
Bottom-up parsing

Recall

For a grammar G, with start symbol S, any string α such that S ⇒∗ α is
a sentential form

• If α ∈V ∗
t , then α is a sentence in L(G)

A left-sentential form is a sentential form that occurs in the leftmost
derivation of some sentence.

A right-sentential form is a sentential form that occurs in the rightmost
derivation of some sentence.

57

Bottom-up parsing

Goal:

Given an input string w and a grammar G, construct a parse tree

by starting at the leaves and working to the root.

The parser repeatedly matches a right-sentential form of the language
against the tree’s upper frontier.

At each match, it applies a reduction to build on the frontier:

• each reduction matches an upper frontier of the partially built tree to
the RHS of some production

• each reduction adds a node on top of the frontier

The final result is a rightmost derivation, in reverse.
58

Example

Consider the grammar

1 S → aABe
2 A → Abc
3 | b

4 B → d

and the input string abbcde

Prod’n. Sentential Form
3 a b bcde

2 a Abc de

4 aA d e

1 aABe
– S

Scan the input and find prefixes of sentential forms!

59

Handles

What are we trying to find?

A substring α of the tree’s upper frontier that

matches some production A → α where reducing α to A is one
step in the reverse of a rightmost derivation

We call such a string a handle.

Formally:

In a right-sentential form αβw, the string β is a handle for
production A → β

i.e., if S ⇒∗
rm αAw ⇒rm αβw then β is a handle for A → β in αβw

All right-sentential forms have a suffix containing only terminal symbols.

60

Handles

S

α

A

wβ
The handle A → β in the parse tree for αβw

61

Handles

Theorem:

If G is unambiguous then every right-sentential form has a unique
handle.

Proof: (by definition)

1. G is unambiguous ⇒ rightmost derivation is unique

2. ⇒ a unique production A → β applied to take γi−1 to γi

3. ⇒ a unique position k at which A → β is applied

4. ⇒ a unique handle A → β

62

Example

The left-recursive expression grammar (original form)

1 �goal� ::= �expr�
2 �expr� ::= �expr�+ �term�
3 | �expr�−�term�
4 | �term�
5 �term� ::= �term� ∗ �factor�
6 | �term�/�factor�
7 | �factor�
8 �factor� ::= num

9 | id

Prod’n. Sentential Form
– �goal�
1 �expr�
3 �expr� − �term�
5 �expr� − �term� ∗ �factor�
9 �expr� − �term� ∗ id
7 �expr� − �factor� ∗ id
8 �expr� − num ∗ id
4 �term� − num ∗ id
7 �factor� − num ∗ id
9 id − num ∗ id

63

Stack implementation

One scheme to implement a handle-pruning, bottom-up parser is called a
shift-reduce parser.

Shift-reduce parsers use a stack and an input buffer

1. initialize stack with $

2. Repeat until the top of the stack is the goal symbol and the input
token is $

a) find the handle

if we don’t have a handle on top of the stack, shift an input symbol
onto the stack

b) prune the handle

if we have a handle for A → β on the stack, reduce:

i) pop | β | symbols off the stack

ii) push A onto the stack

64

Example: back to x − 2 ∗ y

1 �goal� ::= �expr�
2 �expr� ::= �expr�+ �term�
3 | �expr�−�term�
4 | �term�
5 �term� ::= �term� ∗ �factor�
6 | �term�/�factor�
7 | �factor�
8 �factor� ::= num

9 | id

Stack Input Action
$ id − num ∗ id shift
$id − num ∗ id reduce 9
$�factor� − num ∗ id reduce 7
$�term� − num ∗ id reduce 4
$�expr� − num ∗ id shift
$�expr� − num ∗ id shift
$�expr� − num ∗ id reduce 8
$�expr� − �factor� ∗ id reduce 7
$�expr� − �term� ∗ id shift
$�expr� − �term� ∗ id shift
$�expr� − �term� ∗ id reduce 9
$�expr� − �term� ∗ �factor� reduce 5
$�expr� − �term� reduce 3
$�expr� reduce 1
$�goal� accept

1. Shift until top of stack is the right end of a handle

2. Find the left end of the handle and reduce

5 shifts + 9 reduces + 1 accept
65

Shift-reduce parsing

Shift-reduce parsers are simple to understand

A shift-reduce parser has just four canonical actions:

1. shift — next input symbol is shifted onto the top of the stack

2. reduce — right end of handle is on top of stack;
locate left end of handle within the stack;
pop handle off stack and push appropriate non-terminal LHS

3. accept — terminate parsing and signal success

4. error — call an error recovery routine

But how do we know

• that there is a complete handle on the stack?

