Compiler Construction 2010/2011 Loop Optimizations

Peter Thiemann

January 27, 2013

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Outline

2 Dominators

- 3 Loop-Invariant Computations
- Induction Variables
- 5 Array-Bounds Checks
- 6 Loop Unrolling

- Loops are everywhere
- \Rightarrow worthwhile target for optimization

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Definition: Loop

A <u>loop</u> with <u>header</u> h is a set S of nodes in a CFG such that

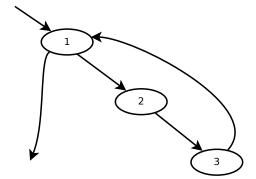
- *h* ∈ *S*
- $(\forall s \in S)$ exists path from s to h
- $(\forall s \in S)$ exists path from *h* to *s*
- $(\forall t \notin S) \ (\forall s \in S)$ if $s \neq h$, then there is no edge from t to s

(日) (日) (日) (日) (日) (日) (日)

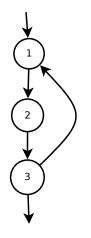
Special loop nodes

- A loop entry node has a predecessor outside the loop.
- A loop exit node has a successor outside the loop.

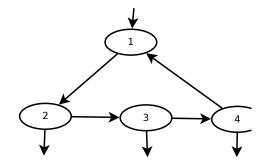
Example Loops



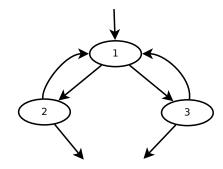
▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ● � � �



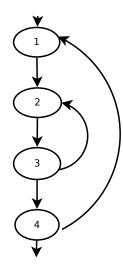
▶ ▲ 臣 ▶ ▲ 臣 ▶ ■ ● の Q @

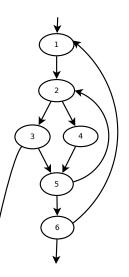


▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ● � � �



▶ ▲ 臣 ▶ ▲ 臣 ▶ ─ 臣 → �� �





Program for 18-1e

```
1 int isPrime (int n) {
     i = 2;
 2
     do {
 3
     j = 2;
 4
 5
     do {
          if (i * j==n) {
 6
           return 0;
 7
         } else {
 8
            j = j+1;
 9
          }
       } while (j<n);</pre>
       i = i+1;
12
     } while (i<n);</pre>
13
     return 1;
14
15 }
```

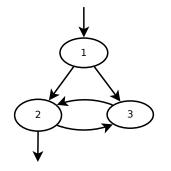
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

- Arbitrary flow graphs: Spaghetti code
- Reducible flow graphs arise from structured control

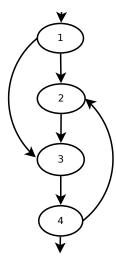
◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- if-then-else
- while-do
- repeat-until
- for
- break (multi-level)

Irreducible Flow Graphs 18-2a: Not a loop

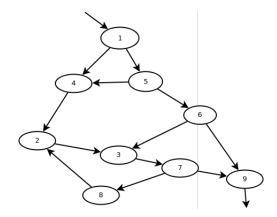


Irreducible Flow Graphs 18-2b: Not a loop



▶ ▲ 臣 ▶ ▲ 臣 ▶ □ 臣 → � � �

Irreducible Flow Graphs 18-2c: Not a loop



- Reduces to 18-2a: collapse edges (x, y) where x is the only predecessor of y
- A flow graph is <u>irreducible</u> if exhaustive collapsing leads to a subgraph like 18-2a.

2 Dominators

- 3 Loop-Invariant Computations
- Induction Variables
- 6 Array-Bounds Checks
- 6 Loop Unrolling

- Objective: find loops in flow graph
- Assumption: each CFG has unique start node s₀ without predecessors

Domination relation

A node d dominates a node n if every path from s_0 to n must go through d.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Remark: domination is reflexive

Lemma

Let *n* be a node with predecessors p_1, \ldots, p_k and $d \neq n$ a node. *d* dominates $n \text{ iff } (\forall 1 \leq i \leq k) d$ dominates p_i

Let D[n] be the set of nodes that dominate n.

