
Compiler Construction 2012/2013
Register Allocation for Programs in SSA-Form

Peter Thiemann

February 11, 2013

Outline

1 Motivation

2 Foundations

3 Spilling

4 Coloring

5 Coalescing

6 Register Constraints

7 Conclusion

Motivation

Foundation: Sebastian Hack, Daniel Grund, Gerhard Goos.
Towards Register Allocation for Programs in SSA-Form. 2005.

register allocation maps temporaries to physical registers
such that their live ranges do not interfere
common technique: graph coloring [Chaitin] of the
interference graph

Example: Program and its Interference Graph
Three Registers Needed

a← 1

b ← a + a
c ← a + 1
d ← b + 1
store c

e ← 1
d ← a + 1
store e

store d

a

b

c

d

e

Example Program in SSA Form

a← 1

b ← a + a
c ← a + 1
d1 ← b + 1
store c

e ← 1
d2 ← a + 1
store e

store d3

d3 ← φ(d1, d2)
a b c d1

d3

d2

e

Two registers available: but copy instruction needed
Three registers available: use all and eliminate copy

SSA and Register Allocation

φ-functions replaced by moves before register allocation
moves lead to coalescing
may lead to spill

Background

any undirected graph occurs as inference graph of a
program
finding a minimal k -coloring of a general graph is
NP-complete
hence, the heuristic feedback algorithm Build→ Coalesce
→ Color→ Spill? required
[coalescing changes colorability of graph]

Background Graph Theory

Definition
In a chordal graph, every cycle of four or more nodes has a
chord, i.e., an edge between two of the nodes that does not
belong to the cycle. (Also: triangulated graph)

source: http://upload.wikimedia.org/wikipedia/commons/thumb/3/34/Chordal-graph.svg/

220px-Chordal-graph.svg.png

http://upload.wikimedia.org/wikipedia/commons/thumb/3/34/Chordal-graph.svg/220px-Chordal-graph.svg.png
http://upload.wikimedia.org/wikipedia/commons/thumb/3/34/Chordal-graph.svg/220px-Chordal-graph.svg.png

Background Graph Theory

Definition
Clique: fully connected subgraph.
Clique number ω(G): Size of largest clique of G.
Chromatic number χ(G): Minimum k such that G is
k -colorable.
In a perfect graph, the chromatic number of each induced
subgraph is equal to the size of its largest clique.

In a perfect graph, graph coloring can be solved in
polynomial time.

Graph Coloring and SSA Form

Interference graphs of SSA programs are chordal graphs
see also [Pereira&Palsberg 2005] [Brisk 2005]
[Bouchez,Darte&Rastello 2005]

⇒ spilling and coaleascing can be decoupled
Every chordal graph is a perfect graph

⇒ number of registers needed = size of largest clique
the largest set of variables that are live at the same time

⇒ Spilling can be performed once and for all before register
allocation

Graph Coloring and SSA Form
Continued

Coloring a chordal graph takes O(|V |2)

Given the dominator tree and the live ranges, then coloring
takes O(ω(G) · n) time

n number of instructions
ω(G) size of largest clique in G
≤ number of registers after spilling

Usually, φ-functions 7→ move instructions
Early coaleascing is harmful
Instead of coaleascing, try to assign the same color

Outline

1 Motivation

2 Foundations

3 Spilling

4 Coloring

5 Coalescing

6 Register Constraints

7 Conclusion

φ-functions

φ-functions are not functions, but a notational device
φ-functions do not cause interference
There is no ordering among different φ-functions at the
beginning of a block; ideally, they should “evaluate”
simultaneously

⇒ different notation

y1 ← φ(x11, . . . , x1n)
...

...
ym ← φ(xm1, . . . , xmn)

=⇒

 y1
...

ym

← Φ

 x11 . . . x1n
...

. . .
...

xm1 . . . xmn

Interference Graphs of SSA Programs

Let Dv be the node defining v .

Lemma 1
If two registers v and w are live at node n, then either Dv
dominates Dw or Dw dominates Dv .

Lemma 2
If v and w interfere and Dv dominates Dw , then v is live at Dw .

Lemma 3
Let (u, v) and (v ,w) be edges in the interference graph, but not
(u,w).
If Du dominates Dv , then Dv dominates Dw .

