Compiler Construction 2012/2013 Register Allocation for Programs in SSA-Form

Peter Thiemann

February 11, 2013

Outline

(1) Motivation
(2) Foundations
(3) Spilling
(4) Coloring
(5) Coalescing
(6) Register Constraints
(7) Conclusion

Motivation

Foundation: Sebastian Hack, Daniel Grund, Gerhard Goos. Towards Register Allocation for Programs in SSA-Form. 2005.

- register allocation maps temporaries to physical registers such that their live ranges do not interfere
- common technique: graph coloring [Chaitin] of the interference graph

Example: Program and its Interference Graph

Three Registers Needed

Example Program in SSA Form

- Two registers available: but copy instruction needed
- Three registers available: use all and eliminate copy

SSA and Register Allocation

- ϕ-functions replaced by moves before register allocation
- moves lead to coalescing
- may lead to spill

Background

- any undirected graph occurs as inference graph of a program
- finding a minimal k-coloring of a general graph is NP-complete
- hence, the heuristic feedback algorithm Build \rightarrow Coalesce \rightarrow Color \rightarrow Spill? required
- [coalescing changes colorability of graph]

Background Graph Theory

Definition

In a chordal graph, every cycle of four or more nodes has a chord, i.e., an edge between two of the nodes that does not belong to the cycle. (Also: triangulated graph)

[^0]
Background Graph Theory

Definition

- Clique: fully connected subgraph.
- Clique number $\omega(G)$: Size of largest clique of G.
- Chromatic number $\chi(G)$: Minimum k such that G is k-colorable.
- In a perfect graph, the chromatic number of each induced subgraph is equal to the size of its largest clique.
- In a perfect graph, graph coloring can be solved in polynomial time.

Graph Coloring and SSA Form

- Interference graphs of SSA programs are chordal graphs see also [Pereira\&Palsberg 2005] [Brisk 2005] [Bouchez,Darte\&Rastello 2005]
\Rightarrow spilling and coaleascing can be decoupled
- Every chordal graph is a perfect graph
\Rightarrow number of registers needed $=$ size of largest clique the largest set of variables that are live at the same time
\Rightarrow Spilling can be performed once and for all before register allocation

Graph Coloring and SSA Form

Continued

- Coloring a chordal graph takes $O\left(|V|^{2}\right)$
- Given the dominator tree and the live ranges, then coloring takes $O(\omega(G) \cdot n)$ time
- n number of instructions
- $\omega(G)$ size of largest clique in G
\leq number of registers after spilling
- Usually, ϕ-functions \mapsto move instructions
- Early coaleascing is harmful
- Instead of coaleascing, try to assign the same color

Outline

(1) Motivation

(2) Foundations
(3) Spilling
4. Coloring
(5) Coalescing
(6) Register Constraints
(7) Conclusion

ϕ-functions

- ϕ-functions are not functions, but a notational device
- ϕ-functions do not cause interference
- There is no ordering among different ϕ-functions at the beginning of a block; ideally, they should "evaluate" simultaneously
\Rightarrow different notation

$$
\begin{array}{ccc}
y_{1} & \leftarrow & \phi\left(x_{11}, \ldots, x_{1 n}\right) \\
\vdots & \vdots \\
y_{m} & \leftarrow & \phi\left(x_{m 1}, \ldots, x_{m n}\right)
\end{array} \Longrightarrow\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{m}
\end{array}\right) \leftarrow \Phi\left[\begin{array}{ccc}
x_{11} & \ldots & x_{1 n} \\
\vdots & \ddots & \vdots \\
x_{m_{1}} & \ldots & x_{m n}
\end{array}\right]
$$

Interference Graphs of SSA Programs

Let \mathcal{D}_{v} be the node defining v.

Lemma 1

If two registers v and w are live at node n, then either \mathcal{D}_{v} dominates \mathcal{D}_{w} or \mathcal{D}_{w} dominates \mathcal{D}_{v}.

Lemma 2

If v and w interfere and \mathcal{D}_{v} dominates \mathcal{D}_{w}, then v is live at \mathcal{D}_{w}.

Lemma 3

Let (u, v) and (v, w) be edges in the interference graph, but not (u,w).
If \mathcal{D}_{u} dominates \mathcal{D}_{v}, then \mathcal{D}_{v} dominates \mathcal{D}_{w}.

Interference Graphs of SSA Programs are Chordal

Proof

Suppose there is a chain of length $n \geq 4$ in the interference graph:

$$
x_{1}-x_{2}-\cdots-x_{i}-\cdots-x_{n}
$$

where there is no edge between x_{i} and x_{j}, for $1 \leq i<j<n$ and $j-i>1$.
Assume that $\mathcal{D}_{x_{1}}$ dom $\mathcal{D}_{x_{2}}$. By induction, using Lemma 3, $\mathcal{D}_{x_{i}}$ dom $\mathcal{D}_{x_{i+1}}$, for $1 \leq i<n$. Suppose further that there is an edge $x_{1}-x_{n}$. Hence, there is some block ℓ where x_{1} and x_{n} are live and ℓ must be dominated by all $\mathcal{D}_{x_{i}}$, for $1 \leq i \leq n$. For each $x_{i}(i>1)$ there is a path from $\mathcal{D}_{x_{i}}$ to ℓ, which does not go through $\mathcal{D}_{x_{1}}$. Hence, the edge ${ }^{x_{1}}-x_{i}$ must be in the graph. Contradiction.

Outline

(1) Motivation
(2) Foundations
(3) Spilling
(4) Coloring
(5) Coalescing
(6) Register Constraints
(7) Conclusion

Spilling

- Problem: the interference graph does not reflect the number of uses of a register
$\Rightarrow \exists$ work to break the live ranges in smaller pieces
- [Bouchez 2005] shows that "splitting live ranges to lower the register pressure to a fixed k while inserting a minimum number of reload instructions is NP-complete"

A Foundation for Spilling

Lemma

For each clique $C \subset G$ with $V_{C}=\left\{v_{1}, \ldots, v_{n}\right\}$, there is a permutation $\sigma: V_{C} \rightarrow V_{C}$ such that $\mathcal{D}_{\sigma\left(v_{i}\right)}$ dominates $\mathcal{D}_{\sigma\left(v_{i+1}\right)}$ for $1 \leq i<n$.

Theorem

Let G be the interference graph of an SSA program and C be an induced subgraph of G. C is a clique in G iff there exists a label in the program where all V_{C} are live.

Spilling with Belady's Algorithm

- Let ℓ be a node where $I>k$ variables are live
- Belady's algorithm spills those $I-k$ variables whose uses are farthest away (in minimum number of instructions executed) from ℓ.

$$
\text { nextuse }(\ell, v)= \begin{cases}\infty & \text { if } v \text { not live at } \ell \\ 0 & \text { if } v \text { used at } \ell \\ 1+\min _{\ell^{\prime} \in \operatorname{succ}[\ell]} \text { nextuse }\left(\ell^{\prime}, v\right) & \text { otherwise }\end{cases}
$$

- Apply Belady's algorithm to each basic block

Belady's Algorithm for Basic Blocks

- Let P be the set of variables passed into block B : the variables live-in at B and the results of the ϕ-functions
- Let $\sigma: P \rightarrow P$ be a permutation which sorts P ascendingly according to nextuse
\Rightarrow Pass the set of variables $I=\left\{p_{\sigma(1)}, \ldots, p_{\sigma(\min (k, l))}\right\}$ in registers
- Traverse the nodes in a basic block from entry to exit.
- Let Q be the set of all variables currently in registers $(|Q| \leq k$, initially $Q \leftarrow I)$

Belady's Algorithm for Basic Blocks

continued

- At an instruction

$$
\ell: \underbrace{\left(y_{1}, \ldots, y_{m}\right)}_{\mathcal{D}_{\ell}} \leftarrow \tau \underbrace{\left(x_{1}, \ldots, x_{n}\right)}_{\mathcal{U}_{\ell}}
$$

set $R \leftarrow \mathcal{U}_{\ell} \backslash Q$

- if $R \neq \emptyset$, then
- reloads have to be inserted and $\max (|R|+|Q|-k, 0)$ variables are removed from Q
- remove those with highest nextuse
- If $v \in I$ is displaced before used, then v need not be passed to B in a register
- Let $i n_{B}$ be the set $v \in I$ which are used in B before they are displaced.

Belady's Algorithm for Basic Blocks

continued

- τ displaces $\max \left(\left|\mathcal{D}_{\ell}\right|+|Q|-k, 0\right)$ variables from Q
- To decide which variables to displace we use

$$
\text { nextuse }(\ell, v)=1+\min _{\ell^{\prime} \in \operatorname{succ}[\ell]} \text { nextuse }\left(\ell^{\prime}, v\right)
$$

- Let out ${ }_{B}$ be the set Q after processing the last node in a block

Belady's Algorithm Extended

- To connect the blocks, ensure that each variable in $i n_{B}$ is in a register on entry to B.
- At the end of each predecessor P^{\prime} of B insert reloads for all $i n_{B} \backslash$ out $_{P^{\prime}}$ (recall edge splitting)