Domination equation

$$D[s_0] = \{s_0\}$$
 $D[n] = \{n\} \cup \bigcap_{p \in pred[n]} D[p]$

(日) (日) (日) (日) (日) (日) (日)

- Solve by fixpoint iteration
- Start with $(\forall n) D[n] = N$ (all nodes in the CFG)
- Watch out for unreachable nodes

Theorem

Let G be a connected, rooted graph. If d dominates n and e dominates n, then either d dominates e or e dominates d.

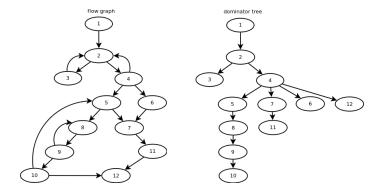
- Proof: by contradiction
- **Consequence:** Each node $n \neq s_0$ has one <u>immediate</u> <u>dominator</u> *idom*(*n*) such that
 - (1) $idom(n) \neq n$
 - *idom*(*n*) dominates *n*
 - idom(n) does not dominate another dominator of n

(日) (日) (日) (日) (日) (日) (日)

Dominator Tree

Dominator Tree

The <u>dominator tree</u> is a graph where the nodes are the nodes of the CFG and there is an edge (x, y) if x = idom(y).



• back edge in CFG: from *n* to *h* so that *h* dominates *n*

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Natural Loop

The <u>natural loop</u> of a back edge (n, h) where *h* dominates *n* is the set of nodes *x* such that

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- h dominates x
- exists path from x to n not containing h

h is the <u>header</u> of this loop.

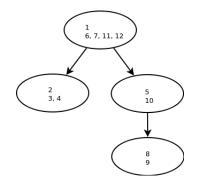
Nested Loop

If *A* and *B* are loops with headers $a \neq b$ and $b \in A$, then $B \subseteq A$. Loop *B* is <u>nested</u> within *A*. *B* is the <u>inner loop</u>.

Algorithm: Loop-nest Tree

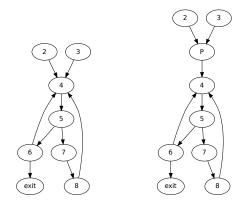
- Compute the dominators of the CFG
- Compute the dominator tree
- Find all natural loops with their headers
- For each loop header h merge all natural loops of h into a single loop loop[h]
- So Construct the tree of loop headers such that *h*₁ is above *h*₂ if *h*₂ ∈ *loop*[*h*₁]
 - Leaves are <u>innermost loops</u>
 - Procedure body is pseudo-loop at root of loop-nest tree

A Loop-Nest Tree



(ロ)、

Adding a Loop Preheader



 loop optimizations need CFG node before the loop to move code out of the loop

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

 \Rightarrow add preheader node like *P* in example

2 Dominators

- 3 Loop-Invariant Computations
- Induction Variables
- 5 Array-Bounds Checks
- 6 Loop Unrolling

- Let $t \leftarrow a \oplus b$ be in a loop.
- If *a* and *b* have the same value for each iteration of the loop, then *t* always gets the same value.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- \Rightarrow repeated computation of the same value
 - Goal: Hoist this computation out of the loop
 - Approximation needed for "loop invariant"

Loop-Invariance

The definition $d : t \leftarrow a_1 \oplus a_2$ is loop-invariant for loop *L* if, for each a_i , either

- a_i is a constant,
- all definitions of a_i that reach d are outside L, or
- only one definition of a_i reaches d and that definition is loop-invariant.

Algorithm: Loop-Invariance

- Identify all definitions whose operands are constant or from outside the loop
- 2 Add loop-invariant definitions until fixpoint

- Suppose $t \leftarrow a \oplus b$ is loop-invariant.
- Can we hoist it out of the loop?