Interference Graphs of SSA Programs are Chordal

Proof
Suppose there is a chain of length n ≥ 4 in the interference
graph:

x1 x2 . . . xi . . . xn

where there is no edge between xi and xj , for 1 ≤ i < j < n and
j − i > 1.
Assume that Dx1 dom Dx2 . By induction, using Lemma 3,
Dxi dom Dxi+1 , for 1 ≤ i < n. Suppose further that there is an

edge x1 xn . Hence, there is some block ` where x1 and xn
are live and ` must be dominated by all Dxi , for 1 ≤ i ≤ n. For
each xi (i > 1) there is a path from Dxi to `, which does not go

through Dx1 . Hence, the edge x1 xi must be in the graph.
Contradiction.

Outline

1 Motivation

2 Foundations

3 Spilling

4 Coloring

5 Coalescing

6 Register Constraints

7 Conclusion

Spilling

Problem: the interference graph does not reflect the
number of uses of a register

⇒ ∃ work to break the live ranges in smaller pieces
[Bouchez 2005] shows that “splitting live ranges to lower
the register pressure to a fixed k while inserting a minimum
number of reload instructions is NP-complete”

A Foundation for Spilling

Lemma
For each clique C ⊂ G with VC = {v1, . . . , vn}, there is a
permutation σ : VC → VC such that Dσ(vi) dominates Dσ(vi+1) for
1 ≤ i < n.

Theorem
Let G be the interference graph of an SSA program and C be
an induced subgraph of G. C is a clique in G iff there exists a
label in the program where all VC are live.

Spilling with Belady’s Algorithm

Let ` be a node where l > k variables are live
Belady’s algorithm spills those l − k variables whose uses
are farthest away (in minimum number of instructions
executed) from `.

nextuse(`, v) =

∞ if v not live at `

0 if v used at `

1 + min`′∈succ[`] nextuse(`′, v) otherwise

Apply Belady’s algorithm to each basic block

Belady’s Algorithm for Basic Blocks

Let P be the set of variables passed into block B: the
variables live-in at B and the results of the φ-functions
Let σ : P → P be a permutation which sorts P ascendingly
according to nextuse

⇒ Pass the set of variables I = {pσ(1), . . . ,pσ(min(k ,l))} in
registers
Traverse the nodes in a basic block from entry to exit.
Let Q be the set of all variables currently in registers
(|Q| ≤ k , initially Q ← I)

Belady’s Algorithm for Basic Blocks
continued

At an instruction

` : (y1, . . . , ym)︸ ︷︷ ︸
D`

← τ (x1, . . . , xn)︸ ︷︷ ︸
U`

set R ← U` \Q
if R 6= ∅, then

reloads have to be inserted and max(|R|+ |Q| − k ,0)
variables are removed from Q
remove those with highest nextuse

If v ∈ I is displaced before used, then v need not be
passed to B in a register
Let inB be the set v ∈ I which are used in B before they are
displaced.

Belady’s Algorithm for Basic Blocks
continued

τ displaces max(|D`|+ |Q| − k ,0) variables from Q
To decide which variables to displace we use

nextuse′(`, v) = 1 + min
`′∈succ[`]

nextuse(`′, v)

Let outB be the set Q after processing the last node in a
block

Belady’s Algorithm Extended

To connect the blocks, ensure that each variable in inB is in
a register on entry to B.
At the end of each predecessor P ′ of B insert reloads for
all inB \ outP′ (recall edge splitting)

Outline

1 Motivation

2 Foundations

3 Spilling

4 Coloring

5 Coalescing

6 Register Constraints

7 Conclusion

Coloring Chordal Graphs

perfect elimination orders (PEO)
order in which variables are removed from graph
basis: simplicial nodes (all neighbors belong to the same
clique)
Lemma: Each chordal graph has a simplicial node
Removing a node from a chordal graph preserves
chordality
PEOs are related to the dominance tree

Coloring Chordal Graphs

Theorem
An SSA variable v can be added to a PEO of G if all variables
whose definitions are dominated by the definition of v have
been added to the PEO.

Proof
For a contradiction, assume v is not simplicial. Hence, v has
two neighbors a and b which are not connected.
As all variables whose definitions are dominated by Dv are
already part of the PEO and removed, it must be that Da
dominates Dv . By a previous lemma, Dv dominates Db,
contradicting the assumption.

Coloring Chordal Graphs

COLORPROGRAM (Program P)
COLORRECURSIVE (start block of P)

COLORRECURSIVE (Basic block B)
assigned ← colors of the live-in(B)
for each instruction (b1, . . . ,bm)← τ(a1, . . . ,an) from entry
to exit do

for a ∈ {a1, . . . ,an} do
if last use of a then

assigned ← assigned \ color(a)
for b ∈ {b1, . . . ,bn} do

color(b)← one of allcolors \ assigned
for each C where B = idom(C) do

COLORRECURSIVE(C)

Outline

1 Motivation

2 Foundations

3 Spilling

4 Coloring

5 Coalescing

6 Register Constraints

7 Conclusion

Coalescing Phase

Goal: minimize number of copy/move instructions
Causes of copy/move instructions

φ-functions
register constraints of target architecture (pre-colored
nodes)

Implementation of φ-functions

(
i3
j3

)
← Φ

[
i1 i2
j1 j2

]

i1 ← 1
j1 ← 1

return j3 j2 ← j3 + i3
i2 ← j3 + 1

if i3 < 100

Seems to require two registers
However, implementing Φ by the moves i3 ← i2; j3 ← j2
creates an interference between i3 and j2

Interference from Implementation of Φ

i3 j3

i2

i1

j2

j1

Removal of Φ without Using Extra Registers

Consider (b1, . . . ,bn)← σ(a1, . . . ,an)

A multi-assignment that permutes the contents of the
registers according to σ
For the example program, a permutation is needed that
swaps two registers:

Example Program After Register Assignment

R1 ← 1
R2 ← 1

(
R1
R2

)
← Φ

[
R1 R2
R2 R1

]

return R2 R1 ← R2 + R1
R2 ← R2 + 1

if R2 < 100

Example Where Copying is Needed

(
i3
j3

)
← Φ

[
i1 i2
i1 j2

]

i1 ← 1

return j3 j2 ← j3 + i3
i2 ← j3 + 1

if i3 < 100

Φ duplicates i1 into i3 and j3

Example Where Copying is Needed

(
i3
j3

)
← Φ

[
i1 i2
j1 j2

]

i1 ← 1
j1 ← 1

return j3 j2 ← i1 + i3
i2 ← j3 + 1

if i3 < 100

i1 interferes with Φ

Duplication in the Removal of Φ

Duplication (i.e., extra registers) are only needed if
a Φ argument is used multiple times in one column
a Φ argument is live-in at the block of Φ

Interference with a value defined by Φ does not require
duplication.

Implementation of Permutations

Register swaps Swap instructions of the processor;
xor trick: a← a⊕ b; b ← a⊕ b; a← a⊕ b

Moves assuming a free backup register, each cycle C can
be implemented with |C|+ 1 move instructions
for example, $at in MIPS

Optimizing Φ-functions

The cost of implementation for a permutation σ is related to
the number of fixpoints of σ
Variable x is a fixpoint if

(. . . , x ′, . . .) = σ(. . . , x , . . .)

and x and x ′ are assigned the same register
⇒ no code needs to be generated for a fixpoint

Optimizing Φ-functions
Problem Statement

` :

 y1
...

ym

← Φ

 x11 . . . x1n
...

. . .
...

xm1 . . . xmn

Given a k -coloring f : V → {1, . . . , k} define the cost of p by

cf (`) =
m∑

i=1

n∑
j=1

cost f (yi , xij)

where cost f (a,b) =

wab if f (a) 6= f (b)

0 otherwise
with wab ≥ 0 the cost

of copying b to a.
The overall cost of a program P under coloring f is

c(P, f) =
∑

` is Φ-node

cf (`)

Optimizing Φ-functions
Problem Statement

SSA-Maximize-Fixed-Points
Given an SSA program P and its interference graph G. Find a
coloring f of G for which c(P, f) is minimal.

Theorem
SSA-Maximize-Fixed-Points is NP-complete.

Heuristics for Optimizing Φ-functions

Start with a k -coloring
Modify color assignments to lower the cost
Non-local changes in the coloring may be required!
A valid k -coloring is always maintained
For each row i of the Φ-function p1

...
pm

← Φ

 a11 . . . a1n
...

. . .
...

am1 . . . amn

define an optimization unit (OU) consisting of pi and all aij
that do not interfere with pi (at least one)

Perm-Optimizer

COALESCE(G)
pinned← ∅
for each OU (p,a1, . . . ,ak) do

for each color c assignable to p do {Init}
Cc ← G[p,a1, . . . ,ak] { conflict graph }
Sc ← max weighted stable subset of Cc {weight of ai is wpai }
Insert (c,Cc ,Sc) in min-queue Q { ordered by w(Sc) }

repeat { Test }
candidates ← ∅
g ← f {copy the current coloring}
pop (c,C,S) from Q
C′ ← TEST(c,C,S)
if C′ 6= nil then

S′ ← maximum weighted stable subset of C′

Insert (c,C′,S′) into Q
until C′ = nil
if |candidates| > 1 then

pinned← pinned ∪ candidates
f ← g { update coloring }

Perm-Optimizer II

TEST(c,C,S)
{ S = {p,a1, . . . ,al} processed in this order }
for u ∈ S do

(s, v)← TRYCOLOR(u,nil, c)
if s = ok then

candidates = candidates ∪ {u}
else if s = candidate and v 6= p then

return (VC ,EC ∪ {(v ,u)})
else

return (VC ,EC ∪ {(u,u)})
return nil

Perm-Optimizer III

TRYCOLOR(v ∈ VG,u ∈ VG, c)
cv ← g(v)
if c = cv then

return (ok,nil)
else if v ∈ pinned then

return (pinned, v)
else if v ∈ candidates then

return (candidate, v)
else if c is not allowed for v then

return (forbidden, v)
for each n with (v ,n) ∈ EG, n 6= u, g(n) = c do

{ try to swap colors with neighbor }
(s, v ′)← TRYCOLOR(n, v , cv)
if s 6= ok then

return (s, v ′)
g(v)← c
return (ok,nil)

Outline

1 Motivation

2 Foundations

3 Spilling

4 Coloring

5 Coalescing

6 Register Constraints

7 Conclusion

Register Constraints

Most processor architectures have instructions where the
operands are restricted to specific registers
Graph coloring approach

1 split live range at constraining definition
2 add one pre-colored node for each register
3 connect definition with all pre-colored nodes, except the

one with the required color

For chordal graphs, coloring is in P iff each color is used
only once in pre-coloring.
Unrealistic constraint for register allocation

⇒ Delegate to the Perm-Optimizer

Register Constraints by Perm-Optimization

Insert (a′
i) = Φ[ai] (for all live registers) in front of each

instruction with register constraints
⇒ all live variables can change register at that point
⇒ interference graph breaks in two unconnected components
⇒ each color occurs only once as pre-coloring in each

component
first do coloring, then Perm-Optimization

Example Register Constraints
Code and Colored Interference Graph

aR1 ← . . .

b ← . . .

c ← b + 1
d ← a + 1

eR1 ← b + c
f ← c + d

...

a,R1

c,R2

e,R1

f ,R1

b,R3

d,R4

Example Register Constraints with Φ Inserted
Code and Colored Interference Graph

aR1 ← . . .

b ← . . .

c ← b + 1
d ← a + 1 b′

c′

d ′

 ← Φ

 b
c
d

eR1 ← b′ + c′

f ← c′ + d ′

...

a,R1

b′,R1

b,R2

c,R3

d′,R2

d,R1

f ,R3

c′,R3

e,R1

Outline

1 Motivation

2 Foundations

3 Spilling

4 Coloring

5 Coalescing

6 Register Constraints

7 Conclusion

Conclusion

Interference graphs for SSA programs are chordal
⇒ main phases of register allocation (spilling, coloring,

coaleascing) can be decoupled
Procedure for spilling based on the correspondence live
sets↔ cliques in interference graph
(without constructing the graph)
(Optimal spilling via ILP solving)
Optimal coloring in linear time (w/o constructing the graph)
Optimal coalescing is NP-complete

Heuristic
(Optimal coalescing via ILP solving)

Register constraints expressible

Alternatives

[Pereira&Palsberg, APLAS 2005] observe that 95% of the
methods in the Java 1.5 library give rise to chordal
interference graphs and give an algorithm for register
allocation under this assumption
[Pereira&Palsberg, PLDI 2008] give a general, industrial
strength framework for register allocation based on puzzle
solving. It first transforms its input to elementary programs,
a strengthening of SSA programs.
[Pereira&Palsberg, CC 2009] propose a different, spill-free
way to perform SSA elimination after register coloring
[Pereira&Palsberg, CC 2010] present Punctual Coalescing,
a scalable, linear time, locally optimal algorithm for
coalescing.
[Hack&Good, PLDI 2008] register coalescing by graph
recoloring.
[Braun&Hack, CC 2009] present an improved spilling
algorithm for programs in SSA form.

	Motivation
	Foundations
	Spilling
	Coloring
	Coalescing
	Register Constraints
	Conclusion

