Compiler Construction 2012/2013: Garbage

collection

Annette Bieniusa, Konrad Anton

January 7, 2013

0 Introduction

Types of storage

Static allocation

@ All names in the program are bound to a storage location
known at compile-time

@ Very fast due to direct access
@ Safe as the program cannot run out of memory
@ Drawback: recursion not possible

Stack allocation (procedure local data)
@ Stored in an activation record/frame
@ Values do not persist from one activation to next
@ Size may depend on parameters passed to procedure

@ Only objects whose size is known at compile time can be
returned by a procedure

Types of storage

Heap allocation

@ Data allocation and deallocation independent from
program flow

@ Size of data structures may vary dynamically
@ Dynamically-sized objects can be returned by procedure
@ Required for recursive data structures (lists, trees, etc)

Management of dynamically allocated storage

Manual memory management
@ API for allocation and deallocation, e.g., for C
@ malloc (size) — returns a pointer to an unused,

contiguous record of memory of demanded size

@ free (record) — declares that the record is no longer
used and can be reclaimed

@ manages a freelist that contains unused records of
different sizes; allocation takes a record from the
freelist and splits it to obtain one of demanded size;
deallocation returns the record to the freelist

@ Advantages: flexible, application specific policies, semantic
deallocation, efficient

@ Disadvantages: error prone, memory leaks, premature
deallocation, complicated reasoning

Management of dynamically allocated storage

Automatic memory management — Garbage Collection
@ API only provides allocation; deallocation is automatic
@ Goal: reclaim unused records as early as possible

@ Advantages: no user/programmer interaction for
deallocation required, no premature deallocation (safety)

@ Disadvantages: extra time needed for memory
management, deallocation based on reachability =
memory leaks

Terminology

@ mutator = user program
@ collector = memory management agent

Reachability

@ Program variables and heap-allocated records form a
directed graphs

@ Local and global variables are roots of this graph

Reachability

A record in the heap is reachable if its address is held in a root,
or there is a pointer to it held in another live heap record.

reach = {n € Records | (3r € Roots:r — n)
V. (3m e reach: m— n)}

@ Requirement: no random access to locations in address
space — the program only points to previously allocated
records

@ (safe) approximation

@ Reference counting

Reference counting

Idea: keep track during execution how many pointers to a
record exist!

For each access y <- p

z <-Yy

z.count <- z.count-1

if z.count=0
putOnFreelist (z)

y <-p

p.count <- p.count+l

[NS I SO FUR I

function putOnFreelist (p)
for all fields f_i of p
p.f_i.count <- p.f_i.count-1
if p.f_i.count=0 putOnFreelist (p.f_1i)
p.f_1 <- freelist
6 freelist <- p

N S S

Advantages

@ Predictable
@ No need to know all roots
@ GC effort spread over run time, no pauses

@ Cycles of garbage cannot be reclaimed
e Require programmer to break cycles explicitly
e Combine reference counting with occasional
mark-and-sweep
@ Counters are expensive
e Aggregate changes to counters via data flow analysis

@ Complex memory management code at every pointer
update

Q Mark-and-Sweep

Mark-and-Sweep Collection

@ Global traversal of all reachable objects to determine which
ones maybe reclaimed

@ Only started when available storage is exhausted
@ Depth-first search marks all reachable nodes
@ freelist contains pointers to available storage

Algorithm

Mark phase

1 for each root v
2 DFS (v)

s function DFS (x)
5 if x is pointer into heap to record p

6 if record p is not marked
7 mark p
3 for each field f_i of record p

9 DFS(p.f_1)

Algorithm

Sweep phase

1 p <= first address in heap
2 while p < last address in heap
3 if record p is marked

4 unmark
5 else let f_ 1 be the first field in p
6 p.f_1 <- freelist

7 freelist <- p
8 p <- p + (size of record p)

Cost

@ R = words of reachable data
@ H = size of heap

@ Mark phase: ¢1R
@ Sweep phase: coH
@ Regained memory: H - R

@ Amortized cost:
ciR+ coH

H-R

Auxiliary memory usage

Worst case (for M&S)

Heap is filled with one long linked list. Calls to DFS nested
Q(H) deep!

