Compiler Construction 2010/2011 Loop Optimizations

Peter Thiemann

January 27, 2013

Outline

(9) Loop Optimizations
(2) Dominators
(3) Loop-Invariant Computations

4 Induction Variables
(5) Array-Bounds Checks
(6) Loop Unrolling

Loop Optimizations

- Loops are everywhere
\Rightarrow worthwhile target for optimization

Loops

Definition: Loop

A loop with header h is a set S of nodes in a CFG such that

- $h \in S$
- $(\forall s \in S)$ exists path from s to h
- $(\forall s \in S)$ exists path from h to s
- $(\forall t \notin S)(\forall s \in S)$ if $s \neq h$, then there is no edge from t to s

Special loop nodes

- A loop entry node has a predecessor outside the loop.
- A loop exit node has a successor outside the loop.

Example Loops

Example Loops
18-1a

Example Loops

 18-1b

Example Loops

18-1c

Example Loops

18-1d

Example Loops

18-1e

Program for 18-1e

```
int isPrime (int n ) \{
    i \(=2\);
    do
        \(j=2 ;\)
        do \{
            if (i*j==n) \{
                return 0;
            \} else \{
                \(j=j+1 ;\)
                \}
            \} while (j<n);
            \(i=i+1\);
            \} while (i<n);
    return 1;
\}
```


Reducible Flow Graphs

- Arbitrary flow graphs: Spaghetti code
- Reducible flow graphs arise from structured control
- if-then-else
- while-do
- repeat-until
- for
- break (multi-level)

Irreducible Flow Graphs

18-2a: Not a loop

Irreducible Flow Graphs

18-2b: Not a loop

Irreducible Flow Graphs

18-2c: Not a loop

- Reduces to 18-2a: collapse edges (x, y) where x is the only predecessor of y
- A flow graph is irreducible if exhaustive collapsing leads to a subgraph like 18-2a.

Outline

(9) Loop Optimizations

(2) Dominators
(3) Loop-Invariant Computations

4 Induction Variables
(5) Array-Bounds Checks
(6) Loop Unrolling

Dominators

- Objective: find loops in flow graph
- Assumption: each CFG has unique start node s_{0} without predecessors

Domination relation

A node d dominates a node n if every path from s_{0} to n must go through d.

- Remark: domination is reflexive

Algorithm for Finding Dominators

Lemma

Let n be a node with predecessors p_{1}, \ldots, p_{k} and $d \neq n$ a node. d dominates n iff $(\forall 1 \leq i \leq k) d$ dominates p_{i}

Let $D[n]$ be the set of nodes that dominate n.
Domination equation

$$
D\left[s_{0}\right]=\left\{s_{0}\right\} \quad D[n]=\{n\} \cup \bigcap_{p \in \operatorname{prea}[n]} D[p]
$$

- Solve by fixpoint iteration
- Start with $(\forall n) D[n]=N$ (all nodes in the CFG)
- Watch out for unreachable nodes

Immediate Dominators

Theorem

Let G be a connected, rooted graph. If d dominates n and e dominates n, then either d dominates e or e dominates d.

- Proof: by contradiction
- Consequence: Each node $n \neq s_{0}$ has one immediate dominator idom(n) such that
(1) $\operatorname{idom}(n) \neq n$
(2) $\operatorname{idom}(n)$ dominates n
(3) $\operatorname{idom}(n)$ does not dominate another dominator of n

Dominator Tree

Dominator Tree

The dominator tree is a graph where the nodes are the nodes of the CFG and there is an edge (x, y) if $x=i d o m(y)$.

- back edge in CFG: from n to h so that h dominates n

Loops

Natural Loop

The natural loop of a back edge (n, h) where h dominates n is the set of nodes x such that

- h dominates x
- exists path from x to n not containing h h is the header of this loop.

Nested Loops

Nested Loop

If A and B are loops with headers $a \neq b$ and $b \in A$, then $B \subseteq A$. Loop B is nested within A. B is the inner loop.

