the parser has seen a string derived from $X Y$ and is looking for one derivable from Z

LR(0) items: (no lookahead)
$A \rightarrow X Y Z$ has four associated LR(0) items:

1. $[A \rightarrow \bullet X Y Z]$
2. $[A \rightarrow X \bullet Y Z]$
3. $[A \rightarrow X Y \bullet Z]$
4. $[A \rightarrow X Y Z \bullet]$

The characteristic finite state machine (CFSM)

The CFSM for a grammar is a DFA which recognizes viable prefixes of right-sentential forms:

A viable prefix is any prefix that does not extend beyond the handle.

It accepts when a handle has been discovered and needs to be reduced.
To construct the CFSM we need two functions:

- closure0(I) to build its states
- goto0 (I, X) to determine its transitions

closure0

Given an item $[A \rightarrow \alpha \bullet B \beta]$, its closure contains the item and any other items that can generate legal substrings to follow α.

Thus, if the parser has viable prefix α on its stack, the input should reduce to $B \beta$ (or γ for some other item $[B \rightarrow \odot \gamma]$ in the closure).

Let I be a set of $\operatorname{LR}(0)$ items. closure $0(I)$ is the smallest set such that

1. $I \subseteq$ closure $0(s)$
2. $[A \rightarrow \alpha \bullet \beta] \in \operatorname{closure} 0(I)$ and $B \rightarrow \gamma$ a production implies $[B \rightarrow \bullet \gamma] \in$ closure0(I).

Implementation: Start with rule (1), then repeat rule (2) until no further items need to be added.

goto0

Let I be a set of $\operatorname{LR}(0)$ items and X be a grammar symbol.

```
goto0(I,X) =
    closure0({[A->\alphaX\bullet\beta]|[A->\alpha\bulletX\beta]\inI})
```

If I is the set of valid items for some viable prefix γ, then $\operatorname{GOTO}(I, X)$ is the set of valid items for the viable prefix γX.

GOTO (I, X) represents state after recognizing X in state I.

Building the LR(0) item sets

We start the construction with the item $\left[S^{\prime} \rightarrow \bullet S \$\right]$, where
S^{\prime} is the start symbol of the augmented grammar G^{\prime}
S is the start symbol of G
\$ represents EOF
To compute the collection of sets of $\operatorname{LR}(0)$ items

```
function items(G
    IO}\leftarrow\operatorname{closure0({[S'}->\mathbf{\bulletS$]})
    S}\leftarrow\mathcal{W}\leftarrow{\mp@subsup{I}{0}{}
    while W\not=\emptyset
        remove I from W
        for each grammar symbol }
            if gotoO}(I,X)\not=0\mathrm{ and gotoO(I,X)}\not\in\mathcal{S}\cup\mathcal{W
                add goto0(I,X) to S and \mathscr{W}
    return S
```


LR(0) example

1	S	\rightarrow	$E \$$
2	E	\rightarrow	$E+T$
3		\mid	T
4	$T \rightarrow$	id	
5		\mid	(E)

The corresponding CFSM:

$$
\begin{array}{rlrl}
I_{0}: & S \rightarrow \bullet E \$ & I_{4}: & E \rightarrow E+T \bullet \\
& E \rightarrow \bullet E+T & I_{5}: & T \rightarrow \mathrm{id} \bullet \\
& E \rightarrow \bullet T & I_{6}: & T \rightarrow(\bullet E) \\
& T \rightarrow \bullet i d & & E \rightarrow \bullet E+T \\
& T \rightarrow \bullet(E) & & E \rightarrow \bullet T \\
I_{1}: & S \rightarrow E \bullet \$ & & T \rightarrow \bullet i d \\
& E \rightarrow E \bullet+T & & T \rightarrow \bullet(E) \\
I_{2}: & S \rightarrow E \$ \bullet & I_{7}: T \rightarrow(E \bullet) \\
I_{3}: & E \rightarrow E+\bullet T & & E \rightarrow E \bullet+T \\
& T \rightarrow \bullet i d & I_{8}: T \rightarrow(E) \bullet \\
& T \rightarrow \bullet(E) & I_{9}: E \rightarrow T \bullet
\end{array}
$$