 L_0 Lo L_0 L_0 ←0 ←0 ←0 ←0 t L1 L1 L_1 L_1 $\leftarrow i + 1$ if i > N goto L_2 $M[j] \leftarrow t$ $\leftarrow i + 1$ i $\leftarrow a \oplus b$ $i \leftarrow i+1$ $t \leftarrow a \oplus b$ $\leftarrow i + 1$ i $M[i] \leftarrow t$ t $\leftarrow a \oplus b$ $M[i] \leftarrow t$ t ←a⊕b if i < N goto L_1 $M[i] \leftarrow t$ *t* ←0 $M[i] \leftarrow t$ L_2 goto L_1 $M[i] \leftarrow t$ if i < N goto L_1 х $\leftarrow t$ L2 if i < N goto L_1 L2 $x \leftarrow t$ L_2 $x \leftarrow t$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

- Suppose $t \leftarrow a \oplus b$ is loop-invariant.
- Can we hoist it out of the loop?

L ₀	L ₀	L ₀	L ₀
<i>t</i> ←0	$t \leftarrow 0$	$t \leftarrow 0$	<i>t</i> ←0
L ₁	L ₁	L ₁	L ₁
$i \leftarrow i+1$	if $i \ge N$ goto L_2	$i \leftarrow i+1$	$M[j] \leftarrow t$
$t \leftarrow a \oplus b$	$i \leftarrow i+1$	$t \leftarrow a \oplus b$	$i \leftarrow i+1$
$M[i] \leftarrow t$	$t \leftarrow a \oplus b$	$M[i] \leftarrow t$	$t \leftarrow a \oplus b$
if $i < N$ goto L_1	$M[i] \leftarrow t$	$t \leftarrow 0$	$M[i] \leftarrow t$
L ₂	goto L ₁	$M[j] \leftarrow t$	if $i < N$ goto L_1
$x \leftarrow t$	L ₂	if $i < N$ goto L_1	L ₂
	$x \leftarrow t$	L ₂	$x \leftarrow t$
yes	no	no	no

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Criteria for hoisting

A loop-invariant definition $d : t \leftarrow a \oplus b$ can be hoisted to the end of its loop's preheader if all of the following hold

- d dominates all loop exits at which t is live-out
- Ithere is only one definition of t in the loop
- t is not live-out at the loop preheader
 - Attention: arithmetic exceptions, side effects of \oplus
 - Condition 1 often prevents hoisting from while loops: transform into repeat-until loops.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

2 Dominators

- 3 Loop-Invariant Computations
- Induction Variables
- 5 Array-Bounds Checks
- 6 Loop Unrolling

Induction Variables

Consider

$$s \leftarrow 0$$

$$i \leftarrow 0$$

$$L_1: \text{ if } i \ge n \text{ goto } L_2$$

$$j \leftarrow i \cdot 4$$

$$k \leftarrow j + a$$

$$x \leftarrow M[k]$$

$$s \leftarrow s + x$$

$$i \leftarrow i + 1$$

$$\text{ goto } L_1$$

$$L_2$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Induction Variables

Consider

$$s \leftarrow 0$$

$$i \leftarrow 0$$

$$L_1: \text{ if } i \ge n \text{ goto } L_2$$

$$j \leftarrow i \cdot 4$$

$$k \leftarrow j + a$$

$$x \leftarrow M[k]$$

$$s \leftarrow s + x$$

$$i \leftarrow i + 1$$

$$\text{ goto } L_1$$

$$L_2$$

$$s \leftarrow 0$$

$$k' \leftarrow a$$

$$b \leftarrow n \cdot 4$$

$$c \leftarrow a + b$$

$$L_1: \text{ if } k' \ge c \text{ goto } L_2$$

$$x \leftarrow M[k']$$

$$s \leftarrow s + x$$

$$k' \leftarrow k' + 4$$

$$\text{ goto } L_1$$

$$L_2$$

after

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

before

Induction-variable analysis:

identify induction variables and relations among them

Strength reduction:

replace expensive operation (e.g., multiplication) by cheap operation (e.g., addition)

(ロ) (同) (三) (三) (三) (○) (○)

Induction-variable elimination:

remove dependent induction variables

- A basic induction variable is directly incremented (e.g., i)
- A <u>derived induction variable</u> is computed from other induction variables (e.g., *j* and *k*)
 - $j = a_j + i \cdot b_j$ with $a_j = 0$ and $b_j = 4$ $\Rightarrow j$ described by (i, a_j, b_j)
 - $k = j + c_k$ with loop-invariant c_k \Rightarrow k described by $(i, a_j + c_k, b_j)$
- The basic induction variable *i* described by (*i*, 0, 1)
- A <u>linear induction variable</u> changes by the same amount in every iteration.

