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Static Single-Assignment Form

Important optimization technique: redundancy elimination
Value numbering
Constant propagation
Common subexpression elimination (CSE)

Important data structure: def-use chain
links definitions and uses to flow-graph nodes
Improvement: SSA form

Intermediate representation
Statically, each variable has exactly one definition



SSA Example

a ← x + y
b ← a− 1
a ← y + b
b ← x · 4
a ← a + b

straight-line program

a1 ← x + y
b1 ← a1 − 1
a2 ← y + b1
b2 ← x · 4
a3 ← a2 + b2

program in SSA form
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Why Bother?
Example: Value numbering

i = read();
j = i + 1;
k = i;
l = k + 1;

Value numbering
determines that j == l

Basic idea
Associate a tag with each
computation such that two
computations with the same tag
always compute the same value at
run time

Congruence
x ⊕ y ∼ a⊗ b iff ⊕ = ⊗ and x ∼ a and
y ∼ b (commutativity)
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Value Numbering

Implementation
Hash function H that respects congruence
Symbolic execution
V (t): tag of t ’s value
Consider t1 = t2 + 1
h = H(V (t2) + 1)
if temporary th holding tag h exists, then replace statement
by t1 = th
otherwise, remember V (t1) = h



Global Value Numbering

Local value numbering straightforward (inside basic block)
Value numbering within a procedure requires more care

l = k + 1;

k = ...;
read(i);
j = i + 1;
k = i;



Def-use Information

Problem: keeping track of relation between definitions and
uses of a variable
Dataflow analysis

l = k + 1;

k = ...;
read(i);
j = i + 1;
k = i;



SSA = Embedding def-use in the IR

SSA represents def-use information explicitly

l = φ(k1,k2) + 1;

k1 = ...;
read(i);
j = i + 1;
k2 = i;



Usefulness of SSA Form

Dataflow analysis becomes simpler
Optimized space usage for def-use chains
N uses and M definitions of var: N ·M pointers required
Uses and defs are related to dominator tree
Unrelated uses of the same variable are made different



φ-Functions
CFG with a control-flow join

. . . transformed to SSA form
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a← 0
b ← M[x ]

if b < 4

a← b

c ← a + b

Original
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a1 ← 0
b1 ← M[x0]

if b1 < 4

a2 ← b1

a3 ← φ(a2,a1)

c1 ← a3 + b1

SSA Form
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φ-Functions
. . . to edge-split SSA form
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if b1 < 4

a2 ← b1

a3 ← φ(a2,a1)

c1 ← a3 + b1



φ-Functions
Program with a loop

a← 0

return c

if a < N

a← b · 2
c ← c + b

b ← a + 1



φ-Functions
. . . transformed to edge-split SSA form

if a2 < N

a2 ← b2 · 2
c1 ← c2 + b2

b2 ← a3 + 1

return c

a1 ← 0

a3 ← φ(a1,a2)

b1 ← φ(b0,b2)

c2 ← φ(c0, c1)



Features of SSA Form

SSA renames variables
SSA introduces φ-functions

not “real” functions, just notation
implemented by move instruction on incoming edges
can often be ignored by optimization

SSA with edge-splitting:
there is no edge from a node with multiple successors to a
node with multiple predecessors
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Converting to SSA Form

Transform program→ CFG
Insert φ-functions
naive: add a φ-function for each variable at each join point
Rename variables
Perform edge splitting



Inserting φ-functions
The Path-Convergence Criterion

Add a φ-function for variable a at node z of the flow graph iff
1 There is a block x containing a definition of a.
2 There is a block y 6= x containing a definition of a.
3 There is a non-empty path πxz from x to z.
4 There is a non-empty path πyz from y to z.
5 Paths πxz and πyz have only z in common.
6 Node z does not appear in both πxz and πyz prior to the

end, but it may appear before in one of them.



Iterated Path-Convergence Criterion

Remarks
Start node contains an implicit definition of each variable
A φ-function counts as a definition
Compute by fixpoint iteration

Algorithm

while there are nodes x , y , z satisfying conditions 1–5
and z does not contain a φ-function for a

do insert a← φ(a, . . . ,a︸ ︷︷ ︸
p

)

where p = # predecessors of z



Converting to SSA

entry

k = false;
i = 1; j = 2;

B1

i <= n B2

read(i);
j = i + 1;
k = i;

B3

...k ... B4

print j; B5 i = i + 1; B6

exit



Dominance Property of SSA Form

In SSA, each definition dominates all its uses
1 If x is the i th argument of a φ-function in block n, then the

definition of x dominates the i th predecessor of node n.
2 If x is used in a non-φ statement in block n, then the

definition of x dominates node n.