Constructing the LR(0) parsing table

1. construct the collection of sets of $\operatorname{LR}(0)$ items for $G^{\prime}:\left\{I_{0}, I_{1}, \ldots\right\}$
2. state i of the CFSM is constructed from I_{i}
(a) $[A \rightarrow \alpha \bullet a \beta] \in I_{i}$ and $\operatorname{gotoo}\left(I_{i}, a\right)=I_{j}$
$\Rightarrow \operatorname{ACTION}[i, a] \leftarrow$ "shift j"
(b) $[A \rightarrow \alpha \bullet] \in I_{i}, A \neq S^{\prime}$
\Rightarrow ACTION $[i, a] \leftarrow$ "reduce $A \rightarrow \alpha$ ", $\forall a$
(c) $\left[S^{\prime} \rightarrow S \$ \bullet\right] \in I_{i}$
\Rightarrow ACTION $[i, a] \leftarrow$ "accept", $\forall a$
3. $\operatorname{gotoO}\left(I_{i}, A\right)=I_{j}$
$\Rightarrow \operatorname{GOTO}[i, A] \leftarrow j$
4. set undefined entries in ACTION and GOTO to "error"
5. initial state of parser corresponds to $I_{0}=\operatorname{closureO}\left(\left[S^{\prime} \rightarrow \bullet S \$\right]\right)$

state	ACTION						GOTO	
	id	$($	$)$	+	$\$$	S	S	T
0	s5	s6	-	-	-	-1	9	
1	-	-	-	s3	s2	--	-	
2	acc	acc	ccc	acc	acc	-	-	-
3	$s 5$	s6	-	-	-	--	4	
4	r2	r2	r2	r2	r2	--	-	
5	r4	r4	r4	r4	r4	--	-	
6	s5	s6	-	-	-	-7	9	
7	-	-	s8	s3	-	--	-	
8	r5	r5	r5	r5	r5	--	-	
9	r3	r3	r3	r3	r3	--	-	

Conflicts in the ACTION table

If the LR(0) parsing table contains any multiply-defined ACTION entries then G is not $L R(0)$.

Two kinds of conflict arise:
shift-reduce: both shift and reduce possible in same item set reduce-reduce: more than one distinct reduce action possible in same item set

Conflicts can be resolved through lookahead in ACTION. Consider:

- $A \rightarrow \varepsilon \mid a \alpha$
\Rightarrow shift-reduce conflict
- $\mathrm{a}:=\mathrm{b}+\mathrm{c} * \mathrm{~d}$
requires lookahead to avoid shift-reduce conflict after shifting c (need to see * to give precedence over +)

SLR(1): simple lookahead LR

Add lookaheads after building LR(0) item sets
Constructing the SLR(1) parsing table:

1. construct the collection of sets of $L R(0)$ items for G^{\prime}
2. state i of the CFSM is constructed from I_{i}
(a) $[A \rightarrow \alpha \bullet a \beta] \in I_{i}$ and $\operatorname{gotoO}\left(I_{i}, a\right)=I_{j}$
$\Rightarrow \mathrm{ACTION}[i, a] \leftarrow$ "shift $j ", \underline{\forall a \neq \$}$
(b) $\left[A \rightarrow \alpha_{0}\right] \in I_{i}, A \neq S^{\prime}$
$\Rightarrow \operatorname{ACTION}[i, a] \leftarrow$ "reduce $A \rightarrow \alpha$ ", $\forall a \in \operatorname{FOLLOW}(A)$
(c) $\begin{aligned} & {\left[S^{\prime} \rightarrow S \bullet \$\right] \in I_{i} } \\ & \Rightarrow \text { ACTION }[i, \$] \leftarrow " a c c e p t " ~\end{aligned}$
3. $\operatorname{gotoO}\left(I_{i}, A\right)=I_{j}$
$\Rightarrow \operatorname{GOTO}[i, A] \leftarrow j$
4. set undefined entries in ACTION and GOTO to "error"
5. initial state of parser s_{0} is closure $0\left(\left[S^{\prime} \rightarrow \bullet S \$\right]\right)$