(日) (日) (日) (日) (日) (日) (日)

$$s \leftarrow 0$$

$$L_1: \text{ if } s > 0 \text{ goto } L_2$$

$$i \leftarrow i + b$$

$$j \leftarrow i \cdot 4$$

$$x \leftarrow M[j]$$

$$s \leftarrow s - x$$

$$\text{goto } L_1$$

$$L_2: i \leftarrow i + 1$$

$$s \leftarrow s + j$$

$$\text{ if } i < n \text{ goto } L_1$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Non-linear Induction Variables

before

after

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ のへぐ

Basic Induction Variable

Variable *i* is a <u>basic induction variable</u> in loop *L* with header *h* if all definitions of *i* in *L* have the form $i \leftarrow i + c$ or $i \leftarrow i - c$ where *c* is loop-invariant. (in the family of *i*)

Derived Induction Variable

Variable k is a derived ind. var. in the family of i in loop L if

● there is exactly one definition of k in L of the form k ← j · c or k ← j + d where j is an induction variable in the family of i and c, d are loop-invariant

2 if *j* is a derived induction variable in the family of *i*, then

- only the definition of *j* in *L* reaches (the definition of) *k*
- there is no definition of *i* on any path between the definition of *j* and the definition of *k*
- If *j* is described by (i, a, b), then *k* is described by $(i, a \cdot c, b \cdot c)$ or (i, a + d, b), respectively.

- Often multiplication is more expensive than addition
- ⇒ Replace the definition $j \leftarrow i \cdot c$ of a derived induction variable by an addition

Procedure

For each derived induction variable j ~ (i, a, b) create new variable j'

(日) (日) (日) (日) (日) (日) (日)

- After each assignment *i* ← *i* + *c* to a basic induction variable, create an assignment *j'* ← *j'* + *c* ⋅ *b*
- Replace assignment to j with $j \leftarrow j'$
- Initialize $j' \leftarrow a + i \cdot b$ at end of preheader

Example Strength Reduction

Induction Variables $j \sim (i, 0, 4)$ and $k \sim (i, a, 4)$

$$egin{array}{cccc} s & \leftarrow & 0 \ i & \leftarrow & 0 \end{array}$$

$$L_1: \quad \text{if } i \ge n \text{ goto } L_2$$

$$j \leftarrow i \cdot 4$$

$$k \leftarrow j + a$$

$$x \leftarrow M[k]$$

$$s \leftarrow s + x$$

$$i \leftarrow i + 1$$

goto L_1

 L_2

 $s \leftarrow 0$ $i \leftarrow 0$ $j' \leftarrow 0$ $k' \leftarrow a$ L_1 : if $i \ge n$ goto L_2 $j \leftarrow j'$ $k \leftarrow k'$ $x \leftarrow M[k]$ $s \leftarrow s + x$ $i \leftarrow i+1$ $j' \leftarrow j' + 4$ $k' \leftarrow k' + 4$ goto L_1 L2

before

after

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ つへぐ

- Further apply constant propagation, copy propagation, and dead code elimination
- Special case: elimination of induction variables that are
 - not used in the loop
 - only used in comparisons with loop-invariant variables

(ロ) (同) (三) (三) (三) (○) (○)

useless

Useless variable

A variable is <u>useless</u> in a loop L if

- it is dead at all exits from L
- it is only used in its own definitions

Example After removal of j, j' is useless

Almost useless variable

A variable is almost useless in loop L if

- it is only used in comparisons against loop-invariant values and in definitions of itself and
- there is another induction variable in the same family that is not useless.
- An almost useless variable can be made useless by rewriting the comparisons to use the related induction variable

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Coordinated induction variables

Let $x \sim (i, a_x, b_x)$ and $y \sim (i, a_y, b_y)$ be induction variables. x and y are coordinated if

$$(x-a_x)/b_x=(y-a_y)/b_y$$

throughout the execution of the loop, except during a sequence of statements of the form $z_i \leftarrow z_i + c_i$ where c_i is loop-invariant.