Algorithm: Loop-nest Tree

(1) Compute the dominators of the CFG
(2) Compute the dominator tree
(3) Find all natural loops with their headers
(. For each loop header h merge all natural loops of h into a single loop loop $[h]$
(0) Construct the tree of loop headers such that h_{1} is above h_{2} if $h_{2} \in \operatorname{loop}\left[h_{1}\right]$

- Leaves are innermost loops
- Procedure body is pseudo-loop at root of loop-nest tree

A Loop-Nest Tree

Adding a Loop Preheader

- loop optimizations need CFG node before the loop to move code out of the loop
\Rightarrow add preheader node like P in example

Outline

(9) Loop Optimizations

(2) Dominators
(3) Loop-Invariant Computations

4 Induction Variables
(5) Array-Bounds Checks
(6) Loop Unrolling

Loop-Invariant Computations

- Let $t \leftarrow a \oplus b$ be in a loop.
- If a and b have the same value for each iteration of the loop, then t always gets the same value.
\Rightarrow repeated computation of the same value
- Goal: Hoist this computation out of the loop
- Approximation needed for "loop invariant"

Loop-Invariance

Loop-Invariance

The definition $d: t \leftarrow a_{1} \oplus a_{2}$ is loop-invariant for loop L if, for each a_{i}, either
(1) a_{i} is a constant,
(2) all definitions of a_{i} that reach d are outside L, or
(3) only one definition of a_{i} reaches d and that definition is loop-invariant.

Algorithm: Loop-Invariance

(1) Identify all definitions whose operands are constant or from outside the loop
(2) Add loop-invariant definitions until fixpoint

Hoisting

- Suppose $t \leftarrow a \oplus b$ is loop-invariant.
- Can we hoist it out of the loop?

Hoisting

- Suppose $t \leftarrow a \oplus b$ is loop-invariant.
- Can we hoist it out of the loop?

$\begin{aligned} \hline L_{0} & \\ t & \leftarrow 0 \end{aligned}$	$\begin{aligned} \hline L_{0} & \\ t & \leftarrow 0 \end{aligned}$	$\begin{aligned} L_{0} & \\ t & \leftarrow 0 \end{aligned}$	$\begin{aligned} L_{0} & \\ t & \leftarrow 0 \end{aligned}$
L_{1}	L_{1}	L_{1}	L_{1}
$i \quad \leftarrow i+1$	if $i \geq N$ goto L_{2}	$i \quad \leftarrow i+1$	$M[j] \leftarrow t$
$t \leqslant a \oplus b$	$i \quad \leftarrow i+1$	$t \leqslant a \oplus b$	$i \quad \leftarrow i+1$
$M[i] \leftarrow t$	$t \leqslant a \oplus b$	$M[i] \leftarrow t$	$t \leqslant a \oplus b$
if $i<N$ goto L_{1}	$M[1] \leftarrow t$	$t \leftarrow 0$	$M[i] \leftarrow t$
L_{2}	goto L_{1}	$M[j] \leftarrow t$	if $i<N$ goto L_{1}
$x \leftarrow t$	L_{2}	if $i<N$ goto L_{1}	L_{2}
	$x \leftarrow t$	L_{2}	$x \leftarrow t$
yes	no	no	no

Criteria for hoisting

A loop-invariant definition $d: t \leftarrow a \oplus b$ can be hoisted to the end of its loop's preheader if all of the following hold
(1) dominates all loop exits at which t is live-out
(2) there is only one definition of t in the loop
(3) t is not live-out at the loop preheader

- Attention: arithmetic exceptions, side effects of \oplus
- Condition 1 often prevents hoisting from while loops: transform into repeat-until loops.

Outline

(9) Loop Optimizations

(2) Dominators
(3) Loop-Invariant Computations

4 Induction Variables
(5) Array-Bounds Checks
(6) Loop Unrolling

Induction Variables

Consider

$$
\begin{aligned}
& \begin{array}{l}
s \leftarrow 0 \\
i \leftarrow 0
\end{array} \\
& L_{1}: \quad \text { if } i \geq n \text { goto } L_{2} \\
& j \leftarrow i \cdot 4 \\
& k \leftarrow j+a \\
& x \leftarrow M[k] \\
& s \leftarrow s+x \\
& i \leftarrow i+1 \\
& \text { goto } L_{1} \\
& L_{2}
\end{aligned}
$$

Induction Variables

Consider

before

$$
L_{2}
$$

$$
\begin{aligned}
& \begin{array}{l}
s \leftarrow 0 \\
k^{\prime} \leftarrow a
\end{array} \\
& b \leftarrow n \cdot 4 \\
& c \leftarrow a+b \\
& L_{1}: \quad \text { if } k^{\prime} \geq c \text { goto } L_{2} \\
& x \leftarrow M\left[k^{\prime}\right] \\
& s \leftarrow s+x \\
& k^{\prime} \leftarrow k^{\prime}+4 \\
& \text { goto } L_{1}
\end{aligned}
$$

Induction Variables

- Induction-variable analysis: identify induction variables and relations among them
- Strength reduction:
replace expensive operation (e.g., multiplication) by cheap operation (e.g., addition)
- Induction-variable elimination: remove dependent induction variables

Induction Variables

- A basic induction variable is directly incremented (e.g., i)
- A derived induction variable is computed from other induction variables (e.g., j and k)
- $j=a_{j}+i \cdot b_{j}$ with $a_{j}=0$ and $b_{j}=4$
$\Rightarrow j$ described by $\left(i, a_{j}, b_{j}\right)$
- $k=j+c_{k}$ with loop-invariant c_{k}
$\Rightarrow k$ described by $\left(i, a_{j}+c_{k}, b_{j}\right)$
- The basic induction variable i described by $(i, 0,1)$
- A linear induction variable changes by the same amount in every iteration.

Non-linear Induction Variables

$$
\begin{array}{ll}
L_{1}: & s \leftarrow 0 \\
& \text { if } s>0 \text { goto } L_{2} \\
& i \leftarrow i+b \\
j \leftarrow i \cdot 4 \\
& x \leftarrow M[j] \\
s \leftarrow s-x \\
s & \text { goto } L_{1} \\
L_{2}: & i \leftarrow i+1 \\
& s \leftarrow s+j \\
& \text { if } i<n \text { goto } L_{1}
\end{array}
$$

Non-linear Induction Variables

	$s \leftarrow 0$
	$j^{\prime} \leftarrow i .4$
	$b^{\prime} \leftarrow b .4$
$s \leftarrow 0$	$n^{\prime} \leftarrow n \cdot 4$
$L_{1}:$ if $s>0$ goto L_{2}	$L_{1}:$ if $s>0$ goto L_{2}
$i \leftarrow i+b$	$j^{\prime} \leftarrow j^{\prime}+b^{\prime}$
$j \leftarrow i .4$	$j \leftarrow j^{\prime}$
$x \leftarrow M[j]$	$x \leftarrow M[j]$
$s \leftarrow s-x$	$s \leftarrow s-x$
goto L_{1}	goto L_{1}
$L_{2}: i \leftarrow i+1$	$L_{2}: j^{\prime} \leftarrow j^{\prime}+4$
$s \leftarrow s+j$	$s \leftarrow s+j$
if $i<n$ goto L_{1}	if $j^{\prime}<n^{\prime}$ goto L_{1}
before	after

Detection of Induction Variables

Basic Induction Variable

Variable i is a basic induction variable in loop L with header h if all definitions of i in L have the form $i \leftarrow i+c$ or $i \leftarrow i-c$ where c is loop-invariant.
(in the family of i)

Derived Induction Variable

Variable k is a derived ind. var. in the family of i in loop L if
(1) there is exactly one definition of k in L of the form $k \leftarrow j \cdot c$ or $k \leftarrow j+d$ where j is an induction variable in the family of i and c, d are loop-invariant
(2) if j is a derived induction variable in the family of i, then

- only the definition of j in L reaches (the definition of) k
- there is no definition of i on any path between the definition of j and the definition of k
(3) If j is described by (i, a, b), then k is described by $(i, a \cdot c, b \cdot c)$ or $(i, a+d, b)$, respectively.

Strength Reduction

- Often multiplication is more expensive than addition
\Rightarrow Replace the definition $j \leftarrow i \cdot c$ of a derived induction variable by an addition

Procedure

- For each derived induction variable $j \sim(i, a, b)$ create new variable j^{\prime}
- After each assignment $i \leftarrow i+c$ to a basic induction variable, create an assignment $j^{\prime} \leftarrow j^{\prime}+c \cdot b$
- Replace assignment to j with $j \leftarrow j^{\prime}$
- Initialize $j^{\prime} \leftarrow a+i \cdot b$ at end of preheader

Example Strength Reduction

Induction Variables $j \sim(i, 0,4)$ and $k \sim(i, a, 4)$

Elimination

- Further apply constant propagation, copy propagation, and dead code elimination
- Special case: elimination of induction variables that are
- not used in the loop
- only used in comparisons with loop-invariant variables
- useless

Useless variable

A variable is useless in a loop L if

- it is dead at all exits from L
- it is only used in its own definitions

Example After removal of j, j^{\prime} is useless

Rewriting Comparisons

Almost useless variable

A variable is almost useless in loop L if

- it is only used in comparisons against loop-invariant values and in definitions of itself and
- there is another induction variable in the same family that is not useless.
- An almost useless variable can be made useless by rewriting the comparisons to use the related induction variable

Rewriting Comparisons

Coordinated induction variables

Let $x \sim\left(i, a_{x}, b_{x}\right)$ and $y \sim\left(i, a_{y}, b_{y}\right)$ be induction variables. x and y are coordinated if

$$
\left(x-a_{x}\right) / b_{x}=\left(y-a_{y}\right) / b_{y}
$$

throughout the execution of the loop, except during a sequence of statements of the form $z_{i} \leftarrow z_{i}+c_{i}$ where c_{i} is loop-invariant.