From previous example

1	S	\rightarrow	$E \$$
2	E	\rightarrow	$E+T$
3			T
4	T	\rightarrow	id
5			(E)

Example: A grammar that is not $\mathbf{L R}(0)$

1	S	\rightarrow	$E \$$
2	E	\rightarrow	$E+T$
3		\mid	T
4	T	\rightarrow	$T * F$
5		\mid	F
6	F	\rightarrow	id
7			(E)
		FOLLOW	
E	$\{+),, \$\}$		
T	$\{+, *),, \$\}$		
F	$\{+, *),, \$\}$		

$$
\begin{aligned}
& I_{0}: S \rightarrow \bullet \bullet \$ \\
& E \rightarrow \bullet E+T \\
& E \rightarrow \bullet T \\
& T \rightarrow \bullet T * F \\
& T \rightarrow \bullet F \\
& F \rightarrow \bullet i d \\
& F \rightarrow \bullet(E) \\
& I_{1}: S \rightarrow E \bullet \$ \\
& E \rightarrow E \bullet+T \\
& I_{2}: S \rightarrow E \$ \bullet \\
& I_{3}: E \rightarrow E+\bullet T \\
& T \rightarrow \bullet T * F \\
& T \rightarrow \bullet F \\
& F \rightarrow \bullet i d \\
& F \rightarrow \bullet(E) \\
& I_{4}: T \rightarrow F \bullet \\
& I_{5}: F \rightarrow \mathrm{id}
\end{aligned}
$$

Example: But it is SLR(1)

state	ACTION						GOTO			
	+	$*$	id	$($	$)$	$\$$	S	E	T	F
0	-	-	s5	s6	-	-	-	1	7	4
1	s3	-	-	-	-	acc	-	-	-	-
2	-	-	-	-	-	-	-	-	-	-
3	-	-	s5	s6	-	-	-	-	11	4
4	r5	r5	-	-	r5	r5	-	-	-	-
5	r6	r6	-	-	r6	r6	-	-	-	-
6	-	-	s5	s6	-	-	-	12	7	4
7	r3	s8	-	-	r3	r3	-	-	-	-
8	-	-	s5	s6	-	-	-	-	-	9
9	r4	r4	-	-	r4	r4	-	-	-	-
10	r7	r7	-	-	r7	r7	-	-	-	-
11	r2	s8	-	-	r2	r2	-	-	-	-
12	s3	-	-	-	s10	-	-	-	-	-

Example: A grammar that is not SLR(1)

Consider:

Its $\operatorname{LR}(0)$ item sets:

$$
\left.\begin{array}{c}
I_{0}: S^{\prime} \rightarrow \bullet S \$ \\
S \rightarrow \bullet L=R \\
S \rightarrow \bullet R \\
L \rightarrow \bullet * R \\
L \rightarrow \bullet i d \\
R
\end{array}\right) \bullet L,
$$

Now consider $I_{2}:=\in \operatorname{FOLLOW}(R)(S \Rightarrow L=R \Rightarrow * R=R)$

LR(1) items

Definition: $\operatorname{An} \operatorname{LR}(k)$ item is a pair $[A \rightarrow \alpha \bullet \beta, \gamma]$, where
$A \rightarrow \alpha \beta$ is a production of G with a \bullet at some position in the RHS, marking how much of the RHS of a production has been seen γ is a lookahead string containing k symbols (terminals or $\$$)

What about LR(1) items?

- All the lookahead strings are constrained to have length 1
- Look something like $[A \rightarrow X \bullet Y Z, a]$

LR(1) items

What's the point of the lookahead symbols?

