Compiler Construction 2012/2013

Instruction Selection

Peter Thiemann

December 5, 2012



Optimal vs Optimum Tiling

Optimal Tiling

No two adjacent tiles can be replaced by a larger tile of lower
cost.

Optimum Tiling

The total cost of the tiling is minimal among all possible tilings.

@ Tiling is optimum = tiling is optimal



Implementation of Optimal Tiling

Maximal Munch Algorithm (Top Down)

Temp munchExpr (Tree.Exp e) {
test patterns from largest to smallest

choose the first matching pattern
with instruction INS

foreach (e_i : wildcard (pattern, e))
recursively invoke temp_1i = munchExpr (e_1i)

emit INS using temp_1i as arguments
putting result into new temp_0

return temp_0



Optimum Tiling
Example

MEM

|
+

N
CONST1 CONST2

pattern instr tile cost wildcard cost total cost
CONST ADDI 1 0 1



Optimum Tiling

Example (cont'd)

pattern
+
7N
+
N
/ CONST

/+\

CONST

instr

ADD

ADDI

ADDI

tile cost

wildcard cost

1+1

total cost



Optimum Tiling

Example (cont'd)

pattern instr  tile cost wildcard cost total cost
MEM

LOAD 1 2 3

CONST | oaD 1 1 2

CONST ADDI 1 1 2



Optimum Tiling
Emitted Code

ADDI 1y «— rp+1
LOAD r1 «— Mir +2]



Implementation of Optimum Tiling

Dynamic Programming (Bottom Up)

void matchExpr (Tree.Exp e) {
for (Tree.Exp kid : e.kids())
matchExpr (kid);

cost = INFINITY;
for each pattern P_1i

if (P_i.matches (e)) {
cost_1i = cost (P_1)
+ sum ((wildcard (P_i, e)) .mincost);
if (cost_i < cost) {
cost = cost_1i; choice = 1i;
}
}
e.matched = P_{choice}

e.mincost cost



Implementation of Optimum Tiling

Collecting the Match (Top Down)

Temp emission (Tree.Exp e) {
foreach (e_i : wildcard (e.matched, e)) {
temp_1 = emission (e_1i)

emit INS using temp_1i as arguments
putting result into new temp_0

return temp_0



Implementation of Pattern Matching

@ Additional side conditions (e.g., size of constants, special
constants)

@ Matching of patterns can be done with a decision tree that
avoids checking the same node twice

@ The bottom up matcher can remember partial matches and
avoid rechecking the same nodes

= tree automata



Tree Automata

A bottom-up tree automaton is M = (Q, ¥, §, F) where

@ Qis a finite set of states

@ Y aranked alphabet (the tree constructors)
@ 5§ C|J,ZM x Q" x Q the transition relation
@ F C Qthe set of final states

M is deterministic if § is a function.
Define = on Ty g by

t[F(Q177Qn)]:>t[QO] if (F»QMaCInaQO)E‘S
teLM)ift="qwithqge F



Tree Automata
Example

Tree automaton for

MEM
|
+
/
CONST \
o Q: {Ch’CIc,Qm Qm}
® F={qm}
°i=_ X G192 | Qout
CONST gc
TEMP qt

+ Qc Qi | Qa
MEM | ga am




Optimum Tiling with Tree Automata

@ Generate a bu tree automaton for each pattern

@ Simulate them in parallel on expression tree
@ At each node
e determine all patterns whose root matches the current node
e compute their cost and mark the node with the minimum
cost pattern
@ There are tools to compile a pattern specification to such
an automaton = BURG (Fraser, Hanson, Proebsting)



Tree Grammars

@ Extension: Different pattern sets leading to different kinds
of results

@ Some architectures habe different kinds of registers that
obey different restrictions

@ Set of patterns for each kind of register

@ Example: M680x0 distinguishes data and address
registers, only the latter may serve for address calculations
and indirect addressing

= Tree grammar needed



Tree Grammars
Definition

A context-free tree grammar is defined by G = (N, X, P, S)
where

@ Nis a finite set of non-terminals
@ I is a ranked alphabet
@ S € Nis the start symbol
@ PCNxTsin
Define = on Ty n by

tA] = t[r] in A—reP

teL(G)ifS="teTx



Tree Grammars

Example: The Schizo-Jouette Architecture (Excerpt)

