Compiler Construction 2012/2013

SSA—Static Single Assignment Form

Peter Thiemann

February 7, 2013

0 Static Single-Assignment Form

Static Single-Assignment Form

@ Important optimization technique: redundancy elimination
e Value numbering
e Constant propagation
e Common subexpression elimination (CSE)
@ Important data structure: def-use chain
links definitions and uses to flow-graph nodes
@ Improvement: SSA form

e Intermediate representation
o Statically, each variable has exactly one definition

SSA Example

X+Yy
a—1
y+b
X-4
atb

DT LT
TTTTT

straight-line program

SSA Example

X+Yy
a—1
y+b
X-4
atb

DT LT
TTTTT

straight-line program

a
by
a
b>
as

TTTTT

X+y
a —1
Y+ b
X-4

ar + bo

program in SSA form

Why Bother?
Example: Value numbering

i = read();
=1+ 1;
k = 1i;

1 =%k + 1;

Value numbering
determines that j ==

Why Bother?
Example: Value numbering

Basic idea

Associate a tag with each
i = read(); computation such that two
j=1+1; computations with the same tag
k = 1i; always compute the same value at
1 =%+1; run time

Value numbering
determines that j ==

Congruence

X®y~awbiff ®=®and x ~ aand
y ~ b (commutativity)

Value Numbering

Implementation

@ Hash function H that respects congruence

@ Symbolic execution

@ V(1): tag of t's value

@ Consider ty =t + 1

@ h=H(V(t)+1)

@ if temporary t, holding tag h exists, then replace statement
by t; = th

@ otherwise, remember V(t;) = h

Global Value Numbering

@ Local value numbering straightforward (inside basic block)
@ Value numbering within a procedure requires more care

Def-use Information

@ Problem: keeping track of relation between definitions and
uses of a variable

@ Dataflow analysis

SSA = Embedding def-use in the IR

@ SSA represents def-use information explicitly

read (i) ;
J=1+1;
ko = 1i;

|1 = ¢ki, ko) + 15

Usefulness of SSA Form

@ Dataflow analysis becomes simpler

@ Optimized space usage for def-use chains
N uses and M definitions of var: N - M pointers required

@ Uses and defs are related to dominator tree
@ Unrelated uses of the same variable are made different

¢-Functions
CFG with a control-flow join

b < M[x]
a+ >0

Y

if b<

/

a+b

N

c«<—a-+b

Original

¢-Functions

CFG with a control-flow join ... transformed to SSA form

b+ Mx] 21 : g” [Xof
a<>o0 !
Y
Y .

i b < }m =4
a+ b/ % b1\‘

c—a+b as — ¢(az, @)

Ci < az + by
Original

SSA Form

¢-Functions
... to edge-split SSA form

b1 < M[xo]
a| < 0

Y

if by < 4

VAN

az<—b1

NS

az < ¢(a, a)

C1 < as + by

¢-Functions
Program with a loop
a«<o0

Y

b+ a+1

c«~c+b
a«—»b-2

ifa<N

e

return ¢

¢-Functions

... transformed to edge-split SSA form

a1<—0

Y

ag < ¢(a, a)
by < ¢(bo, b2)
G + ¢(Co, C1)
b2 < az +1
Ci+ C+ by
a < by -2

ifa2<N

e

return ¢

Features of SSA Form

@ SSA renames variables
@ SSA introduces ¢-functions
e not “real” functions, just notation
e implemented by move instruction on incoming edges
e can often be ignored by optimization
@ SSA with edge-splitting:
there is no edge from a node with multiple successors to a
node with multiple predecessors

e Converting to SSA Form

Converting to SSA Form

@ Transform program — CFG

@ Insert ¢-functions
naive: add a ¢-function for each variable at each join point

@ Rename variables
@ Perform edge splitting

Inserting ¢-functions
The Path-Convergence Criterion

Add a ¢-function for variable a at node z of the flow graph iff
@ There is a block x containing a definition of a.
© There is a block y # x containing a definition of a.
© There is a non-empty path m, from x to z.
@ There is a non-empty path m,, from y to z.
@ Paths 7, and my, have only z in common.

© Node z does not appear in both 7y, and , prior to the
end, but it may appear before in one of them.

lterated Path-Convergence Criterion

Remarks
@ Start node contains an implicit definition of each variable
@ A ¢-function counts as a definition
@ Compute by fixpoint iteration

Algorithm

while there are nodes x, y, z satisfying conditions 1-5
and Zz does not contain a ¢-function for a
doinsert a <+ ¢(a,...,a)
N——

p
where p = # predecessors of z

Converting to SSA

false;

B1

i=1; 3J=2;

read (i) ;
=1+ 1; |BS3
k = 1;

_/

exit

Dominance Property of SSA Form

In SSA, each definition dominates all its uses
@ If x is the ith argument of a ¢-function in block n, then the
definition of x dominates the ith predecessor of node n.

@ If x is used in a non-¢ statement in block n, then the
definition of x dominates node n.

The Dominance Frontier

Towards a more efficient algorithm for placing ¢-functions

Conventions
@ Traversing the CFG: successor and predecessor for graph

edges.

@ Traversing the DT: parent and child for tree edges,
ancestor for paths.

@ x strictly dominates y if x dominates y and x # y.
@ The dominance frontier of a node x is the set of all nodes

w such that x dominates a predecessor of w, but does not
strictly dominate w. (So w could be x.)

Dominance Frontier Criterion

If node x contains a definition of some variable a, then any
node z in the dominance frontier of x needs a ¢-function for a.

Dominance Frontier
Consider node 5

lterated Dominance Frontier

@ The dominance frontier criterion must be iterated: each
inserted ¢-function counts as a new definition

Theorem

The iterated dominance frontier criterion and the iterated
path-convergence criterion specify the same set of nodes for
placing ¢-functions.

Computing the Dominance Frontier

DF[n], the dominance frontier of node n, can be computed in
one pass through the dominator tree.

@ DFocq[n] successors of n not strictly dominated by n.
DFiocalln] = {y € succln] | idom(y) # n}
@ DFp[n, c] nodes in the dominance frontier of ¢ that are not

strictly dominated by ¢’s immediate dominator n.
DFypln, c] = {y € DF[c] | idom(y) # n}

Computing the Dominance Frontier

DF[n], the dominance frontier of node n, can be computed in
one pass through the dominator tree.

@ DFocq[n] successors of n not strictly dominated by n.
DFiocalln] = {y € succln] | idom(y) # n}

@ DFp[n, c] nodes in the dominance frontier of ¢ that are not
strictly dominated by ¢’s immediate dominator n.
DFyp[n, c] = {y € DF[c] | idom(y) # n}

DF[n] = DFjpcallnlU |) DFipln, c]
cechildren[n]

Computing the Dominance Frontier

Algorithm

computeDF(n) =
S« 10
{* compute DFjocq(n) *}
for each node y € succ|n] do
if idom(y) # nthen
S+ Su{y}
{* compute DF,(n, c) *}
for each child ¢ with idom(c) = ndo
computeDF(C)
for each w € DF[c] do
if n = w or ndoes not dominate w then
S+ Su{w}
DF[n] + S

Inserting ¢-Functions

Place-¢-Functions (Agef) =
for each variable a do
W <« {n|aec Agsln]} {* Ager[n] = vars defined at n *}
while W # 0 do
remove some node n from W
for each y € DF[n] do
if a¢ Ayly] then
insert statement a « ¢(a, ..., a) at top of block y,
where the number of arguments is |pred[y]|
Aslyl + Aslyl U {a}
if a ¢ Adef[}’] then
W+ Wu{y}

Renaming Variables

@ Top-down traversal of the dominator tree

@ Rename the different definitions (including ¢-definitions) of
variable ato a;, a, . ..

@ Rename each use of ain a statement to the closest
definition of an a that is above a in the dominator tree

@ To modify the arguments of ¢-functions, look ahead in the
successor nodes.

Edge Splitting

Algorithm: Edge Splitting

If there is a control-flow edge a — b where |succ|a]| > 1 and

|pred[b]| > 1, then create new, empty node z and replace edge
a—bbya— zandz— b.

@ Some analyses and transformations are simpler if no
control flow edge leads from a node with multiple
successors to on with multiple predecessors.

@ Edge splitting achieves the unique successor or
predecessor property.

Efficient Computation of the Dominator Tree

@ There are efficient, almost linear-time algorithms for
computing the dominator tree [Lengauer, Tarjan 1979]
[Harel 1985] [Buchsbaum 1998] [Alstrup 1999].

@ But there are easy variations of the naive algorithm that
perform better in practice. [Cooper, Harvey, Kennedy 2006]

e Optimization Algorithms Using SSA

Optimization Algorithms Using SSA
Representation of SSA Form

Statement assignment, ¢-function, fetch, store, branch.
Fields: containing block, previous/next statement
in block, variables defined, variables used

Variable definition site, list of use sites

Block list of statements, ordered list of predecessors,
one or more successors

SSA: Dead-Code Elimination

SSA Liveness

A variable definition is live iff its list of uses is non-empty.

Algorithm

W <« list of all variables in SSA program
while W # () do
remove some variable v from W
if v’s list of uses is empty then
let S be v’s defining statement
if S has no side effects other than the assignment to v
then
delete S from program
for each variable x; used by S do
delete S from list of uses of x; {in constant time}
W« Wu{x}

SSA: Simple Constant Propagation

@ If v is defined by v < ¢ (a constant) then each use of v
can be replaced by c.

@ The ¢-function v «+ (c,...,c) can be replaced by v «+ ¢

Algorithm

W « list of all statements in SSA program
while W +# () do
remove some statement S from W
if Sisv<«(c,...,c)forconstant c then
replace Sby v < ¢
if Sis v « cfor constant c then
delete S
for each statement T that uses v do
substitute cfor vin T
W« Wu{T}

SSA: Further Linear-Time Transformations

Copy propagation

If some S'is x < ¢(y) or x <y,
then remove S and substitute y for every use of x.

Constant folding

If Sis v + ¢ @ d where ¢ and d are constants, then
@ compute e = ¢ & d at compile time and
@ replace Sby v «+ e.

SSA: Further Linear-Time Transformations

Constant conditions

Let if afb goto L, else L, be at the end of block L with aand b
constants and £ a comparison operator.

@ Replace the conditional branch by goto L; or goto L,
depending on the compile-time value of atb
@ Delete the control flow edge L — L, (L respectively)

@ Adjust the ¢ functions in Ly (L4) by removing the argument
associated to predecessor L.

Unreachable code

Deleting an edge from a predecessor may cause block L, to
become unreachable.

@ Delete all statements of L,, adjusting the use lists of the
variables used in these statements.

@ Delete block L, and the edges to its successors.

Conditional Constant Propagation

i1
j1

k<« 0

Y

if k <100

A

if j < 20

return j

y T

Ji
k<+ k+1

j+ k
k+— k+2

Conditional Constant Propagation

@ does not assume that a block can be executed until there
is evidence for it

@ does not assume a variable is non-constant until there is
evidence for it

Conditional Constant Propagation
Data Structures

Constant Propagation Lattice

@ V[v] = L no assignment to v has been seen (initially)
@ V[v] = c an assignment v « c (constant) has been seen
@ V[v] = T conflicting assignments have been seen

N\

1

Block Reachability

@ E[B] = false no control transfer to B has been seen
(initially)
@ E[B] = true a control transfer to B has been seen

Conditional Constant Propagation
Abstract Lattice Operations

Least upper bound operation

lla = alUl =«
TUa = aldT =T

a a=»n
aub =

T a#b
Primitive operation
1da = adbl =1
Tha = adbT =T

adb = (asb)

Conditional Constant Propagation

Algorithm Initialization

@ Initialize V[v] = L for all variables v and E[B] = false for
all blocks B

@ If v has no definition, then set V[v] «+~ T (must be input or
uninitialized)
© The entry block is reachable: E[By] «+ true

Conditional Constant Propagation
Algorithm

@ For each B with E[B] and B has only one successor C,
then set E[C] = true.

© For each reachable assignment v «+ x @ y
set V[v] « V[x]&V]y].

© For each reachable assignment v < ¢(xi, ..., Xp)
set V[v] < [|{V[xj] | jth predecessor is reachable}

@ For each reachable assignment v «+ M[...] or
v« CALL(...)
set V[v] < T.

© For each reachable branch if xty goto L; else L, consider
B = VIxzViyl.
o If 8 = true, then set E[L;] « true.
o If § = false, then set E[Ly] «+ true.
e If 5 =T, then set E[Ly], E[L2] <+ true.

Conditional Constant Propagation

Example

I’1<~1
]’1(—1
ki < 0

Jo < das 1)
ko ¢(ka, ki)
ifko <100

j3 < j1 Js + ko
ky < ko + 1 ks < ko + 2
Ja < ¢(js> Js)

ky + ¢(ks, ks)

Conditional Constant Propagation
Example after propagation

k2 — ¢(k470)
ifhko <100

ﬂ roturn 1

v

Conditional Constant Propagation
Example after cleanup

k2 — ¢(k37 0)

ifko <100
/ L
ks «— ko + 1 return 1

0 Dependencies

Dependencies Between Statements

B depends on A
Read-after-write A defines variable v and B uses v
Write-after-write A defines variable v and B defines v
Write-after-read A uses v and then B defines v
Control A controls whether B executes
In SSA form
@ all dependencies are Read-after-write or Control
@ Read-after-write is evident from SSA graph
@ Control needs to be analyzed

Memory Dependence

@ Memory does not enjoy the single assignment property

@ Consider
1 M[i] « 4
2 x — Mi[j]
3 MK] « §

Depending on the values of /, j, and k

e 2 may have a read-after-write dependency with 1 (if i = j)

e 3 may have a write-after-write dependency with 1 (if i = k)

e 3 may have a write-after-read dependency with 2 (if j = k)
so 2 and 3 may not be exchanged

Approach

@ No attempt to track memory dependencies
@ Store instructions always live
@ No attempt to reorder memory instructions

Control Dependence Graph

Control Dependence

@ Node y is control dependent on x if
@ x has successors v and v
@ there exists a path from u to exit that avoids y
© every path from v to exit goes through y
@ The control-dependence graph (CDG) has an edge from x
to y if y is control dependent on x.

@ y postdominates v if y is on every path from v to exit, i.e.,
if y dominates v in the reverse CFG.

Construction of the CDG

Let G be a CFG

@ Add new entry node r to G with edge r — s (the original
start node) and an edge r — exit.

@ Let G be the reverse control-flow graph with the same
nodes as G, all edges reversed, and with start node exit.

© Construct the dominator tree of G’ with root exit.
© Calculate the dominance frontiers DFg of G'.
©@ The CDG has edge x — y if x € DFg[y].

Use of the CDG

A must be executed before B

if

there is a path A — B using SSA use-def edges and CDG
edges.

l.e., there are data- and control dependencies that require A to
be executed before B.

Construction of the CDG
Example

i1
j—1

k<« 0

Y

if k < 100

YN

if j < 20

return j

y

j—i
k<+ k+1

j«— k
Kk« k+2

Construction of the CDG

CFG and reverse CFG

Construction of the CDG
Postdominators and CDG

Aggressive Dead-Code Elimination

@ Application of the CDG

@ Consider
k2 — ¢(k37 0)
ifk, <100

ks « kp + 1 return 1

@ ko is live because it is used in defining ks
@ ks is live because it is used in defining ko

Aggressive Dead-Code Elimination

Algorithm

Exhaustively mark a live any statement that

@ Performs I/O, stores to memory, returns from the function,
calls another function that may have side effects.

© Defines some variable v that is used by another live
statement.

© Is a conditional branch, on which some other live
statement is control dependent.

Then delete all unmarked statements.

@ Result on example: return 1; loop is deleted

e Converting Back from SSA Form

Converting Back from SSA Form

@ ¢-functions are not executable and must be replaced to
generate code
@ y «+ ¢(X1, X2, X3) is interpreted as
e move x; to y if arriving from predecessor #1
@ move x» to y if arriving from predecessor £2
e move x3 to y if arriving from predecessor #3
@ Insert these instructions at the end of the respective
predecessor (possible due to edge-split assumption)

@ Next step: register allocation

Liveness Analysis for SSA

LivenessAnalysis() =
for each variable v do
M+ 0
for each statement s using v do
if sis a ¢-function with jith argument v then
let p be the ithe predecessor of s’s block
LiveOutAtBlock(p, v)
else
LivelnAtStatement(s, v)

LiveOutAtBlock(n, v) =
{v is live-out at n}
if n¢ M then
M <« MU {n}
let s be the last statement in n
LiveOutAtStatement(s, v)

Liveness Analysis for SSA

LivelnAtStatement(s, v) =

{vis live-in at s}

if s is first statement of block n then
{v is live-in at n}
for each p € pred[n] do

LiveOutAtBlock(p, v)

else
let s’ be the statement preceding s
LiveOutAtStatement(s’, v)

LiveOutAtStatement(s, v) =
{v is live-out at s}
let W be the set of variables defined in s
for each variable w ¢ W\ {v} do
add (v, w) to interference graph {needed if v defined?}
if v ¢ W then
LivelnAtStatement(s, v)

	Static Single-Assignment Form
	Converting to SSA Form
	Optimization Algorithms Using SSA
	Dependencies
	Converting Back from SSA Form