Rewriting Comparisons

Let $j \sim\left(i, a_{j}, b_{j}\right)$ and $k \sim\left(i, a_{k}, b_{k}\right)$ be coordinated induction variables.
Consider the comparison $k<n$ with n loop-invariant. Using $\left(j-a_{j}\right) / b_{j}=\left(k-a_{k}\right) / b_{k}$ the comparison can be rewritten as follows

$$
\begin{array}{cc}
\Leftrightarrow & b_{k}\left(j-a_{j}\right) / b_{j}+a_{k}<n \\
\Leftrightarrow & b_{k}\left(j-a_{j}\right) / b_{j}<n-a_{k} \\
\Leftrightarrow & \begin{cases}j<\left(n-a_{k}\right) b_{j} / b_{k}+a_{j} & \text { if } b_{j} / b_{k}>0 \\
j>\left(n-a_{k}\right) b_{j} / b_{k}+a_{j} & \text { if } b_{j} / b_{k}<0\end{cases}
\end{array}
$$

where the right-hand sides are loop-invariant and their computation can be hoisted to the preheader.

Rewriting Comparisons

Restrictions

(1) $\left(n-a_{k}\right) b_{j}$ must be a multiple of b_{k}
(2) b_{j} and b_{k} must both be constants or loop invariants of known sign

Outline

(9) Loop Optimizations

(2) Dominators
(3) Loop-Invariant Computations

4 Induction Variables
(5) Array-Bounds Checks
(6) Loop Unrolling

Array-Bounds Checks

- Safe programming languages check that the subscript is within the array bounds at each array operation.
- Bounds for an array have the form $0 \leq i<N$ where $N>0$ is the size of the array.
- Implemented by $i<{ }_{u} N$ (unsigned comparison).
- Bounds checks redundant in well-written programs \Rightarrow slowdown
- For better performance: let the compiler prove which checks are redundant!
- In general, this problem is undecidable.

Conditions for Bounds Check Elimination

(1) There is an induction variable j and loop-invariant u used in statement s_{1} of either of the forms

- if $j<u$ goto L_{1} else goto L_{2}
- if $j \geq u$ goto L_{2} else goto L_{1}
- if $u>j$ goto L_{1} else goto L_{2}
- if $u \geq j$ goto L_{2} else goto L_{1}
where L_{2} is out of the loop
(2) There is a statement s_{2} of the form
- if $k<_{u} n$ goto L_{3} else goto L_{4}
where k is an induction variable coordinated with j, n is loop-invariant, and s_{1} dominates s_{2}
(3) There is no loop nested within L containing a definition of k
(4) k increases when j does: $b_{j} / b_{k}>0$

Array-Bounds Checking

- Objective: test in the preheader so that $0 \leq k<n$ everywhere in the loop
- Let k_{0} value of k at end of preheader
- Let $\Delta k_{1}, \ldots, \Delta k_{m}$ be the loop-invariant values added to k inside the loop
- $k \geq 0$ everywhere in the loop if
- $k \geq 0$ in the loop preheader
- $\Delta k_{1} \geq 0 \ldots \Delta k_{m} \geq 0$

Array-Bounds Checking

- Let $\Delta k_{1}, \ldots, \Delta k_{p}$ be the set of loop-invariant values added to k on any path between s_{1} and s_{2} that does not go through s_{1}.
- $k<n$ at s_{2} if $k<n-\left(\Delta k_{1}+\cdots+\Delta k_{p}\right)$ at s_{1}
- From $\left(k-a_{k}\right) / b_{k}=\left(j-a_{j}\right) / b_{j}$ this test can be rewritten to $j<b_{j} / b_{k}\left(n-\left(\Delta k_{1}+\cdots+\Delta k_{p}\right)-a_{k}\right)+a_{j}$
- It is sufficient that
$u \leq b_{j} / b_{k}\left(n-\left(\Delta k_{1}+\cdots+\Delta k_{p}\right)-a_{k}\right)+a_{j}$ because the test $j<u$ dominates the test $k<n$
- All parts of this test are loop-invariant!