- carry along to choose correct reduction when there is a choice
- lookaheads are bookkeeping, unless item has • at right end:
- in $[A \rightarrow X \bullet Y Z, a], a$ has no direct use
- in $[A \rightarrow X Y Z \bullet, a], a$ is useful
- allows use of grammars that are not uniquely invertible ${ }^{\dagger \dagger}$

The point: For $[A \rightarrow \alpha \mathbf{\bullet}, a]$ and $[B \rightarrow \alpha \bullet, b]$, we can decide between reducing to A or B by looking at limited right context

closure1 (I)

Given an item $[A \rightarrow \alpha \bullet B \beta, a]$, its closure contains the item and any other items that can generate legal substrings to follow α.

Thus, if the parser has viable prefix α on its stack, the input should reduce to $B \beta$ (or γ for some other item $[B \rightarrow \odot \gamma, b]$ in the closure).

Given an LR(1) item set I, closure1(I) is the smallest set such that

1. $I \subseteq$ closure1 (I)
2. if $[A \rightarrow \alpha \bullet B \beta, a] \in \operatorname{closure} 1(I), B \rightarrow \gamma$ is a productions, and $b \in \operatorname{FIRST}(\beta a)$, then $[B \rightarrow \bullet \gamma, b] \in \operatorname{closure1}(I)$

Let I be a set of $\mathrm{LR}(1)$ items and X be a grammar symbol.

$$
\begin{aligned}
& \operatorname{goto1}(I, X)= \\
& \quad \operatorname{closure1}(\{[A \rightarrow \alpha X \bullet \beta, a] \mid[A \rightarrow \alpha \bullet X \beta, a] \in I\})
\end{aligned}
$$

If I is the set of valid items for some viable prefix γ, then $\operatorname{GOTO}(I, X)$ is the set of valid items for the viable prefix γX.
goto (I, X) represents the state after recognizing X in state I.

Building the LR(1) item sets for grammar G

We start the construction with the item $\left[S^{\prime} \rightarrow \bullet S, \$\right]$, where
S^{\prime} is the start symbol of the augmented grammar G^{\prime}
S is the start symbol of G
\$ represents EOF
To compute the collection of sets of $\operatorname{LR}(1)$ items

```
function items(G
    I
    W}\leftarrow\mathcal{S}\leftarrow{\mp@subsup{s}{0}{}
    while \mathscr{W}\not=0
        remove I from W
        for each grammar symbol }
            if goto1(I,X)\not=0 and goto1(I,X)\not\inS\cup\mathcal{W}
            add goto1(I,X) to S and }\mathcal{W
    return S
```


Constructing the LR(1) parsing table

Build lookahead into the DFA to begin with

1. construct the collection of sets of $L R(1)$ items for G^{\prime}
2. state i of the LR(1) machine is constructed from I_{i}
(a) $[A \rightarrow \alpha \bullet a \beta, b] \in I_{i}$ and $\operatorname{goto1}\left(I_{i}, a\right)=I_{j}$
$\Rightarrow \operatorname{ACTION}[i, a] \leftarrow$ "shift j"
(b) $[A \rightarrow \alpha \bullet, \underline{a}] \in I_{i}, A \neq S^{\prime}$
$\Rightarrow \mathrm{ACTION}[i, a] \leftarrow$ "reduce $A \rightarrow \alpha$ "
(c) $\left[S^{\prime} \rightarrow S \bullet, \$\right] \in I_{i}$
\Rightarrow ACTION $[i, \$] \leftarrow$ "accept"
3. $\operatorname{goto1}\left(I_{i}, A\right)=I_{j}$

$$
\Rightarrow \operatorname{GOTO}[i, A] \leftarrow j
$$

4. set undefined entries in ACTION and GOTO to "error"
5. initial state of parser corresponds to $I_{0}=$ closure1 $\left(\left[S^{\prime} \rightarrow \bullet S, \$\right]\right)$