Outline

（1）Motivation
（2）Foundations
（3）Spilling
（4）Coloring
（5）Coalescing
（6）Register Constraints
（7）Conclusion

Coloring Chordal Graphs

- perfect elimination orders (PEO)
- order in which variables are removed from graph
- basis: simplicial nodes (all neighbors belong to the same clique)
- Lemma: Each chordal graph has a simplicial node
- Removing a node from a chordal graph preserves chordality
- PEOs are related to the dominance tree

Coloring Chordal Graphs

Theorem

An SSA variable v can be added to a PEO of G if all variables whose definitions are dominated by the definition of v have been added to the PEO.

Proof

For a contradiction, assume v is not simplicial. Hence, v has two neighbors a and b which are not connected. As all variables whose definitions are dominated by \mathcal{D}_{v} are already part of the PEO and removed, it must be that \mathcal{D}_{a} dominates \mathcal{D}_{v}. By a previous lemma, \mathcal{D}_{v} dominates \mathcal{D}_{b}, contradicting the assumption.

Coloring Chordal Graphs

ColorProgram (Program P)
ColorRecursive (start block of P)
ColorRecursive (Basic block B) assigned \leftarrow colors of the live-in (B)
for each instruction $\left(b_{1}, \ldots, b_{m}\right) \leftarrow \tau\left(a_{1}, \ldots, a_{n}\right)$ from entry to exit do
for $a \in\left\{a_{1}, \ldots, a_{n}\right\}$ do
if last use of a then assigned \leftarrow assigned \backslash color (a)
for $b \in\left\{b_{1}, \ldots, b_{n}\right\}$ do
color $(b) \leftarrow$ one of allcolors \backslash assigned
for each C where $B=i d o m(C)$ do
ColorRecursive(C)

Outline

(1) Motivation
(2) Foundations
(3) Spilling
(4) Coloring
(5) Coalescing
(6) Register Constraints
(7) Conclusion

Coalescing Phase

- Goal: minimize number of copy/move instructions
- Causes of copy/move instructions
- ϕ-functions
- register constraints of target architecture (pre-colored nodes)

Implementation of ϕ-functions

- Seems to require two registers
- However, implementing Φ by the moves $i_{3} \leftarrow i_{2} ; j_{3} \leftarrow j_{2}$ creates an interference between i_{3} and j_{2}

Interference from Implementation of ϕ

Removal of Φ without Using Extra Registers

- Consider $\left(b_{1}, \ldots, b_{n}\right) \leftarrow \sigma\left(a_{1}, \ldots, a_{n}\right)$
- A multi-assignment that permutes the contents of the registers according to σ
- For the example program, a permutation is needed that swaps two registers:

Example Program After Register Assignment

Example Where Copying is Needed

- Φ duplicates i_{1} into i_{3} and j_{3}

Example Where Copying is Needed

- i_{1} interferes with Φ

Duplication in the Removal of ϕ

- Duplication (i.e., extra registers) are only needed if
- a Φ argument is used multiple times in one column
- a Φ argument is live-in at the block of Φ
- Interference with a value defined by Φ does not require duplication.

Implementation of Permutations

Register swaps Swap instructions of the processor; xor trick: $a \leftarrow a \oplus b ; b \leftarrow a \oplus b ; a \leftarrow a \oplus b$
Moves assuming a free backup register, each cycle C can be implemented with $|C|+1$ move instructions for example, \$at in MIPS

Optimizing Φ-functions

- The cost of implementation for a permutation σ is related to the number of fixpoints of σ
- Variable x is a fixpoint if

$$
\left(\ldots, x^{\prime}, \ldots\right)=\sigma(\ldots, x, \ldots)
$$

and x and x^{\prime} are assigned the same register
\Rightarrow no code needs to be generated for a fixpoint

Optimizing Φ-functions

Problem Statement

$$
\ell:\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{m}
\end{array}\right) \leftarrow \Phi\left[\begin{array}{ccc}
x_{11} & \ldots & x_{1 n} \\
\vdots & \ddots & \vdots \\
x_{m_{1}} & \ldots & x_{m n}
\end{array}\right]
$$

Given a k-coloring $f: V \rightarrow\{1, \ldots, k\}$ define the cost of p by

$$
c_{f}(\ell)=\sum_{i=1}^{m} \sum_{j=1}^{n} \operatorname{cost}_{f}\left(y_{i}, x_{i j}\right)
$$

where $\operatorname{cost}_{f}(a, b)=\left\{\begin{array}{ll}w_{a b} & \text { if } f(a) \neq f(b) \\ 0 & \text { otherwise }\end{array}\right.$ with $w_{a b} \geq 0$ the cost of copying b to a.
The overall cost of a program P under coloring f is

$$
c(P, f)=\sum_{\ell \text { is } \Phi \text {-node }} c_{f}(\ell)
$$

Optimizing Φ-functions

Problem Statement

SSA-Maximize-Fixed-Points

Given an SSA program P and its interference graph G. Find a coloring f of G for which $c(P, f)$ is minimal.