Instruction  Effect Pattern
D — +
VRN
ADD di o + di D D
D — +
VRN
ADDI 0 —d+c D CONST
MOVEA di — g D— A
MOVED aj «— dj A—D
D — M‘EM
_l’_
VRN
LOAD d—Miag+c A CONST



Efficiency of Tiling

N number of nodes in input tree

T number of patterns

K average number of labeled nodes in pattern

K’ maximum number of nodes to check for a match

T' average number of patterns that match at each node

Maximal munch. Each match consumes K nodes: test for
matches at N/K nodes. At each candidate node, choose
pattern with K’ + T’ tests.

(K" + T")N/K steps on average. Worst case: K = 1.

@ Dynamic programming. Tests every pattern at every
node: (K" + T')N.

= same linear worst-case complexity. (K’ + T')/K is
constant, anyway.



CISC vs RISC
Challenges for Instruction Selection and Register Allocation

RISC

CISC

32 registers

few registers (16, 8, 6)

one class of registers

different classes with re-
stricted operations

ALU instructions only be-
tween registers

ALU operations with mem-
ory operands

three-adress instructions

nH<—rnon

two-address instructions

H<—rHonr

one addressing mode for
load/store

several addressing modes

every instruction 32 bits long

different instruction lengths

one result / instruction

instructions w/ side effects




CISC Examples

Pentium / x86 (32-bit)
@ six GPR, sp, bp (+ 8 registers in 64-bit mode)
@ multiply / divide only on eax, indexing restricted
@ generally two-address instructions

MC 680x0 (32-bit)
@ 8 data regqisters, 7 address registers, 2 stack registers

@ ALU operations generally on data registers, indirect
addressing only through address registers

@ generally two-address instructions

@ esoteric addressing modes (68020)
@ scope entry and exit instructions



Challenges

@ [Few Registers] generate temporaries and rely on register
allocation

@ [Restricted Registers] generate extra moves and hope
that register allocation can get rid of them. Example:

e Multiply on Pentium requires one operand and destination
in eax
e Most-significant word of result stored to edx

Hence for t; < b - t3 generate

mov eax, b eax «— b

mul #3 eax « eax - l3; edx «— MSW(f - f3)

mov tj, eax I3 «— eax



Challenges Il

@ [Two-address instructions]
Generate extra move instructions.
For t; — b + I3 generate

mov b, b h— b
add t, 83 t — t + t3;
@ [Special addressing modes]
Example: memory addressing

mov eax, [ebp—-8]
add eax, ecx add [ebp-8], ecx
mov [ebp-8], eax
Two choices:
@ Ignore and use separate load and store instructions. Same
speed, but an extra register gets trashed.

@ Avoid register pressure and use addressing mode. More
work for the pattern matcher.



Challenges |l

@ [Variable-length instructions]
No problem for instruction selection or register allocation.
Assembler deals with it.

@ [Instructions with side effects]
Example: autoincrement after memory fetch (MC 680x0)

r2<—M[r1]; r«—n-+4

Hard to incorporate in tree-pattern based instruction
selection.

@ Ignore...
@ Ad-hoc solution
© Different algorithm for instruction selection



Abstract Assembly Language

Output of Instruction Selection

Class hierarchy for representing instructions

T
|OPER| |MOVE| [LABEL]

Each instruction specifies a
@ set of defined temporaries
@ set of used temporaries
@ set of branch targets
each of which may be empty



Abstract Assembly Language
Creating an Operation

MEM

|
+

VRN
TEMP fo CONST 8

new OPER ("LOAD ’'dO0 <- M[’'sO+8]",
L (new Temp (), null),// targets: defined
L (frame.FP, null)); // sources: used

@ Independent of register allocation and jump labels



Abstract Assembly Language
Important

An operation’s def and use set must account for all defined and
used registers.

@ Example: the multiplication instruction on Pentium

new OPER ("mul ’"sO",
L (pentium.EAX, L (pentium.EDX, null))
L (argTemp, L (pentium.EAX, null)));
@ Example: a procedure call trashes many registers (see the
calling convention of the architecture)

e return address
e return-value register
o caller-save registers