Back to previous example ($\notin \mathbf{S L R}(1))$

$$
\begin{aligned}
& \begin{array}{l}
S \rightarrow L=R \\
L \rightarrow R \\
L \rightarrow R \\
R \rightarrow \\
\hline
\end{array} \\
& \begin{array}{cc}
I_{0}: S^{\prime} \rightarrow \bullet S, & \$ \\
S \rightarrow \bullet L=R, \$ \\
S \rightarrow \bullet R, & \$ \\
L \rightarrow \bullet * R, & = \\
L \rightarrow \bullet \bullet & = \\
R \rightarrow \bullet, & \$ \\
L \rightarrow \bullet * R, & \$ \\
L \rightarrow \bullet i d, & \$ \\
I_{1}: S^{\prime} \rightarrow S \bullet & \$ \\
I_{2}: S \rightarrow L \bullet=R, \$ \\
R \rightarrow L \bullet & \$ \\
I_{3}: S \rightarrow R \bullet & \$ \\
I_{4}: L \rightarrow * \bullet R, & =\$ \\
R \rightarrow \bullet L, & =\$ \\
L \rightarrow \bullet * R, & =\$ \\
L \rightarrow \bullet i d, & =\$
\end{array} \\
& I_{5}: L \rightarrow \text { id } \mathbf{\bullet}, \quad=\$ \\
& I_{6}: S \rightarrow L=\bullet R, \$ \\
& R \rightarrow \bullet L, \quad \$ \\
& L \rightarrow \bullet * R, \quad \$ \\
& L \rightarrow \bullet i d, \quad \$ \\
& I_{7}: L \rightarrow * R \bullet,=\$ \\
& I_{8}: R \rightarrow L \bullet, \quad=\$ \\
& I_{9}: S \rightarrow L=R \bullet, \$ \\
& I_{10}: R \rightarrow L \bullet, \quad \$ \\
& I_{11}: L \rightarrow * \bullet R, \quad \$ \\
& R \rightarrow \bullet L, \quad \$ \\
& L \rightarrow \bullet * R, \quad \$ \\
& L \rightarrow \text { id, \$ } \\
& I_{12}: L \rightarrow \text { ide, } \quad \$ \\
& I_{13}: L \rightarrow * R \bullet \quad \$
\end{aligned}
$$

I_{2} no longer has shift-reduce conflict: reduce on $\$$, shift on $=$

Example: back to SLR(1) expression grammar

In general, $\operatorname{LR}(1)$ has many more states than $\operatorname{LR}(0) / \operatorname{SLR}(1)$:

$$
\begin{array}{l|llll|lll}
1 & S & \rightarrow & E & 4 & T & \rightarrow & T * F \\
2 & E & \rightarrow & E+T & 5 & & \mid & F \\
3 & & \mid & T & 6 & F & \rightarrow & \text { id } \\
& & & 7 & & & (E)
\end{array}
$$

LR(1) item sets:

Another example

Consider:

$\begin{array}{l\|l} 0 & S^{\prime} \\ 1 & S \\ 2 & C \\ 3 & C \end{array}$	$\begin{array}{ll} \rightarrow & S \\ \rightarrow C C \\ \rightarrow & c C \\ \mid & d \end{array}$	
state	ACTION	GOTO
	$c \quad d \quad \$$	$S \quad C$
0	s3 s4 -	12
1	- - acc	- -
2	s6 s7 -	5
3	s3 s4	8
4	r3 r3	- -
5	- - r1	- -
6	s6 s7	9
7	- - r3	- -
8	r2 r2	- -
9	- - r2	- -