Countermeasures:

@ Emergency stop at full stack, then search heap for marked
nodes with unmarked children
@ Pointer reversal

e While visiting y coming from ¢ via x.f, use x.f to point back
to t.

e DFS stack hidden in heap

o Needs field done for each record

Pointer reversal

1 function DFS (x)

2 if x is a pointer and record x is not marked
3 t <- nil

4 mark x; done[x] = 0

5 while true

6 i <- done[x]

7 if i < number of fields in record x

8 y <- x.f_1 // index starts at 0

9 if vy is a pointer and record y not marked
10 x.f_ 1 <= t; t <= x; x <-y

11 mark x; donel[x] = 0

12 else

13 done[x] <- i+1

14 else // back to parent!

15 y <= x; x <= t

16 if x = nil then return

17 i <- done|[x]

18 t <- x.f_i; x.f_1 <-y

19 done [x] <-— i+1

Issues

@ Organizing the freelist
o Array of several freelists
@ freelist[1i] points to linked list of all records of size i
o If freelist[i] is empty, grab entry from freelist []]
(j > i) putting unused portion back to freelist [j-i]

@ Fragmentation

e Copying Collection

Copying collection

@ Idea: build an isomorphic, compact image of the heap
e Partition heap into from-heap and to-heap
e Use from-heap to allocate data
e When invoking garbage collection, move all reachable data
to to-heap
Everything left is garbage
Reverse role of to-heap and from-heap

@ To-space copy is compact = no fragmentation
@ Simple allocation: add requested size to next-pointer.

Cheney’s Algorithm

Breadth-first copying

1 scan <- next <- beginning of to-space

2> for each root r

3 r <- Forward(r)

4 while scan < next

5 for each field f_i of record at scan

6 scan.f_1 <- Forward(scan.f_1i)

7 scan <- scan + (size of record at scan)

Cheney’s Algorithm

Forwarding a pointer

1 function Forward (p)
2 if p points to from-space

3 then if p.f_1 points to to-space

4 then return p.f 1

5 else for each field f_i of p

6 next.f_1i <- p.f_1

7 p.f_1 <- next

3 next <- next + (size of record p)
9 return p.f_1

10 else return p

Locality of references

@ Records that are copied near each other have the same
distance from the roots

@ If record p points to record s, they will likely be far apart
= bad caching behavior

@ But: depth-first copying requires pointer-traversal

@ hybrid solution: use breadth-first copying, but take direct
children into account

Locality of references

1 function Forward (p)
2 if p points to from-space

3 then if p.f_1 points to to-space

4 then return p.f_1

5 else Chase(p); return p.f_1
6 else return p

¢ function Chase (p)
9 repeat

10 q <- next // q is the new p

11 next <- next + (size of record p)

12 r <- nil // some child of p to copy along
13 for each field f_i of record p

14 g.f_1i <= p.f_1

15 if g.f_i points to from-space

16 and g.f_i.f_1 does not point to to-space
17 then r <- g.f_1

18 p.-f_1 <- g

19 p <-r

20 until p = nil

Cost

@ Breadth-first search: O(R)

@ Regained memory: H/2 - R
@ Amortized cost:

@ Realistic setting: H = 4R

@ high costs for copying! ¢3 > ¢, ¢y.

e Generational Collection

Generational Collection

@ Hypothesis: a newly created object is likely to die soon
(infant mortality); if it survived several collection cycles, it is
likely to survive longer

@ |dea: collector concentrates on younger data

@ Divide the heap into generations

@ Gy contains the most recently allocated data, Gy, G, ...
contain older objects

@ Enlarge the set of roots to also include pointers from
G1,Gg... to G()Z
@ need to track updating of fields
e use a remembered list/set to collect updated objects and
scan this for root pointers at garbage collection

Generational Collection

@ Use same system to garbage collect also older
generations.