Array-Bounds Checking Transformation

- Hoist loop-invariants out of the loop
- Copy the loop L to a new loop L^{\prime} with header label L_{h}^{\prime}
- Replace the statement "if $k<_{u} n$ goto L_{3}^{\prime} else goto L_{4}^{\prime} " by "goto L_{3}^{\prime} "
- At the end of L's preheader put statements equivalent to if $k \geq 0 \wedge \Delta k_{1} \geq 0 \wedge \cdots \wedge \Delta k_{m} \geq 0$ and $u \leq b_{j} / b_{k}\left(n-\left(\Delta k_{1}+\cdots+\Delta k_{p}\right)-a_{k}\right)+a_{j}$ goto L_{h}^{\prime} else goto L_{h}

Array-Bounds Checking Transformation

- This condition can be evaluated at compile time if
(1) all loop-invariants in the condition are constants; or
(2) n and u are the same temporary, $a_{k}=a_{j}, b_{k}=b_{j}$ and no Δk 's are added to k between s_{1} and s_{2}.
- The second case arises for instance with code like this:

1 int $u=a . l e n g t h ;$
2 int $i=0$;
3 while (i<u) \{
4 sum $+=$ a[i];
5 i++;
$6\}$
assuming common subexpression elimination for a. length

- Compile-time evaluation of the condition means to unconditionally use L or L^{\prime} and o delete the other loop
- Clean up with elimination of unreachable and dead code

Array-Bounds Checking Generalization

- Comparison of $j \leq u^{\prime}$ instead of $j<u$
- Loop exit test at end of loop body: A test
- s_{2} : if $j<u$ goto L_{1} else goto L_{2}
where L_{2} is out of the loop and s_{2} dominates all loop back edges; the Δk_{i} are between s_{2} and any back edge and between the loop header and s_{1}
- Handle the case $b_{j} / b_{k}<0$
- Handle the case where j counts downward where the loop exit tests for $j \geq I$ (a loop-invariant lower bound)
- The increments to the induction variable may be "undisciplined" with non-obvious increment:

1 while ($\mathrm{i}<\mathrm{n}-1$) \{
2 if $(s u m<0)$ \{ i++; sum $+=i ; i++\}$ else $\{i+=2$; $\}$
3 sum $+=$ a[i];
4 \}

Outline

(9) Loop Optimizations

(2) Dominators
(3) Loop-Invariant Computations

4 Induction Variables
(5) Array-Bounds Checks
(6) Loop Unrolling

Loop Unrolling

- For loops with small body, much time is spent incrementing the loop counter and testing the exit condition
- Loop unrolling optimizes this situation by putting more than one copy of the loop body in the loop
- To unroll a loop L with header h and back edges $s_{i} \rightarrow h$:
(1) Copy L to a new loop L^{\prime} with header h^{\prime} and back edges $s_{i}^{\prime} \rightarrow h^{\prime}$
(2) Change the back edges in L from $s_{i} \rightarrow h$ to $s_{i} \rightarrow h^{\prime}$
(3) Change the back edges in L^{\prime} from $s_{i}^{\prime} \rightarrow h^{\prime}$ to $s_{i}^{\prime} \rightarrow h$

Loop Unrolling Example (Still Useless)

before
after

Loop Unrolling Improved

- No gain, yet
- Needed: induction variable i such that every increment $i \leftarrow i+\Delta$ dominates every back edge of the loop
\Rightarrow each iteration increments i by the sum of the $\Delta \mathrm{s}$
\Rightarrow increments and tests can be moved to the back edges of loop
- In general, a separate epilogue is needed to cover the remaining iterations because the unrolled loop can only do multiple-of- K iterations.

Loop Unrolling Example

$$
\begin{aligned}
& \text { if } i<n-4 \text { goto } L_{1} \text { else } L_{2} \\
& L_{1}: x \leftarrow M[i] \\
& s \leftarrow s+x \\
& x \leftarrow M[i+4] \\
& s \leftarrow s+x \\
& i \leftarrow i+8 \\
& \text { if } i<n \text { goto } L_{1} \text { else } L_{2} \\
& L_{2} \\
& \text { only even numbers } \\
& L_{1}: x \leftarrow M[i] \\
& s \leftarrow s+x \\
& x \leftarrow M[i+4] \\
& s \leftarrow s+x \\
& i \leftarrow i+8 \\
& \text { if } i<n-4 \text { goto } L_{1} \text { else } L_{2}^{\prime} \\
& L_{2}^{\prime}: \text { if } i<n \text { goto } L_{2} \text { else } L_{3} \\
& L_{2} \text { : } \\
& L_{3}
\end{aligned}
$$