LR(1) item sets:

$$
\begin{aligned}
& I_{0}: S^{\prime} \rightarrow \bullet S, \quad \$ \\
& S \rightarrow \bullet C C, \$ \\
& C \rightarrow \bullet C, c d \\
& C \rightarrow \bullet d, \quad c d \\
& I_{1}: S^{\prime} \rightarrow S \bullet, \quad \$ \\
& I_{2}: S \rightarrow C \bullet C, \$ \\
& C \rightarrow \bullet c C, \$ \\
& C \rightarrow \bullet d, \quad \$ \\
& I_{3}: C \rightarrow c \bullet C, c d \\
& C \rightarrow \bullet C C, c d \\
& C \rightarrow \bullet d, \quad c d \\
& I_{4}: C \rightarrow d \bullet, \quad c d \\
& I_{5}: S \rightarrow C C \bullet, \$ \\
& I_{6}: C \rightarrow c \bullet C, \$ \\
& C \rightarrow \bullet c C, \$ \\
& C \rightarrow \bullet d, \quad \$ \\
& I_{7}: C \rightarrow d \bullet, \quad \$ \\
& I_{8}: C \rightarrow c C \bullet, c d \\
& I_{9}: C \rightarrow c C \bullet, \$
\end{aligned}
$$

LALR(1) parsing

Define the core of a set of $\operatorname{LR}(1)$ items to be the set of $\operatorname{LR}(0)$ items derived by ignoring the lookahead symbols.

Thus, the two sets

- $\{[A \rightarrow \alpha \bullet \beta, \mathrm{a}],[A \rightarrow \alpha \bullet \beta, \mathrm{~b}]\}$, and
- $\{[A \rightarrow \alpha \bullet \beta, c],[A \rightarrow \alpha \bullet \beta, \mathrm{~d}]\}$
have the same core.
Key idea:
If two sets of $\operatorname{LR}(1)$ items, I_{i} and I_{j}, have the same core, we can merge the states that represent them in the ACTION and GOTO tables.

LALR(1) table construction

To construct LALR(1) parsing tables, we can insert a single step into the LR(1) algorithm
(1.5) For each core present among the set of $\mathrm{LR}(1)$ items, find all sets having that core and replace these sets by their union.

The goto function must be updated to reflect the replacement sets.

The resulting algorithm has large space requirements.

LALR(1) table construction

The revised (and renumbered) algorithm

1. construct the collection of sets of $L R(1)$ items for G^{\prime}
2. for each core present among the set of LR(1) items, find all sets having that core and replace these sets by their union (update the goto function incrementally)
3. state i of the LALR(1) machine is constructed from I_{i}.
(a) $[A \rightarrow \alpha \bullet a \beta, b] \in I_{i}$ and $\operatorname{goto1}\left(I_{i}, a\right)=I_{j}$

$$
\Rightarrow \operatorname{ACTION}[i, a] \leftarrow \text { "shift } j "
$$

(b) $[A \rightarrow \boldsymbol{\alpha} \mathbf{\bullet}, a] \in I_{i}, A \neq S^{\prime}$
\Rightarrow ACTION $[i, a] \leftarrow$ "reduce $A \rightarrow \alpha$ "
(c) $\left[S^{\prime} \rightarrow S \bullet, \$\right] \in I_{i} \Rightarrow \operatorname{ACTION}[i, \$] \leftarrow$ "accept"
4. $\operatorname{goto1}\left(I_{i}, A\right)=I_{j} \Rightarrow \operatorname{GOTO}[i, A] \leftarrow j$
5. set undefined entries in ACTION and GOTO to "error"
6. initial state of parser corresponds to $I_{0}=$ closure1 $\left(\left[S^{\prime} \rightarrow \bullet S, \$\right]\right)$

Example

$$
\begin{array}{c|ccc}
0 & S^{\prime} & \rightarrow & S \\
1 & S & \rightarrow & C C \\
2 & C \rightarrow & \rightarrow C \\
3 & & d
\end{array}
$$