• which handle to use?

66

LR parsing: key insight

Recognize handles with a DFA [Knuth1965]

• DFA transitions shift states instead of symbols

• accepting states trigger reductions

67

LR parsing

The skeleton parser:

push s0
token ← next token()

repeat forever

s ← top of stack

if action[s,token] = "shift si" then

push si
token ← next token()

else if action[s,token] = "reduce A → β"
then

pop | β | states

s
� ← top of stack

push goto[s
�
,A]

else if action[s, token] = "accept" then

return

else error()

This takes k shifts, l reduces, and 1 accept, where k is the length of the
input string and l is the length of the reverse rightmost derivation

68

Example tables

state ACTION GOTO
id + ∗ $ �expr� �term� �factor�

0 s4 – – – 1 2 3
1 – – – acc – – –
2 – s5 – r3 – – –
3 – r5 s6 r5 – – –
4 – r6 r6 r6 – – –
5 s4 – – – 7 2 3
6 s4 – – – – 8 3
7 – – – r2 – – –
8 – r4 – r4 – – –

The Grammar
1 �goal� ::= �expr�
2 �expr� ::= �term�+ �expr�
3 | �term�
4 �term� ::= �factor� ∗ �term�
5 | �factor�
6 �factor� ::= id

Note: This is a simple little right-recursive grammar; not the same as in previous lectures.

69

Example using the tables

Stack Input Action
$ 0 id∗ id+ id$ s4
$ 0 4 ∗ id+ id$ r6
$ 0 3 ∗ id+ id$ s6
$ 0 3 6 id+ id$ s4
$ 0 3 6 4 + id$ r6
$ 0 3 6 3 + id$ r5
$ 0 3 6 8 + id$ r4
$ 0 2 + id$ s5
$ 0 2 5 id$ s4
$ 0 2 5 4 $ r6
$ 0 2 5 3 $ r5
$ 0 2 5 2 $ r3
$ 0 2 5 7 $ r2
$ 0 1 $ acc

70

LR(k) grammars

Informally, we say that a grammar G is LR(k) if, given a rightmost
derivation

S = γ0 ⇒ γ1 ⇒ γ2 ⇒ · · ·⇒ γn = w,

we can, for each right-sentential form in the derivation,

1. isolate the handle of each right-sentential form, and

2. determine the production by which to reduce

by scanning γi from left to right, going at most k symbols beyond the right
end of the handle of γi.

71

LR(k) grammars

Formally, a grammar G is LR(k) iff

1. S ⇒∗
rm αAw ⇒rm αβw, and

2. S ⇒∗
rm γBx ⇒rm αβy, and

3. FIRSTk(w) = FIRSTk(y)

implies αAy = γBx

i.e., consider sentential forms αβw and αβy, with common prefix αβ and
common k-symbol lookahead FIRSTk(y) = FIRSTk(w), where there might
be two choices, αAw and γBx, that reduce to αβw and αβy, respectively.

In an LR(k) grammar, there is no such choice: It must be that αAy = γBx.

72

Why study LR grammars?

LR(1) grammars are often used to construct parsers.

We call these parsers LR(1) parsers.

• virtually all context-free programming language constructs can be
expressed in an LR(1) form

• LR grammars are the most general grammars parsable by a
deterministic, bottom-up parser

• efficient parsers can be implemented for LR(1) grammars
• LR parsers detect an error as soon as possible in a left-to-right scan

of the input
• LR grammars describe a proper superset of the languages

recognized by predictive (i.e., LL) parsers

LL(k): recognize use of a production A → β seeing first k symbols
derived from β

LR(k): recognize the handle β after seeing everything derived from β
plus k lookahead symbols

73

LR parsing

Three common algorithms to build tables for an “LR” parser:

1. SLR(1)
• smallest class of grammars
• smallest tables (number of states)
• simple, fast construction

2. LR(1)
• full set of LR(1) grammars
• largest tables (number of states)
• slow, large construction

3. LALR(1)
• intermediate sized set of grammars
• same number of states as SLR(1)
• canonical construction is slow and large
• better construction techniques exist

An LR(1) parser for a realistic language has several thousand states,
while an SLR(1) or LALR(1) parser for the same language may have
several hundred states.

74

LR(k) items

The table construction algorithms use sets of LR(k) items or
configurations to represent the possible states in a parse.

An LR(k) item is a pair [A → α•β,γ], where

A → αβ is a production of G where the position of the • is arbitrary; it marks
how much of the RHS of a production has already been seen

γ is a lookahead string containing k symbols (terminals or $)

Two cases of interest are k = 0 and k = 1:

LR(0) items play a key role in the SLR(1) table construction algorithm.
LR(1) items play a key role in the LR(1) and LALR(1) table construction

algorithms.

75

Example

The • indicates how much of an item we have seen at a given state in the
parse:
[A → •XY Z] indicates that the parser is looking for a string that can be

derived from XY Z
[A → XY •Z] indicates that the parser has seen a string derived from XY

and is looking for one derivable from Z

LR(0) items: (no lookahead)

A → XY Z has four associated LR(0) items:
1. [A → •XY Z]
2. [A → X •Y Z]
3. [A → XY •Z]
4. [A → XY Z•]

76

The characteristic finite state machine (CFSM)

The CFSM for a grammar is a DFA which recognizes viable prefixes of
right-sentential forms:

A viable prefix is any prefix that does not extend beyond the
handle.

It accepts when a handle has been discovered and needs to be reduced.

To construct the CFSM we need two functions:

• closure0(I) to build its states

• goto0(I,X) to determine its transitions

77

closure0

Given an item [A → α•Bβ], its closure contains the item and any other
items that can generate legal substrings to follow α.

Thus, if the parser has viable prefix α on its stack, the input should reduce
to Bβ (or γ for some other item [B → •γ] in the closure).

Let I be a set of LR(0) items. closure0(I) is the smallest set such that

1. I ⊆ closure0(s)

2. [A → α•β] ∈ closure0(I) and B → γ a production implies
[B → •γ] ∈ closure0(I).

Implementation: Start with rule (1), then repeat rule (2) until no further
items need to be added.

78

goto0

Let I be a set of LR(0) items and X be a grammar symbol.

goto0(I,X) =

closure0({[A → αX •β] | [A → α•Xβ] ∈ I})

If I is the set of valid items for some viable prefix γ, then GOTO(I,X) is the
set of valid items for the viable prefix γX .

GOTO(I,X) represents state after recognizing X in state I.

79

Building the LR(0) item sets

We start the construction with the item [S� → •S$], where

S� is the start symbol of the augmented grammar G�

S is the start symbol of G
$ represents EOF

To compute the collection of sets of LR(0) items

function items(G�
)

I0 ← closure0({[S� → •S$]})
S ← W ← {I0}
while W �= /0

remove I from W
for each grammar symbol X

if goto0(I,X) �= /0 and goto0(I,X) �∈ S ∪W
add goto0(I,X) to S and W

return S

80

LR(0) example

1 S → E$
2 E → E +T
3 | T
4 T → id

5 | (E)

The corresponding CFSM:

0 5 6

1

2

3

4

7

8

9

T

T

EE

T

(

(

)$

id

id id

+ +

(

I0 : S → •E$
E → •E +T
E → •T
T → •id
T → •(E)

I1 : S → E •$
E → E •+T

I2 : S → E$•
I3 : E → E +•T

T → •id
T → •(E)

I4 : E → E +T•
I5 : T → id•
I6 : T → (•E)

E → •E +T
E → •T
T → •id
T → •(E)

I7 : T → (E•)
E → E •+T

I8 : T → (E)•
I9 : E → T•

81

Constructing the LR(0) parsing table

1. construct the collection of sets of LR(0) items for G�: {I0, I1, . . .}
2. state i of the CFSM is constructed from Ii

(a) [A → α•aβ] ∈ Ii and goto0(Ii,a) = I j
⇒ ACTION[i,a]← “shift j”

(b) [A → α•] ∈ Ii,A �= S�

⇒ ACTION[i,a]← “reduce A → α”, ∀a
(c) [S� → S$•] ∈ Ii

⇒ ACTION[i,a]← “accept”, ∀a

3. goto0(Ii,A) = I j
⇒ GOTO[i,A]← j

4. set undefined entries in ACTION and GOTO to “error”