The Dominance Frontier
Towards a more efficient algorithm for placing φ-functions

Conventions
Traversing the CFG: successor and predecessor for graph
edges.
Traversing the DT: parent and child for tree edges,
ancestor for paths.

Definition
x strictly dominates y if x dominates y and x 6= y .
The dominance frontier of a node x is the set of all nodes
w such that x dominates a predecessor of w , but does not
strictly dominate w . (So w could be x .)

Dominance Frontier Criterion
If node x contains a definition of some variable a, then any
node z in the dominance frontier of x needs a φ-function for a.



Dominance Frontier
Consider node 5
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Iterated Dominance Frontier

The dominance frontier criterion must be iterated: each
inserted φ-function counts as a new definition

Theorem
The iterated dominance frontier criterion and the iterated
path-convergence criterion specify the same set of nodes for
placing φ-functions.



Computing the Dominance Frontier

DF [n], the dominance frontier of node n, can be computed in
one pass through the dominator tree.

DFlocal [n] successors of n not strictly dominated by n.
DFlocal [n] = {y ∈ succ[n] | idom(y) 6= n}
DFup[n, c] nodes in the dominance frontier of c that are not
strictly dominated by c’s immediate dominator n.
DFup[n, c] = {y ∈ DF [c] | idom(y) 6= n}

Theorem

DF [n] = DFlocal [n] ∪
⋃

c∈children[n]

DFup[n, c]
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Computing the Dominance Frontier
Algorithm

computeDF(n) =
S ← ∅
{* compute DFlocal(n) *}
for each node y ∈ succ[n] do

if idom(y) 6= n then
S ← S ∪ {y}

{* compute DFup(n, c) *}
for each child c with idom(c) = n do
computeDF(c)
for each w ∈ DF [c] do

if n = w or n does not dominate w then
S ← S ∪ {w}

DF [n]← S



Inserting φ-Functions

Place-φ-Functions (Adef ) =
for each variable a do

W ← {n | a ∈ Adef [n]} {* Adef [n] = vars defined at n *}
while W 6= ∅ do

remove some node n from W
for each y ∈ DF [n] do

if a /∈ Aφ[y ] then
insert statement a← φ(a, . . . ,a) at top of block y ,
where the number of arguments is |pred[y ]|
Aφ[y ]← Aφ[y ] ∪ {a}
if a /∈ Adef [y ] then

W ←W ∪ {y}



Renaming Variables

Top-down traversal of the dominator tree
Rename the different definitions (including φ-definitions) of
variable a to a1,a2, . . .

Rename each use of a in a statement to the closest
definition of an a that is above a in the dominator tree
To modify the arguments of φ-functions, look ahead in the
successor nodes.



Edge Splitting

Algorithm: Edge Splitting
If there is a control-flow edge a→ b where |succ[a]| > 1 and
|pred[b]| > 1, then create new, empty node z and replace edge
a→ b by a→ z and z → b.

Some analyses and transformations are simpler if no
control flow edge leads from a node with multiple
successors to on with multiple predecessors.
Edge splitting achieves the unique successor or
predecessor property.



Efficient Computation of the Dominator Tree

There are efficient, almost linear-time algorithms for
computing the dominator tree [Lengauer, Tarjan 1979]
[Harel 1985] [Buchsbaum 1998] [Alstrup 1999].
But there are easy variations of the naive algorithm that
perform better in practice. [Cooper, Harvey, Kennedy 2006]



Outline

1 Static Single-Assignment Form

2 Converting to SSA Form

3 Optimization Algorithms Using SSA

4 Dependencies

5 Converting Back from SSA Form



Optimization Algorithms Using SSA
Representation of SSA Form

Statement assignment, φ-function, fetch, store, branch.
Fields: containing block, previous/next statement
in block, variables defined, variables used

Variable definition site, list of use sites
Block list of statements, ordered list of predecessors,

one or more successors



SSA: Dead-Code Elimination

SSA Liveness
A variable definition is live iff its list of uses is non-empty.

Algorithm
W ← list of all variables in SSA program
while W 6= ∅ do

remove some variable v from W
if v ’s list of uses is empty then

let S be v ’s defining statement
if S has no side effects other than the assignment to v
then

delete S from program
for each variable xi used by S do

delete S from list of uses of xi {in constant time}
W ←W ∪ {xi}



SSA: Simple Constant Propagation

If v is defined by v ← c (a constant) then each use of v
can be replaced by c.
The φ-function v ← (c, . . . , c) can be replaced by v ← c

Algorithm
W ← list of all statements in SSA program
while W 6= ∅ do

remove some statement S from W
if S is v ← (c, . . . , c) for constant c then

replace S by v ← c
if S is v ← c for constant c then

delete S
for each statement T that uses v do

substitute c for v in T
W ←W ∪ {T}



SSA: Further Linear-Time Transformations

Copy propagation
If some S is x ← φ(y) or x ← y ,
then remove S and substitute y for every use of x .

Constant folding
If S is v ← c ⊕ d where c and d are constants, then

compute e = c ⊕ d at compile time and
replace S by v ← e.



SSA: Further Linear-Time Transformations

Constant conditions
Let if a]b goto L1 else L2 be at the end of block L with a and b
constants and ] a comparison operator.

Replace the conditional branch by goto L1 or goto L2
depending on the compile-time value of a]b
Delete the control flow edge L→ L2 (L1 respectively)
Adjust the φ functions in L2 (L1) by removing the argument
associated to predecessor L.

Unreachable code
Deleting an edge from a predecessor may cause block L2 to
become unreachable.

Delete all statements of L2, adjusting the use lists of the
variables used in these statements.
Delete block L2 and the edges to its successors.



Conditional Constant Propagation

k ← 0

if k < 100

k ← k + 2

i ← 1
j ← 1

if j < 20 return j

j ← kj ← i
k ← k + 1



Conditional Constant Propagation

does not assume that a block can be executed until there
is evidence for it
does not assume a variable is non-constant until there is
evidence for it



Conditional Constant Propagation
Data Structures

Constant Propagation Lattice
V [v ] = ⊥ no assignment to v has been seen (initially)
V [v ] = c an assignment v ← c (constant) has been seen
V [v ] = > conflicting assignments have been seen

...6 754...

⊥

>

Block Reachability
E [B] = false no control transfer to B has been seen
(initially)
E [B] = true a control transfer to B has been seen



Conditional Constant Propagation
Abstract Lattice Operations

Least upper bound operation
⊥ t α = α t ⊥ = α

> t α = α t > = >

a t b =

a a = b

> a 6= b

Primitive operation
⊥⊕̂α = α⊕̂⊥ = ⊥
>⊕̂α = α⊕̂> = >
a⊕̂b = (a⊕ b)



Conditional Constant Propagation
Algorithm Initialization

1 Initialize V [v ] = ⊥ for all variables v and E [B] = false for
all blocks B

2 If v has no definition, then set V [v ]← > (must be input or
uninitialized)

3 The entry block is reachable: E [B0]← true



Conditional Constant Propagation
Algorithm

1 For each B with E [B] and B has only one successor C,
then set E [C] = true.

2 For each reachable assignment v ← x ⊕ y
set V [v ]← V [x ]⊕̂V [y ].

3 For each reachable assignment v ← φ(x1, . . . , xp)
set V [v ]←

⊔
{V [xj ] | j th predecessor is reachable}

4 For each reachable assignment v ← M[. . . ] or
v ← CALL(. . . )
set V [v ]← >.

5 For each reachable branch if x]y goto L1 else L2 consider
β = V [x ]̂]V [y ].

If β = true, then set E [L1]← true.
If β = false, then set E [L2]← true.
If β = >, then set E [L1],E [L2]← true.



Conditional Constant Propagation
Example

k1 ← 0
j1 ← 1
i1 ← 1

j2 ← φ(j4, j1)
k2 ← φ(k4, k1)

i f k2 < 100

if j2 < 20 return j2

j3 ← j1
k3 ← k2 + 1

j5 ← k2

j4 ← φ(j3, j5)
k4 ← φ(k3, k5)

k5 ← k2 + 2



Conditional Constant Propagation
Example after propagation

k2 ← φ(k4,0)
i f k2 < 100

return 1

k3 ← k2 + 1

k4 ← φ(k3)



Conditional Constant Propagation
Example after cleanup

return 1k3 ← k2 + 1

k2 ← φ(k3,0)
i f k2 < 100
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Dependencies Between Statements

B depends on A
Read-after-write A defines variable v and B uses v
Write-after-write A defines variable v and B defines v
Write-after-read A uses v and then B defines v

Control A controls whether B executes

In SSA form
all dependencies are Read-after-write or Control
Read-after-write is evident from SSA graph
Control needs to be analyzed



Memory Dependence

Memory does not enjoy the single assignment property
Consider

1 M[i] ← 4
2 x ← M[j]
3 M[k ] ← j

Depending on the values of i , j , and k
2 may have a read-after-write dependency with 1 (if i = j)
3 may have a write-after-write dependency with 1 (if i = k )
3 may have a write-after-read dependency with 2 (if j = k )
so 2 and 3 may not be exchanged

Approach
No attempt to track memory dependencies
Store instructions always live
No attempt to reorder memory instructions



Control Dependence Graph

Control Dependence
Node y is control dependent on x if

1 x has successors u and v
2 there exists a path from u to exit that avoids y
3 every path from v to exit goes through y

The control-dependence graph (CDG) has an edge from x
to y if y is control dependent on x .
y postdominates v if y is on every path from v to exit, i.e.,
if y dominates v in the reverse CFG.



Construction of the CDG

Let G be a CFG
1 Add new entry node r to G with edge r → s (the original

start node) and an edge r → exit .
2 Let G′ be the reverse control-flow graph with the same

nodes as G, all edges reversed, and with start node exit.
3 Construct the dominator tree of G′ with root exit.
4 Calculate the dominance frontiers DFG′ of G′.
5 The CDG has edge x → y if x ∈ DFG′ [y ].



Use of the CDG

A must be executed before B
if
there is a path A→ B using SSA use-def edges and CDG
edges.
I.e., there are data- and control dependencies that require A to
be executed before B.



Construction of the CDG
Example

k ← 0

if k < 100

k ← k + 2

i ← 1
j ← 1

if j < 20 return j

j ← kj ← i
k ← k + 1



Construction of the CDG
CFG and reverse CFG

r

1

exit

2

34

5 6

7

exit

4

r

2

71

5 6

3



Construction of the CDG
Postdominators and CDG

5

7

2

4

exit

3 6

1

r

r

2 1 4

3 7

5 6



Aggressive Dead-Code Elimination

Application of the CDG
Consider

return 1k3 ← k2 + 1

k2 ← φ(k3,0)
i f k2 < 100

k2 is live because it is used in defining k3

k3 is live because it is used in defining k2



Aggressive Dead-Code Elimination

Algorithm
Exhaustively mark a live any statement that

1 Performs I/O, stores to memory, returns from the function,
calls another function that may have side effects.

2 Defines some variable v that is used by another live
statement.

3 Is a conditional branch, on which some other live
statement is control dependent.

Then delete all unmarked statements.

Result on example: return 1; loop is deleted



Outline

1 Static Single-Assignment Form

2 Converting to SSA Form

3 Optimization Algorithms Using SSA

4 Dependencies

5 Converting Back from SSA Form



Converting Back from SSA Form

φ-functions are not executable and must be replaced to
generate code
y ← φ(x1, x2, x3) is interpreted as

move x1 to y if arriving from predecessor ]1
move x2 to y if arriving from predecessor ]2
move x3 to y if arriving from predecessor ]3

Insert these instructions at the end of the respective
predecessor (possible due to edge-split assumption)
Next step: register allocation



Liveness Analysis for SSA

LivenessAnalysis() =
for each variable v do

M ← ∅
for each statement s using v do

if s is a φ-function with i th argument v then
let p be the i the predecessor of s’s block
LiveOutAtBlock(p, v)

else
LiveInAtStatement(s, v)

LiveOutAtBlock(n, v) =
{v is live-out at n}
if n /∈ M then

M ← M ∪ {n}
let s be the last statement in n
LiveOutAtStatement(s, v)



Liveness Analysis for SSA

LiveInAtStatement(s, v) =
{v is live-in at s}
if s is first statement of block n then

{v is live-in at n}
for each p ∈ pred [n] do

LiveOutAtBlock(p, v)
else

let s′ be the statement preceding s
LiveOutAtStatement(s′, v)

LiveOutAtStatement(s, v) =
{v is live-out at s}
let W be the set of variables defined in s
for each variable w ∈W \ {v} do

add (v ,w) to interference graph {needed if v defined?}
if v /∈W then

LiveInAtStatement(s, v)
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