・ロト・日本・日本・日本・日本

Rewriting Comparisons

Let $j \sim (i, a_j, b_j)$ and $k \sim (i, a_k, b_k)$ be coordinated induction variables.

Consider the comparison k < n with *n* loop-invariant. Using $(j - a_j)/b_j = (k - a_k)/b_k$ the comparison can be rewritten as follows

$$egin{aligned} & b_k(j-a_j)/b_j+a_k < n \ & \Leftrightarrow \ & b_k(j-a_j)/b_j < n-a_k \ & \Leftrightarrow \ & \left\{ j < (n-a_k)b_j/b_k+a_j \quad ext{if } b_j/b_k > 0 \ & j > (n-a_k)b_j/b_k+a_j \quad ext{if } b_j/b_k < 0 \end{aligned}
ight\}$$

where the right-hand sides are loop-invariant and their computation can be hoisted to the preheader.

Restrictions

- ($n a_k$) b_j must be a multiple of b_k
- 2 b_j and b_k must both be constants or loop invariants of known sign

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- 2 Dominators
- 3 Loop-Invariant Computations
- Induction Variables
- 6 Array-Bounds Checks
- 6 Loop Unrolling

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Safe programming languages check that the subscript is within the array bounds at each array operation.
- Bounds for an array have the form 0 ≤ *i* < *N* where *N* > 0 is the size of the array.
- Implemented by $i <_u N$ (unsigned comparison).
- Bounds checks redundant in well-written programs \Rightarrow slowdown
- For better performance: let the compiler prove which checks are redundant!

(ロ) (同) (三) (三) (三) (○) (○)

• In general, this problem is undecidable.

Conditions for Bounds Check Elimination

- There is an induction variable j and loop-invariant u used in statement s₁ of either of the forms
 - if j < u goto L_1 else goto L_2
 - if $j \ge u$ goto L_2 else goto L_1
 - if u > j goto L_1 else goto L_2
 - if $u \ge j$ goto L_2 else goto L_1

where L_2 is out of the loop

- There is a statement s₂ of the form
 - if $k <_u n$ goto L_3 else goto L_4

where *k* is an induction variable coordinated with *j*, *n* is loop-invariant, and s_1 dominates s_2

- There is no loop nested within L containing a definition of k
- *k* increases when *j* does: $b_j/b_k > 0$

- Objective: test in the preheader so that 0 ≤ k < n everywhere in the loop
- Let *k*₀ value of *k* at end of preheader
- Let Δk₁,..., Δk_m be the loop-invariant values added to k inside the loop

(日) (日) (日) (日) (日) (日) (日)

- $k \ge 0$ everywhere in the loop if
 - $k \ge 0$ in the loop preheader
 - $\Delta k_1 \geq 0 \dots \Delta k_m \geq 0$

- Let Δk₁,..., Δk_p be the set of loop-invariant values added to k on any path between s₁ and s₂ that does not go through s₁.
- k < n at s_2 if $k < n (\Delta k_1 + \dots + \Delta k_p)$ at s_1
- From $(k a_k)/b_k = (j a_j)/b_j$ this test can be rewritten to $j < b_j/b_k(n (\Delta k_1 + \dots + \Delta k_p) a_k) + a_j$
- It is sufficient that
 u ≤ b_j/b_k(n − (Δk₁ + · · · + Δk_ρ) − a_k) + a_j because the
 test j < u dominates the test k < n

All parts of this test are loop-invariant!