@ Move objects from G; to G;, 1 after several collections.
@ Possible to use the virtual memory system:
e Updating an old generation sets a dirty bit for the
corresponding page
o If OS does not make dirty bits available, the user program
can use write-protection for the page and implement
user-mode fault handler for protection violations

Generational Collection

Tuning parameters:
@ Number of generations
@ Relative size of generations
@ Promotion threshold

@ Incremental and Concurrent Collection

Incremental and concurrent collection

@ Collector might interrupt the program for a long time
@ Undesirable for interactive or real-time programs
@ |dea: Perform GC in small increments
Incremental collection: collector performs only part of a
collection on each allocation
Concurrent collection: collector and mutator(s) run in parallel

Tri-Color marking

White objects have not yet been visited.
Grey have been visited, but their children not yet.
Black have been visited as well as their children.

Basic algorithm

1 color all objects white
2 for each root r
3 if r points to an object p
4 color p grey
5 while there are any grey objects
select a grey record p
for each field f_ i of p
if record p.f_i is white
color record p.f_i grey
10 color record p black

SN

(R

Tri-Color marking

Invariants

@ No black object points to a white object.

© Every grey object is on the collector’s (stack or queue) data
structure.

@ Mutator must not violate these invariants.
@ Synchronization of mutator and collector is necessary.

The big danger

@ Treating garbage as possibly reachable: acceptable
@ Treating reachable data as garbage: bad! Happens only if:

@ Mutator stores pointer to white a into black object, and
@ the original reference to ais destroyed

Write-barrier Algorithms

Goal: fix invariant violations whenever the mutator stores
pointers to white objects.
Possible approaches:

@ Whenever the mutator stores a pointer to white ainto a
black object b, it colors a grey. (= a reachable)

@ Whenever the mutator stores a pointer to white a into a
black object b, it colors b grey. (= check b again)
@ Use paging
e Mark all-black pages as read-only

e When mutator writes into all-black object, page fault!
e Page fault handler colors all objects on the page grey.

Read-barrier Algorithms

Ensure that the mutator never sees a white object.

@ Whenever the mutator fetches a pointer b to a white object,
it colors b grey.
@ Use paging
e Invariant: mutator only sees black objects
e Goal: whenever mutator loads a non-black object, scan it
and children
e Use page protection to trap reads to pages containing white
or grey objects
Page fault handler scans the page until black

Baker’s Algorithm

@ When starting new gc cycle: Flip

@ Swap roles of from-space and to-space.

@ Forward all roots to to-space.

© Resume mutator.
@ For each allocation:

@ Scan a few pointers at scan.

@ Allocate new record at the end of to-space.

© When scan reaches next, terminate gc for this cycle.
@ For each fetch:

@ Check if fetched pointer points to from-space.

@ If so, forward pointed immediately. (Mutator never sees

white objects)

a Integration with compiler

Interface to the compiler

Compiler interacts with GC by
@ generating code for allocating data
@ describing locations of roots
@ describing data layout on heap
@ implementing read/write barriers

Fast allocation

Example: Allocating record of size N when using copying
collection:

@ Call the allocate function.

© Testnext + N < limit? = If not, call gc.

© Move next into result

© Clear memory locations next, ..., next+N-1
@ next <- next + N

© Move result into required place.

@ Store values into the record.

Fast Allocation

How much data is allocated on average?
@ approximately one word of allocation per store instruction
@ 1/7 of all instructions are stores
Possible optimization:
@ Inline the allocate function.
@ Move result directly into the right register.
@ Combine clearing and initialization of fields.
@ Allocate data for a whole block to minimize tests.

Data layouts

@ Save for every heap object a pointer to its
class-/type-descriptor
o What is the total size of this object?
e Which fields are pointers?
e (For dynamic method lookup: vtable)
@ Save all pointer-containing temporaries and local variables
in a pointer map
o different at every program point = save it only at calls to
alloc and function calls
e Collector starts at top of stack and scans all frames,
handling all the pointers in that frame as saved in the
pointer-map entry for this frame
e Information about callee-save registers needs to be
transfered to callee.

@ Jones, R. and Lins, R. Garbage Collection. Algorithms for
Automatic Dynamic Memory Management. John Wiley &
Sons, Chichester, England (1996).

	Introduction
	Reference counting
	Mark-and-Sweep
	Copying Collection
	Generational Collection
	Incremental and Concurrent Collection
	Integration with compiler