$$
\begin{aligned}
& \text { Reconsider: } \quad I_{0}: S^{\prime} \rightarrow \bullet S, \quad \$ \quad I_{3}: C \rightarrow c \bullet C, c d \quad I_{6}: C \rightarrow c \bullet C, \$ \\
& \begin{array}{rrrr}
I_{0}: S^{\prime} \rightarrow \bullet S, \$ & I_{3}: C \rightarrow c \bullet C, c d & I_{6}: C \rightarrow c \bullet C, \$ \\
S \rightarrow \bullet C C, \$ & C \rightarrow c C, c d & C \rightarrow \bullet C, \$
\end{array} \\
& C \rightarrow \bullet c C, c d \\
& C \rightarrow \bullet d, \quad c d \\
& I_{1}: S^{\prime} \rightarrow S \bullet, \quad \$ \quad I_{5}: S \rightarrow C C \bullet, \$ \\
& I_{8}: C \rightarrow c C \bullet, c d \\
& I_{9}: C \rightarrow c C \bullet \text {, \$ } \\
& C \rightarrow \bullet c C, \$ \\
& C \rightarrow \bullet d, \quad \$
\end{aligned}
$$

More efficient LALR(1) construction

Observe that we can:

- represent I_{i} by its basis or kernel: items that are either $\left[S^{\prime} \rightarrow \bullet S, \$\right.$] or do not have • at the left of the RHS
- compute shift, reduce and goto actions for state derived from I_{i} directly from its kernel

This leads to a method that avoids building the complete canonical collection of sets of $L R(1)$ items

The role of precedence

Precedence and associativity can be used to resolve shift/reduce conflicts in ambiguous grammars.

- lookahead with higher precedence \Rightarrow shift
- same precedence, left associative \Rightarrow reduce

Advantages:

- more concise, albeit ambiguous, grammars
- shallower parse trees \Rightarrow fewer reductions

Classic application: expression grammars

The role of precedence

With precedence and associativity, we can use:

$E \rightarrow$	$E * E$
	E / E
	$E+E$
	$E-E$
	(E)
	-E
	id
	num

This eliminates useless reductions (single productions)

Error recovery in shift-reduce parsers

The problem

- encounter an invalid token
- bad pieces of tree hanging from stack
- incorrect entries in symbol table

We want to parse the rest of the file
Restarting the parser

- find a restartable state on the stack
- move to a consistent place in the input
- print an informative message to stderr
(line number)

Error recovery in yacc/bison/Java CUP

The error mechanism

- designated token error
- valid in any production
- error shows syncronization points

When an error is discovered

- pops the stack until error is legal
- skips input tokens until it successfully shifts 3
- error productions can have actions

This mechanism is fairly general

Example

Using error

```
stmt_list : stmt
stmt_list ; stmt
```

can be augmented with error

```
stmt_list : stmt
error
stmt_list ; stmt
```

This should

- throw out the erroneous statement
- synchronize at ";" or "end"
- invoke yyerror("syntax error")

Other "natural" places for errors

- all the "lists": FieldList, CaseList
- missing parentheses or brackets
- extra operator or missing operator

Left versus right recursion

Right Recursion:

- needed for termination in predictive parsers
- requires more stack space
- right associative operators

Left Recursion:

- works fine in bottom-up parsers
- limits required stack space
- left associative operators

Rule of thumb:

- right recursion for top-down parsers
- left recursion for bottom-up parsers

Parsing review

Recursive descent
A hand coded recursive descent parser directly encodes a grammar (typically an LL(1) grammar) into a series of mutually recursive procedures. It has most of the linguistic limitations of LL(1).
$\mathrm{LL}(k)$
An $\operatorname{LL}(k)$ parser must be able to recognize the use of a production after seeing only the first k symbols of its right hand side.
$\mathrm{LR}(k)$
An $\operatorname{LR}(k)$ parser must be able to recognize the occurrence of the right hand side of a production after having seen all that is derived from that right hand side with k symbols of lookahead.

Complexity of parsing: grammar hierarchy

Note: this is a hierarchy of grammars not languages

Language vs. grammar

For example, every regular language has a grammar that is LL(1), but not all regular grammars are LL(1). Consider:

$$
\begin{aligned}
& S \rightarrow a b \\
& S \rightarrow a c
\end{aligned}
$$

Without left-factoring, this grammar is not LL(1).

