
Register allocation

errors

IR
machine

code
instruction
selection

register
allocation

Register allocation:

• have value in a register when used
• limited resources
• changes instruction choices
• can move loads and stores
• optimal allocation is difficult
⇒ NP-complete for k ≥ 1 registers

Copyright c© 2012 by Antony L. Hosking. Permission to make digital or hard copies of part or all of this
work for personal or classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and full citation on the first page. To
copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission
and/or fee. Request permission to publish from hosking@cs.purdue.edu.

1



Liveness analysis

Problem:

• IR contains an unbounded number of temporaries
• machine has bounded number of registers

Approach:

• temporaries which are not needed at the same time can map to same
register

• if not enough registers then spill some temporaries
(i.e., keep them in memory)

The compiler performs a liveness analysis for each temporary:

• a temporary is live if it holds a value that may be needed in future
• temporaries with disjoint live ranges can map to same register

2



Control flow analysis

Before performing liveness analysis, need to understand the control flow
by building a control flow graph (CFG):

• nodes may be individual program statements or basic blocks
• an edge from n to n′ represents a potential control transfer from (the

end of) n to (the beginning of) n′

Out-edges from node n lead to successor nodes, succ[n]
In-edges to node n come from predecessor nodes, pred[n]
Example:

a← 0
L1 : b← a+1

c← c+b
a← b×2
if a < N goto L1
return c

3



Liveness analysis

Liveness analysis is a data flow analysis operating on the CFG:

• liveness of variables “flows” along the edges of the graph
• an assignment defines a variable, v:

– def(v) = set of graph nodes that define v
– def[n] = set of variables defined by n

• an occurrence of v in an expression uses it:
– use(v) = set of nodes that use v
– use[n] = set of variables used in n

Definition (Liveness): v is live on edge e if there is a directed path from e
to a use of v that does not pass through any def(v)

v is live-in at node n if v is live on any of n’s in-edges

v is live-out at n if v is live on any of n’s out-edges

v ∈ use[n]⇒ v live-in at n

v live-in at n⇒ v live-out at all m ∈ pred[n]

v live-out at n,v 6∈ def[n]⇒ v live-in at n

4



Liveness analysis

Define:
in[n]: set of variables live-in at n
out[n]: set of variables live-out at n

Then:

out[n] =
⋃

s∈succ[n]
in[s]

succ[n] = /0⇒ out[n] = /0

Note:

in[n]⊇ use[n]

in[n]⊇ out[n]−def[n]

use[n] and def[n] are constant (independent of control flow)

Now, v ∈ in[n] iff. v ∈ use[n] or v ∈ out[n]−def[n]

Thus, in[n] = use[n]∪ (out[n]−def[n])
5



Iterative computation for liveness information

foreach n
in[n]← /0

out[n]← /0

repeat
foreach node n

in′[n]← in[n];
out′[n]← out[n];
in[n]← use[n]∪ (out[n]−def[n])
out[n]←

⋃
s∈succ[n] in[s]

until in′[n] = in[n] ∧ out′[n] = out[n],∀n

Notes:

• should order computation of inner loop to follow the “flow”
• liveness flows backward along control-flow arcs, from out to in
• nodes can just as easily be basic blocks to reduce CFG size
• could do one variable at a time, from uses back to defs, noting

liveness along the way

6



Iterative solution for liveness

Complexity : for input program of size N

• ≤ N nodes in CFG
⇒≤ N variables
⇒ N elements per in/out
⇒ O(N) time per set-union

• for loop performs constant number of set operations per node
⇒ O(N2) time for for loop

• each iteration of repeat loop can only add to each set
sets can contain at most every variable
⇒ sizes of all in and out sets sum to 2N2,
bounding the number of iterations of the repeat loop

⇒ worst-case complexity of O(N4)

• ordering can cut repeat loop down to 2-3 iterations
⇒ O(N) or O(N2) in practice

7



Least fixed points

There is often more than one solution for a given dataflow problem (see
example).

Any solution to dataflow equations is a conservative approximation:

• v has some later use downstream from n
⇒ v ∈ out(n)

• but not the converse

Conservatively assuming a variable is live does not break the program;
just means more registers may be needed.

Assuming a variable is dead when it is really live will break things.

May be many possible solutions but want the “smallest”: the least fixpoint.

The iterative liveness computation computes this least fixpoint.

8


