Compiler Construction 2012/2013 SSA—Static Single Assignment Form

Peter Thiemann

February 7, 2013

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

- 2 Converting to SSA Form
- Optimization Algorithms Using SSA

4 Dependencies

5 Converting Back from SSA Form

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Important optimization technique: redundancy elimination

- Value numbering
- Constant propagation
- Common subexpression elimination (CSE)
- Important data structure: <u>def-use chain</u> links definitions and uses to flow-graph nodes
- Improvement: SSA form
 - Intermediate representation
 - Statically, each variable has exactly one definition

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

$$a \leftarrow x + y$$

$$b \leftarrow a - 1$$

$$a \leftarrow y + b$$

$$b \leftarrow x \cdot 4$$

$$a \leftarrow a + b$$

straight-line program

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$a \leftarrow x + y$ $b \leftarrow a-1$ $a \leftarrow y + b$ $b \leftarrow x \cdot 4$ $a \leftarrow a+b$

straight-line program

program in SSA form

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

$$\begin{array}{rcl} b_2 &\leftarrow & x \cdot 4 \\ a_3 &\leftarrow & a_2 + b_2 \end{array}$$

$$y_2 \leftarrow y + b_2 \\ \leftarrow x \cdot 4$$

$$h_2 \leftarrow y + b$$

$$a_2 \leftarrow y + k$$

$$a_2 \leftarrow y + k$$

 $a_1 \leftarrow x + y$

$$a_2 \leftarrow y + i$$

 $b_2 \leftarrow x \cdot 4$

$$a_2 \leftarrow y + x$$

 $b_2 \leftarrow x \cdot 4$

Value numbering determines that j == l

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Value numbering determines that j == l

Basic idea

Associate a tag with each computation such that two computations with the same tag always compute the same value at run time

Congruence

 $x \oplus y \sim a \otimes b$ iff $\oplus = \otimes$ and $x \sim a$ and $y \sim b$ (commutativity)

Implementation

- Hash function H that respects congruence
- Symbolic execution
- V(t): tag of t's value
- Consider $t_1 = t_2 + 1$
- $h = H(V(t_2) + 1)$
- if temporary t_h holding tag h exists, then replace statement by t₁ = t_h

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

• otherwise, remember $V(t_1) = h$

- Local value numbering straightforward (inside basic block)
- Value numbering within a procedure requires more care

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Def-use Information

- Problem: keeping track of relation between definitions and uses of a variable
- Dataflow analysis

SSA represents def-use information explicitly

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Dataflow analysis becomes simpler
- Optimized space usage for def-use chains
 N uses and M definitions of var: N · M pointers required
- Uses and defs are related to dominator tree
- Unrelated uses of the same variable are made different

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

ϕ -Functions

CFG with a control-flow join ... transformed to SSA form

SSA Form

・ロト・西ト・ヨト・ヨト・日・ シック

ϕ -Functions

... to edge-split SSA form

<□▶ <圖▶ < 差▶ < 差▶ = 差 = のへで

ϕ -Functions

... transformed to edge-split SSA form

- SSA renames variables
- SSA introduces φ-functions
 - not "real" functions, just notation
 - implemented by move instruction on incoming edges
 - can often be ignored by optimization
- SSA with edge-splitting:

there is no edge from a node with multiple successors to a node with multiple predecessors

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

2 Converting to SSA Form

Optimization Algorithms Using SSA

Dependencies

5 Converting Back from SSA Form

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Transform program \rightarrow CFG
- Insert φ-functions naive: add a φ-function for each variable at each join point

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Rename variables
- Perform edge splitting

Add a ϕ -function for variable *a* at node *z* of the flow graph iff

- There is a block x containing a definition of a.
- 2 There is a block $y \neq x$ containing a definition of *a*.
- Solution There is a non-empty path π_{xz} from x to z.
- There is a non-empty path π_{yz} from y to z.
- Solution Paths π_{xz} and π_{yz} have only z in common.
- Solution Node *z* does not appear in both π_{xz} and π_{yz} prior to the end, but it may appear before in one of them.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Remarks

- Start node contains an implicit definition of each variable
- A ϕ -function counts as a definition
- Compute by fixpoint iteration

Algorithm

while there are nodes *x*, *y*, *z* satisfying conditions 1–5 and *z* does not contain a ϕ -function for *a* do insert $a \leftarrow \phi(\underbrace{a, \dots, a}_{p})$ where p = # predecessors of *z*

Converting to SSA

In SSA, each definition dominates all its uses

If x is the *i*th argument of a φ-function in block n, then the definition of x dominates the *i*th predecessor of node n.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

If x is used in a non-\u03c6 statement in block n, then the definition of x dominates node n.

The Dominance Frontier

Towards a more efficient algorithm for placing ϕ -functions

Conventions

- Traversing the CFG: <u>successor</u> and <u>predecessor</u> for graph edges.
- Traversing the DT: <u>parent</u> and <u>child</u> for tree edges, <u>ancestor</u> for paths.

Definition

- x strictly dominates y if x dominates y and $x \neq y$.
- The <u>dominance frontier</u> of a node *x* is the set of all nodes *w* such that *x* dominates a predecessor of *w*, but does not strictly dominate *w*. (So *w* could be *x*.)

Dominance Frontier Criterion

If node *x* contains a definition of some variable *a*, then any node *z* in the dominance frontier of *x* needs a ϕ -function for *a*.

Dominance Frontier

Consider node 5

 The dominance frontier criterion must be iterated: each inserted φ-function counts as a new definition

Theorem

The iterated dominance frontier criterion and the iterated path-convergence criterion specify the same set of nodes for placing ϕ -functions.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

DF[n], the dominance frontier of node *n*, can be computed in one pass through the dominator tree.

- DF_{local}[n] successors of n not strictly dominated by n. DF_{local}[n] = {y ∈ succ[n] | idom(y) ≠ n}
- DF_{up}[n, c] nodes in the dominance frontier of c that are not strictly dominated by c's immediate dominator n.
 DF_{up}[n, c] = {y ∈ DF[c] | idom(y) ≠ n}

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

DF[n], the dominance frontier of node *n*, can be computed in one pass through the dominator tree.

- DF_{local}[n] successors of n not strictly dominated by n.
 DF_{local}[n] = {y ∈ succ[n] | idom(y) ≠ n}
- DF_{up}[n, c] nodes in the dominance frontier of c that are not strictly dominated by c's immediate dominator n.
 DF_{up}[n, c] = {y ∈ DF[c] | idom(y) ≠ n}

Theorem

$$DF[n] = DF_{local}[n] \cup \bigcup_{c \in children[n]} DF_{up}[n, c]$$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Computing the Dominance Frontier

```
computeDF(n) =
   S \leftarrow \emptyset
   {* compute DF_{local}(n) *}
   for each node y \in succ[n] do
     if idom(y) \neq n then
        S \leftarrow S \cup \{y\}
   {* compute DF_{up}(n, c) *}
   for each child c with idom(c) = n do
     computeDF(C)
     for each w \in DF[c] do
        if n = w or n does not dominate w then
           S \leftarrow S \cup \{w\}
   DF[n] \leftarrow S
```

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Place- ϕ -Functions (A_{def}) = for each variable a do $W \leftarrow \{n \mid a \in A_{def}[n]\}$ {* $A_{def}[n] = \text{vars defined at } n^*\}$ while $W \neq \emptyset$ do remove some node *n* from *W* for each $y \in DF[n]$ do if $a \notin A_{\phi}[y]$ then insert statement $a \leftarrow \phi(a, \ldots, a)$ at top of block y, where the number of arguments is |pred[y]| $A_{\phi}[y] \leftarrow A_{\phi}[y] \cup \{a\}$ if $a \notin A_{def}[v]$ then $W \leftarrow W \cup \{y\}$

・ロト・西下・日下・日下・日下

- Top-down traversal of the dominator tree
- Rename the different definitions (including φ-definitions) of variable *a* to *a*₁, *a*₂,...
- Rename each use of a in a statement to the closest definition of an a that is above a in the dominator tree
- To modify the arguments of φ-functions, look ahead in the successor nodes.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Algorithm: Edge Splitting

If there is a control-flow edge $a \rightarrow b$ where |succ[a]| > 1 and |pred[b]| > 1, then create new, empty node *z* and replace edge $a \rightarrow b$ by $a \rightarrow z$ and $z \rightarrow b$.

 Some analyses and transformations are simpler if no control flow edge leads from a node with multiple successors to on with multiple predecessors.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

 Edge splitting achieves the <u>unique successor or</u> predecessor property.

Efficient Computation of the Dominator Tree

- There are efficient, almost linear-time algorithms for computing the dominator tree [Lengauer, Tarjan 1979] [Harel 1985] [Buchsbaum 1998] [Alstrup 1999].
- But there are easy variations of the naive algorithm that perform better in practice. [Cooper, Harvey, Kennedy 2006]

(日) (日) (日) (日) (日) (日) (日)

Optimization Algorithms Using SSA

4 Dependencies

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Statement assignment, ϕ -function, fetch, store, branch. Fields: containing block, previous/next statement in block, variables defined, variables used

Variable definition site, list of use sites

Block list of statements, ordered list of predecessors, one or more successors

(ロ) (同) (三) (三) (三) (○) (○)

SSA Liveness

A variable definition is live iff its list of uses is non-empty.

Algorithm

 $W \leftarrow$ list of all variables in SSA program while $W \neq \emptyset$ do remove some variable v from W if v's list of uses is empty then let S be v's defining statement if S has no side effects other than the assignment to v then delete S from program for each variable x_i used by S do delete S from list of uses of x_i {in constant time} $W \leftarrow W \cup \{x_i\}$

SSA: Simple Constant Propagation

- If v is defined by v ← c (a constant) then each use of v can be replaced by c.
- The ϕ -function $v \leftarrow (c, \dots, c)$ can be replaced by $v \leftarrow c$

Algorithm

 $W \leftarrow$ list of all statements in SSA program while $W \neq \emptyset$ do remove some statement S from W if S is $v \leftarrow (c, \ldots, c)$ for constant c then replace S by $v \leftarrow c$ if S is $v \leftarrow c$ for constant c then delete S for each statement T that uses v do substitute c for v in T $W \leftarrow W \cup \{T\}$

Copy propagation

If some *S* is $x \leftarrow \phi(y)$ or $x \leftarrow y$, then remove *S* and substitute *y* for every use of *x*.

Constant folding

If *S* is $v \leftarrow c \oplus d$ where *c* and *d* are constants, then

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- compute $e = c \oplus d$ at compile time and
- replace *S* by $v \leftarrow e$.

SSA: Further Linear-Time Transformations

Constant conditions

Let **if** $a \ddagger b$ **goto** L_1 **else** L_2 be at the end of block *L* with *a* and *b* constants and \ddagger a comparison operator.

- Replace the conditional branch by goto L₁ or goto L₂ depending on the compile-time value of ath
- Delete the control flow edge $L \rightarrow L_2$ (L_1 respectively)
- Adjust the φ functions in L₂ (L₁) by removing the argument associated to predecessor L.

Unreachable code

Deleting an edge from a predecessor may cause block L_2 to become unreachable.

- Delete all statements of *L*₂, adjusting the use lists of the variables used in these statements.
- Delete block *L*₂ and the edges to its successors.

・ロト・日本・日本・日本・日本・日本

- does not assume that a block can be executed until there is evidence for it
- does not assume a variable is non-constant until there is evidence for it

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Data Structures

Constant Propagation Lattice

- $V[v] = \bot$ no assignment to v has been seen (initially)
- V[v] = c an assignment $v \leftarrow c$ (constant) has been seen
- $V[v] = \top$ conflicting assignments have been seen

Block Reachability

- *E*[*B*] = *false* no control transfer to *B* has been seen (initially)
- E[B] = true a control transfer to *B* has been seen

Abstract Lattice Operations

Least upper bound operation

Primitive operation $\perp \hat{\oplus} \alpha = \alpha \hat{\oplus} \perp = \perp$ $\top \hat{\oplus} \alpha = \alpha \hat{\oplus} \top = \top$ $a \hat{\oplus} b = (a \oplus b)$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- Initialize $V[v] = \bot$ for all variables v and E[B] = false for all blocks B
- If v has no definition, then set V[v] ← ⊤ (must be input or uninitialized)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

③ The entry block is reachable: $E[B_0] \leftarrow true$

- For each B with E[B] and B has only one successor C, then set E[C] = true.
- ② For each reachable assignment $v \leftarrow x \oplus y$ set $V[v] \leftarrow V[x] ⊕ V[y]$.
- So For each reachable assignment $v \leftarrow \phi(x_1, ..., x_p)$ set $V[v] \leftarrow \bigsqcup \{ V[x_j] \mid j$ th predecessor is reachable $\}$
- For each reachable assignment v ← M[...] or v ← CALL(...) set V[v] ← ⊤.
- So For each reachable branch if $x \ddagger y$ goto L_1 else L_2 consider $\beta = V[x] \ddagger V[y]$.
 - If $\beta = true$, then set $E[L_1] \leftarrow true$.
 - If $\beta = false$, then set $E[L_2] \leftarrow true$.
 - If $\beta = \top$, then set $E[L_1], E[L_2] \leftarrow true$.

$i_1 \leftarrow 1$ $k_1 \leftarrow 0$ $j_2 \leftarrow \phi(j_4, j_1)$ $k_2 \leftarrow \phi(k_4, k_1)$ if k₂ < 100 return j₂ if $j_2 < 20$ $j_3 \leftarrow j_1$ $j_5 \leftarrow k_2$ $k_3 \leftarrow k_2 + 1$ $k_5 \leftarrow k_2 + 2$ $j_4 \leftarrow \phi(j_3, \overline{j_5})$ $k_4 \leftarrow \phi(k_3, k_5)$

Example after propagation

・ロト・日本・日本・日本・日本・日本

Example after cleanup

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

- 2 Converting to SSA Form
- Optimization Algorithms Using SSA

4 Dependencies

5 Converting Back from SSA Form

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

B depends on A

Read-after-write A defines variable v and B uses v Write-after-write A defines variable v and B defines v Write-after-read A uses v and then B defines v Control A controls whether B executes

In SSA form

• all dependencies are Read-after-write or Control

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- Read-after-write is evident from SSA graph
- Control needs to be analyzed

Memory Dependence

- Memory does not enjoy the single assignment property
- Consider

Depending on the values of i, j, and k

- 2 may have a read-after-write dependency with 1 (if i = j)
- 3 may have a write-after-write dependency with 1 (if i = k)
- 3 may have a write-after-read dependency with 2 (if j = k) so 2 and 3 may not be exchanged

(日) (日) (日) (日) (日) (日) (日)

Approach

- No attempt to track memory dependencies
- Store instructions always live
- No attempt to reorder memory instructions

Control Dependence

- Node y is <u>control dependent</u> on x if
 - x has successors u and v
 - there exists a path from u to exit that avoids y
 - every path from v to exit goes through y
- The <u>control-dependence graph</u> (CDG) has an edge from *x* to *y* if *y* is control dependent on *x*.
- *y* postdominates *v* if *y* is on every path from *v* to *exit*, i.e., if *y* dominates *v* in the reverse CFG.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Let G be a CFG

- Add new entry node *r* to *G* with edge $r \rightarrow s$ (the original start node) and an edge $r \rightarrow exit$.
- Let G' be the reverse control-flow graph with the same nodes as G, all edges reversed, and with start node exit.

(日) (日) (日) (日) (日) (日) (日)

- Sonstruct the dominator tree of G' with root exit.
- Calculate the dominance frontiers $DF_{G'}$ of G'.
- The CDG has edge $x \to y$ if $x \in DF_{G'}[y]$.

A must be executed before B

if

there is a path $A \rightarrow B$ using SSA use-def edges and CDG edges.

I.e., there are data- and control dependencies that require *A* to be executed before *B*.

Construction of the CDG Example

Construction of the CDG CFG and reverse CFG

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Construction of the CDG

Postdominators and CDG

Aggressive Dead-Code Elimination

- Application of the CDG
- Consider

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- k₂ is live because it is used in defining k₃
- k₃ is live because it is used in defining k₂

Algorithm

Exhaustively mark a live any statement that

Performs I/O, stores to memory, returns from the function, calls another function that may have side effects.

(日) (日) (日) (日) (日) (日) (日)

- Obtained by another live statement.
- Is a conditional branch, on which some other live statement is control dependent.

Then delete all unmarked statements.

• Result on example: return 1; loop is deleted

- 2 Converting to SSA Form
- Optimization Algorithms Using SSA

4 Dependencies

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- φ-functions are not executable and must be replaced to generate code
- $y \leftarrow \phi(x_1, x_2, x_3)$ is interpreted as
 - move x₁ to y if arriving from predecessor #1

 - move x₃ to y if arriving from predecessor #3
- Insert these instructions at the end of the respective predecessor (possible due to edge-split assumption)

(日) (日) (日) (日) (日) (日) (日)

Next step: register allocation

LivenessAnalysis() = for each variable v do $M \leftarrow \emptyset$ for each statement s using v do if s is a ϕ -function with *i*th argument v then let p be the *i*the predecessor of s's block LiveOutAtBlock(p, v) else LiveInAtStatement(s, v) LiveOutAtBlock(n, v) ={v is live-out at n} if $n \notin M$ then $M \leftarrow M \cup \{n\}$ let s be the last statement in n LiveOutAtStatement(s, v)

(日) (日) (日) (日) (日) (日) (日)

Liveness Analysis for SSA

```
LiveInAtStatement(s, v) =
   {v is live-in at s}
   if s is first statement of block n then
     {v is live-in at n}
     for each p \in pred[n] do
       LiveOutAtBlock(p, v)
   else
     let s' be the statement preceding s
     LiveOutAtStatement(s', v)
LiveOutAtStatement(s, v) =
   {v is live-out at s}
   let W be the set of variables defined in s
   for each variable w \in W \setminus \{v\} do
     add (v, w) to interference graph {needed if v defined?}
   if v \notin W then
     LiveInAtStatement(s, v)
```