5. initial state of parser corresponds to I0 = closure0([S� → •S$])

82

LR(0) example

0 5 6

1

2

3

4

7

8

9

T

T

EE

T

(

(

)$

id

id id

+ +

(

state ACTION GOTO
id () + $ S E T

0 s5 s6 – – – – 1 9
1 – – – s3 s2 – – –
2 acc acc acc acc acc – – –
3 s5 s6 – – – – – 4
4 r2 r2 r2 r2 r2 – – –
5 r4 r4 r4 r4 r4 – – –
6 s5 s6 – – – – 7 9
7 – – s8 s3 – – – –
8 r5 r5 r5 r5 r5 – – –
9 r3 r3 r3 r3 r3 – – –

83

Conflicts in the ACTION table

If the LR(0) parsing table contains any multiply-defined ACTION
entries then G is not LR(0).

Two kinds of conflict arise:

shift-reduce: both shift and reduce possible in same item set

reduce-reduce: more than one distinct reduce action possible in same
item set

Conflicts can be resolved through lookahead in ACTION. Consider:

• A → ε | aα
⇒ shift-reduce conflict

• a:=b+c*d

requires lookahead to avoid shift-reduce conflict after shifting c

(need to see * to give precedence over +)

84

SLR(1): simple lookahead LR

Add lookaheads after building LR(0) item sets

Constructing the SLR(1) parsing table:

1. construct the collection of sets of LR(0) items for G�

2. state i of the CFSM is constructed from Ii
(a) [A → α•aβ] ∈ Ii and goto0(Ii,a) = I j

⇒ ACTION[i,a]← “shift j”, ∀a �= $
(b) [A → α•] ∈ Ii,A �= S�

⇒ ACTION[i,a]← “reduce A → α”, ∀a ∈ FOLLOW(A)
(c) [S� → S•$] ∈ Ii

⇒ ACTION[i,$]← “accept”

3. goto0(Ii,A) = I j
⇒ GOTO[i,A]← j

4. set undefined entries in ACTION and GOTO to “error”

5. initial state of parser s0 is closure0([S� → •S$])

85

From previous example

1 S → E$
2 E → E +T
3 | T
4 T → id

5 | (E)

0 5 6

1

2

3

4

7

8

9

T

T

EE

T

(

(

)$

id

id id

+ +

(

FOLLOW(E) = FOLLOW(T) = {$,+,)}
state ACTION GOTO

id () + $ S E T
0 s5 s6 – – – – 1 9
1 – – – s3 acc – – –
2 – – – – – – – –
3 s5 s6 – – – – – 4
4 – – r2 r2 r2 – – –
5 – – r4 r4 r4 – – –
6 s5 s6 – – – – 7 9
7 – – s8 s3 – – – –
8 – – r5 r5 r5 – – –
9 – – r3 r3 r3 – – –

86

Example: A grammar that is not LR(0)

1 S → E$
2 E → E +T
3 | T
4 T → T ∗F
5 | F
6 F → id

7 | (E)

FOLLOW

E {+,),$}
T {+,∗,),$}
F {+,∗,),$}

I0 : S → •E$
E → •E +T
E → •T
T → •T ∗F
T → •F
F → •id
F → •(E)

I1 : S → E •$
E → E •+T

I2 : S → E$•
I3 : E → E +•T

T → •T ∗F
T → •F
F → •id
F → •(E)

I4 : T → F•
I5 : F → id•

I6 : F → (•E)
E → •E +T
E → •T
T → •T ∗F
T → •F
F → •id
F → •(E)

I7 : E → T•
T → T •∗F

I8 : T → T ∗•F
F → •id
F → •(E)

I9 : T → T ∗F•
I10 : F → (E)•
I11 : E → E +T•

T → T •∗F
I12 : F → (E•)

E → E •+T

87

Example: But it is SLR(1)

state ACTION GOTO
+ ∗ id () $ S E T F

0 – – s5 s6 – – – 1 7 4
1 s3 – – – – acc – – – –
2 – – – – – – – – – –
3 – – s5 s6 – – – – 11 4
4 r5 r5 – – r5 r5 – – – –
5 r6 r6 – – r6 r6 – – – –
6 – – s5 s6 – – – 12 7 4
7 r3 s8 – – r3 r3 – – – –
8 – – s5 s6 – – – – – 9
9 r4 r4 – – r4 r4 – – – –
10 r7 r7 – – r7 r7 – – – –
11 r2 s8 – – r2 r2 – – – –
12 s3 – – – s10 – – – – –

88

Example: A grammar that is not SLR(1)

Consider:
S → L = R

| R
L → ∗R

| id

R → L

Its LR(0) item sets:
I0 : S� → •S$

S → •L = R
S → •R
L → •∗R
L → •id
R → •L

I1 : S� → S•$
I2 : S → L•= R

R → L•
I3 : S → R•
I4 : L → id•

I5 : L →∗•R
R → •L
L → •∗R
L → •id

I6 : S → L = •R
R → •L
L → •∗R
L → •id

I7 : L →∗R•
I8 : R → L•
I9 : S → L = R•

Now consider I2: = ∈ FOLLOW(R) (S ⇒ L = R ⇒∗R = R)

89

LR(1) items

Definition: An LR(k) item is a pair [A → α•β,γ], where

A → αβ is a production of G with a • at some position in the RHS, marking
how much of the RHS of a production has been seen

γ is a lookahead string containing k symbols (terminals or $)

What about LR(1) items?

• All the lookahead strings are constrained to have length 1

• Look something like [A → X •Y Z,a]

90

LR(1) items

What’s the point of the lookahead symbols?

• carry along to choose correct reduction when there is a choice

• lookaheads are bookkeeping, unless item has • at right end:

– in [A → X •Y Z,a], a has no direct use

– in [A → XY Z•,a], a is useful

• allows use of grammars that are not uniquely invertible†

The point: For [A → α•,a] and [B → α•,b], we can decide between
reducing to A or B by looking at limited right context

†No two productions have the same RHS

91

closure1(I)

Given an item [A → α•Bβ,a], its closure contains the item and any other
items that can generate legal substrings to follow α.

Thus, if the parser has viable prefix α on its stack, the input should reduce
to Bβ (or γ for some other item [B → •γ,b] in the closure).

Given an LR(1) item set I, closure1(I) is the smallest set such that

1. I ⊆ closure1(I)

2. if [A → α•Bβ,a] ∈ closure1(I), B → γ is a productions, and
b ∈ FIRST(βa), then [B → •γ,b] ∈ closure1(I)

92

goto1(I)

Let I be a set of LR(1) items and X be a grammar symbol.

goto1(I,X) =

closure1({[A → αX •β,a] | [A → α•Xβ,a] ∈ I})

If I is the set of valid items for some viable prefix γ, then GOTO(I,X) is the
set of valid items for the viable prefix γX .

goto(I,X) represents the state after recognizing X in state I.

93

Building the LR(1) item sets for grammar G

We start the construction with the item [S� → •S,$], where

S� is the start symbol of the augmented grammar G�

S is the start symbol of G
$ represents EOF

To compute the collection of sets of LR(1) items

function items(G�
)

I0 ← closure1({[S� → •S,$]})
W ← S ← {s0}
while W �= /0

remove I from W
for each grammar symbol X

if goto1(I,X) �= /0 and goto1(I,X) �∈ S ∪W
add goto1(I,X) to S and W

return S

94

Constructing the LR(1) parsing table

Build lookahead into the DFA to begin with

1. construct the collection of sets of LR(1) items for G�

2. state i of the LR(1) machine is constructed from Ii
(a) [A → α•aβ,b] ∈ Ii and goto1(Ii,a) = I j

⇒ ACTION[i,a]← “shift j”
(b) [A → α•,a] ∈ Ii,A �= S�

⇒ ACTION[i,a]← “reduce A → α”
(c) [S� → S•,$] ∈ Ii

⇒ ACTION[i,$]← “accept”

3. goto1(Ii,A) = I j
⇒ GOTO[i,A]← j

4. set undefined entries in ACTION and GOTO to “error”

5. initial state of parser corresponds to I0 = closure1([S� → •S,$])

95

Back to previous example (�∈ SLR(1))

S → L = R
| R

L → ∗R
| id

R → L

I0 : S� → •S, $
S → •L = R, $
S → •R, $
L → •∗R, =
L → •id, =
R → •L, $
L → •∗R, $
L → •id, $