- Hoist loop-invariants out of the loop
- Copy the loop L to a new loop L' with header label L'h
- Replace the statement "if $k <_u n$ goto L'_3 else goto L'_4 " by "goto L'_3 "

At the end of L's preheader put statements equivalent to if k ≥ 0 ∧ Δk₁ ≥ 0 ∧ ··· ∧ Δk_m ≥ 0 and u ≤ b_j/b_k(n - (Δk₁ + ··· + Δk_p) - a_k) + a_j goto L'_h else goto L_h

Array-Bounds Checking Transformation

- This condition can be evaluated at compile time if
 - all loop-invariants in the condition are constants; or
 - 2 *n* and *u* are the same temporary, $a_k = a_j$, $b_k = b_j$ and no Δk 's are added to *k* between s_1 and s_2 .
- The second case arises for instance with code like this:

```
1 int u = a.length;
2 int i = 0;
3 while (i<u) {
4    sum += a[i];
5    i++;
6 }
```

assuming common subexpression elimination for a.length

- Compile-time evaluation of the condition means to unconditionally use L or L' and o delete the other loop
- Clean up with elimination of unreachable and dead code

Array-Bounds Checking Generalization

- Comparison of $j \le u'$ instead of j < u
- Loop exit test at end of loop body: A test

• s_2 : if j < u goto L_1 else goto L_2

where L_2 is out of the loop and s_2 dominates all loop back edges; the Δk_i are between s_2 and any back edge and between the loop header and s_1

- Handle the case $b_j/b_k < 0$
- Handle the case where *j* counts downward where the loop exit tests for *j* ≥ *l* (a loop-invariant lower bound)
- The increments to the induction variable may be "undisciplined" with non-obvious increment:

```
1 while (i<n-1) {
2    if (sum<0) { i++; sum += i; i++ } else { i += 2; }
3    sum += a[i];
4 }</pre>
```


- 2 Dominators
- 3 Loop-Invariant Computations
- Induction Variables
- 5 Array-Bounds Checks

- For loops with small body, much time is spent incrementing the loop counter and testing the exit condition
- <u>Loop unrolling</u> optimizes this situation by putting more than one copy of the loop body in the loop
- To unroll a loop *L* with header *h* and back edges $s_i \rightarrow h$:
 - Copy *L* to a new loop *L'* with header *h'* and back edges $s'_i \rightarrow h'$

(日) (日) (日) (日) (日) (日) (日)

- 2 Change the back edges in *L* from $s_i \rightarrow h$ to $s_i \rightarrow h'$
- **③** Change the back edges in *L'* from $s'_i \rightarrow h'$ to $s'_i \rightarrow h$

Loop Unrolling Example (Still Useless)

$$L_{1}:$$

$$x \leftarrow M[i]$$

$$s \leftarrow s+x$$

$$i \leftarrow i+4$$

$$if i < n \text{ goto } L_{1}' \text{ else } L_{2}$$

$$L_{1}:$$

$$x \leftarrow M[i]$$

$$s \leftarrow s+x$$

$$i \leftarrow i+4$$

$$if i < n \text{ goto } L_{1} \text{ else } L_{2}$$

$$L_{2}$$

$$L_{2}$$

$$L_{1}:$$

$$L_{1}:$$

$$x \leftarrow M[i]$$

$$s \leftarrow s+x$$

$$i \leftarrow i+4$$

$$if i < n \text{ goto } L_{1} \text{ else } L_{2}$$

$$L_{2}$$

before

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

No gain, yet

- Needed: induction variable *i* such that every increment
 i ← *i* + Δ dominates every back edge of the loop
- \Rightarrow each iteration increments *i* by the sum of the Δ s
- ⇒ increments and tests can be moved to the back edges of loop
 - In general, a separate <u>epilogue</u> is needed to cover the remaining iterations because the unrolled loop can only do multiple-of-*K* iterations.

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Loop Unrolling Example

$$L_{1}: x \leftarrow M[i]$$

$$s \leftarrow s + x$$

$$x \leftarrow M[i + 4]$$

$$s \leftarrow s + x$$

$$i \leftarrow i + 8$$

$$\text{if } i < n \text{ goto } L_{1} \text{ else } L_{2}$$

$$L_{2}$$

only even numbers

if i < n - 4 goto L_1 else L_2 $L_1: x \leftarrow M[i]$ $s \leftarrow s + x$ $x \leftarrow M[i+4]$ $s \leftarrow s + x$ $i \leftarrow i+8$ if i < n - 4 goto L_1 else L'_2 L'_2 : if i < n goto L_2 else L_3 L_2 : $x \leftarrow M|i|$ $s \leftarrow s + x$ $i \leftarrow i+4$ L_3

with epilogue

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □