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Register allocation:

• have value in a register when used
• limited resources
• changes instruction choices
• can move loads and stores
• optimal allocation is difficult
⇒ NP-complete for k ≥ 1 registers
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Liveness analysis

Problem:

• IR contains an unbounded number of temporaries
• machine has bounded number of registers

Approach:

• temporaries which are not needed at the same time can map to same
register

• if not enough registers then spill some temporaries
(i.e., keep them in memory)

The compiler performs a liveness analysis for each temporary:

• a temporary is live if it holds a value that may be needed in future
• temporaries with disjoint live ranges can map to same register
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Control flow analysis

Before performing liveness analysis, need to understand the control flow
by building a control flow graph (CFG):

• nodes may be individual program statements or basic blocks
• an edge from n to n′ represents a potential control transfer from (the

end of) n to (the beginning of) n′

Out-edges from node n lead to successor nodes, succ[n]
In-edges to node n come from predecessor nodes, pred[n]
Example:

a← 0
L1 : b← a+1

c← c+b
a← b×2
if a < N goto L1
return c
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Liveness analysis

Liveness analysis is a data flow analysis operating on the CFG:

• liveness of variables “flows” along the edges of the graph
• an assignment defines a variable, v:

– def(v) = set of graph nodes that define v
– def[n] = set of variables defined by n

• an occurrence of v in an expression uses it:
– use(v) = set of nodes that use v
– use[n] = set of variables used in n

Definition (Liveness): v is live on edge e if there is a directed path from e
to a use of v that does not pass through any def(v)

v is live-in at node n if v is live on any of n’s in-edges

v is live-out at n if v is live on any of n’s out-edges

v ∈ use[n]⇒ v live-in at n

v live-in at n⇒ v live-out at all m ∈ pred[n]

v live-out at n,v 6∈ def[n]⇒ v live-in at n
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Liveness analysis

Define:
in[n]: set of variables live-in at n
out[n]: set of variables live-out at n

Then:

out[n] =
⋃

s∈succ[n]
in[s]

succ[n] = /0⇒ out[n] = /0

Note:

in[n]⊇ use[n]

in[n]⊇ out[n]−def[n]

use[n] and def[n] are constant (independent of control flow)

Now, v ∈ in[n] iff. v ∈ use[n] or v ∈ out[n]−def[n]

Thus, in[n] = use[n]∪ (out[n]−def[n])
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Iterative computation for liveness information

foreach n
in[n]← /0

out[n]← /0

repeat
foreach node n

in′[n]← in[n];
out′[n]← out[n];
in[n]← use[n]∪ (out[n]−def[n])
out[n]←

⋃
s∈succ[n] in[s]

until in′[n] = in[n] ∧ out′[n] = out[n],∀n

Notes:

• should order computation of inner loop to follow the “flow”
• liveness flows backward along control-flow arcs, from out to in
• nodes can just as easily be basic blocks to reduce CFG size
• could do one variable at a time, from uses back to defs, noting

liveness along the way
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Iterative solution for liveness

Complexity : for input program of size N

• ≤ N nodes in CFG
⇒≤ N variables
⇒ N elements per in/out
⇒ O(N) time per set-union

• for loop performs constant number of set operations per node
⇒ O(N2) time for for loop

• each iteration of repeat loop can only add to each set
sets can contain at most every variable
⇒ sizes of all in and out sets sum to 2N2,
bounding the number of iterations of the repeat loop

⇒ worst-case complexity of O(N4)

• ordering can cut repeat loop down to 2-3 iterations
⇒ O(N) or O(N2) in practice
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Least fixed points

There is often more than one solution for a given dataflow problem (see
example).

Any solution to dataflow equations is a conservative approximation:

• v has some later use downstream from n
⇒ v ∈ out(n)

• but not the converse

Conservatively assuming a variable is live does not break the program;
just means more registers may be needed.

Assuming a variable is dead when it is really live will break things.

May be many possible solutions but want the “smallest”: the least fixpoint.

The iterative liveness computation computes this least fixpoint.
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