I1 : S� → S•, $
I2 : S → L•= R, $

R → L•, $
I3 : S → R•, $
I4 : L →∗•R, = $

R → •L, = $
L → •∗R, = $
L → •id, = $

I5 : L → id•, = $
I6 : S → L = •R, $

R → •L, $
L → •∗R, $
L → •id, $

I7 : L →∗R•, = $
I8 : R → L•, = $
I9 : S → L = R•, $
I10 : R → L•, $
I11 : L →∗•R, $

R → •L, $
L → •∗R, $
L → •id, $

I12 : L → id•, $
I13 : L →∗R•, $

I2 no longer has shift-reduce conflict: reduce on $, shift on =

96

Example: back to SLR(1) expression grammar

In general, LR(1) has many more states than LR(0)/SLR(1):

1 S → E
2 E → E +T
3 | T

4 T → T ∗F
5 | F
6 F → id

7 | (E)

LR(1) item sets:
I0 :

S → •E, $
E → •E +T,+$
E → •T, +$
T → •T ∗F, ∗+$
T → •F, ∗+$
F → •id, ∗+$
F → •(E), ∗+$

I�0 :shifting (
F → (•E), ∗+$
E → •E +T,+)
E → •T, +)
T → •T ∗F, ∗+)
T → •F, ∗+)
F → •id, ∗+)
F → •(E), ∗+)

I��0 :shifting (
F → (•E), ∗+)
E → •E +T,+)
E → •T, +)
T → •T ∗F, ∗+)
T → •F, ∗+)
F → •id, ∗+)
F → •(E), ∗+)

97

Another example

Consider:
0 S� → S
1 S → CC
2 C → cC
3 | d

state ACTION GOTO
c d $ S C

0 s3 s4 – 1 2
1 – – acc – –
2 s6 s7 – – 5
3 s3 s4 – – 8
4 r3 r3 – – –
5 – – r1 – –
6 s6 s7 – – 9
7 – – r3 – –
8 r2 r2 – – –
9 – – r2 – –

LR(1) item sets:
I0 : S� → •S, $

S → •CC, $
C → •cC, cd
C → •d, cd

I1 : S� → S•, $
I2 : S →C •C, $

C → •cC, $
C → •d, $

I3 : C → c•C, cd
C → •cC, cd
C → •d, cd

I4 : C → d•, cd
I5 : S →CC•, $
I6 : C → c•C, $

C → •cC, $
C → •d, $

I7 : C → d•, $
I8 : C → cC•, cd
I9 : C → cC•, $

98

LALR(1) parsing

Define the core of a set of LR(1) items to be the set of LR(0) items
derived by ignoring the lookahead symbols.

Thus, the two sets

• {[A → α•β,a], [A → α•β,b]}, and

• {[A → α•β,c], [A → α•β,d]}

have the same core.

Key idea:

If two sets of LR(1) items, Ii and I j, have the same core, we can
merge the states that represent them in the ACTION and GOTO
tables.

99

LALR(1) table construction

To construct LALR(1) parsing tables, we can insert a single step into the
LR(1) algorithm

(1.5) For each core present among the set of LR(1) items, find all sets
having that core and replace these sets by their union.

The goto function must be updated to reflect the replacement sets.

The resulting algorithm has large space requirements.
100

LALR(1) table construction

The revised (and renumbered) algorithm

1. construct the collection of sets of LR(1) items for G�

2. for each core present among the set of LR(1) items, find all sets
having that core and replace these sets by their union (update the
goto function incrementally)

3. state i of the LALR(1) machine is constructed from Ii.

(a) [A → α•aβ,b] ∈ Ii and goto1(Ii,a) = I j
⇒ ACTION[i,a]← “shift j”

(b) [A → α•,a] ∈ Ii,A �= S�

⇒ ACTION[i,a]← “reduce A → α”
(c) [S� → S•,$] ∈ Ii ⇒ ACTION[i,$]← “accept”

4. goto1(Ii,A) = I j ⇒ GOTO[i,A]← j

5. set undefined entries in ACTION and GOTO to “error”

6. initial state of parser corresponds to I0 = closure1([S� → •S,$])

101

Example

Reconsider:

0 S� → S
1 S → CC
2 C → cC
3 | d

Merged states:
I36 : C → c•C, cd$

C → •cC, cd$
C → •d, cd$

I47 : C → d•, cd$
I89 : C → cC•, cd$

I0 : S� → •S, $
S → •CC, $
C → •cC, cd
C → •d, cd

I1 : S� → S•, $
I2 : S →C •C, $

C → •cC, $
C → •d, $

I3 : C → c•C, cd
C → •cC, cd
C → •d, cd

I4 : C → d•, cd
I5 : S →CC•, $

I6 : C → c•C, $
C → •cC, $
C → •d, $

I7 : C → d•, $
I8 : C → cC•, cd
I9 : C → cC•, $

state ACTION GOTO
c d $ S C

0 s36 s47 – 1 2
1 – – acc – –
2 s36 s47 – – 5
36 s36 s47 – – 8
47 r3 r3 r3 – –
5 – – r1 – –
89 r2 r2 r2 – –

102

More efficient LALR(1) construction

Observe that we can:

• represent Ii by its basis or kernel:
items that are either [S� → •S,$]
or do not have • at the left of the RHS

• compute shift, reduce and goto actions for state derived from Ii
directly from its kernel

This leads to a method that avoids building the complete canonical

collection of sets of LR(1) items

103

The role of precedence

Precedence and associativity can be used to resolve shift/reduce conflicts
in ambiguous grammars.

• lookahead with higher precedence ⇒ shift

• same precedence, left associative ⇒ reduce

Advantages:

• more concise, albeit ambiguous, grammars

• shallower parse trees ⇒ fewer reductions

Classic application: expression grammars

104

The role of precedence

With precedence and associativity, we can use:

E → E ∗E
| E/E
| E +E
| E −E
| (E)
| -E
| id

| num

This eliminates useless reductions (single productions)

105

Error recovery in shift-reduce parsers

The problem

• encounter an invalid token

• bad pieces of tree hanging from stack

• incorrect entries in symbol table

We want to parse the rest of the file

Restarting the parser

• find a restartable state on the stack
• move to a consistent place in the input
• print an informative message to stderr (line number)

106

Error recovery in yacc/bison/Java CUP

The error mechanism

• designated token error

• valid in any production

• error shows syncronization points

When an error is discovered

• pops the stack until error is legal

• skips input tokens until it successfully shifts 3

• error productions can have actions

This mechanism is fairly general

See §Error Recovery of the on-line CUP manual

107

Example

Using error

stmt list : stmt

| stmt list ; stmt

can be augmented with error

stmt list : stmt

| error

| stmt list ; stmt

This should

• throw out the erroneous statement
• synchronize at “;” or “end”
• invoke yyerror("syntax error")

Other “natural” places for errors

• all the “lists”: FieldList, CaseList
• missing parentheses or brackets (yychar)
• extra operator or missing operator

108

Left versus right recursion

Right Recursion:

• needed for termination in predictive parsers

• requires more stack space

• right associative operators

Left Recursion:

• works fine in bottom-up parsers

• limits required stack space

• left associative operators

Rule of thumb:

• right recursion for top-down parsers

• left recursion for bottom-up parsers

109

Parsing review

Recursive descent

A hand coded recursive descent parser directly encodes a grammar
(typically an LL(1) grammar) into a series of mutually recursive
procedures. It has most of the linguistic limitations of LL(1).

LL(k)

An LL(k) parser must be able to recognize the use of a production
after seeing only the first k symbols of its right hand side.

LR(k)

An LR(k) parser must be able to recognize the occurrence of the right
hand side of a production after having seen all that is derived from
that right hand side with k symbols of lookahead.

110

Complexity of parsing: grammar hierarchy

LL(1)

LL(k)

LL(0)

Knuth’s algorithm: O(n)
LR(k)

LR(1)

LALR(1)

SLR(1)

LR(0)

ambiguous

α−>β
type-0:

type-1: context-sensitive

αΑβ−>αδβ
Linear-bounded automaton: PSPACE complete

type-2: context-free

Α−>α
Earley’s algorithm: O(n³)

type-3: regular

A->wX

DFA: O(n)

O(n²)

unambiguous

Note: this is a hierarchy of grammars not languages

111

Language vs. grammar

For example, every regular language has a grammar that is LL(1), but not
all regular grammars are LL(1). Consider:

S → ab
S → ac

Without left-factoring, this grammar is not LL(1).

112