Theorem

SSA-Maximize-Fixed-Points is NP-complete.

Heuristics for Optimizing Φ-functions

- Start with a k-coloring
- Modify color assignments to lower the cost Non-local changes in the coloring may be required!
- A valid k-coloring is always maintained
- For each row i of the Φ-function

$$
\left(\begin{array}{c}
p_{1} \\
\vdots \\
p_{m}
\end{array}\right) \leftarrow \Phi\left[\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{m_{1}} & \ldots & a_{m n}
\end{array}\right]
$$

define an optimization unit (OU) consisting of p_{i} and all $a_{i j}$ that do not interfere with p_{i} (at least one)

Perm-Optimizer

Coalesce(G)
pinned $\leftarrow \emptyset$
for each OU $\left(p, a_{1}, \ldots, a_{k}\right)$ do
for each color c assignable to p do $\{$ Init\}
$C_{c} \leftarrow G\left[p, a_{1}, \ldots, a_{k}\right]$ \{ conflict graph \}
$S_{c} \leftarrow$ max weighted stable subset of C_{c} \{weight of a_{i} is $\left.w_{p a_{i}}\right\}$ Insert $\left(c, C_{c}, S_{c}\right)$ in min-queue $Q\left\{\right.$ ordered by $\left.w\left(S_{c}\right)\right\}$
repeat $\{$ Test \}
candidates $\leftarrow \emptyset$
$g \leftarrow f$ \{copy the current coloring\}
pop (c, C, S) from Q
$C^{\prime} \leftarrow \operatorname{TEST}(c, C, S)$
if $C^{\prime} \neq$ nil then
$S^{\prime} \leftarrow$ maximum weighted stable subset of C^{\prime} Insert ($c, C^{\prime}, S^{\prime}$) into Q
until $C^{\prime}=$ nil
if \mid candidates $\mid>1$ then
pinned \leftarrow pinned \cup candidates
$f \leftarrow g$ \{ update coloring \}

Perm-Optimizer II

$\operatorname{Test}(c, C, S)$
$\left\{S=\left\{p, a_{1}, \ldots, a_{l}\right\}\right.$ processed in this order $\}$
for $u \in S$ do
$(s, v) \leftarrow \operatorname{TRYCOLOR}(u$, nil, $c)$
if $s=o \mathrm{k}$ then
candidates $=$ candidates $\cup\{u\}$
else if $s=$ candidate and $v \neq p$ then return $\left(V_{C}, E_{C} \cup\{(v, u)\}\right)$
else
return $\left(V_{C}, E_{C} \cup\{(u, u)\}\right)$
return nil

Perm-Optimizer III

$\operatorname{TryColor}\left(v \in V_{G}, u \in V_{G}, c\right)$
$c_{v} \leftarrow g(v)$
if $c=c_{V}$ then
return (ok, nil)
else if $v \in$ pinned then
return (pinned, v)
else if $v \in$ candidates then
return (candidate, v)
else if c is not allowed for v then
return (forbidden, v)
for each n with $(v, n) \in E_{G}, n \neq u, g(n)=c$ do
\{ try to swap colors with neighbor \}
$\left(s, v^{\prime}\right) \leftarrow \operatorname{TRyCoLOR}\left(n, v, c_{v}\right)$
if $\boldsymbol{s} \neq \mathrm{ok}$ then
return (s, v^{\prime})
$g(v) \leftarrow c$
return (ok, nil)

Outline

(1) Motivation
(2) Foundations
(3) Spilling
(4) Coloring
(5) Coalescing

6 Register Constraints
(7) Conclusion

Register Constraints

- Most processor architectures have instructions where the operands are restricted to specific registers
- Graph coloring approach
(1) split live range at constraining definition
(2) add one pre-colored node for each register
(3) connect definition with all pre-colored nodes, except the one with the required color
- For chordal graphs, coloring is in P iff each color is used only once in pre-coloring.
Unrealistic constraint for register allocation
\Rightarrow Delegate to the Perm-Optimizer

Register Constraints by Perm-Optimization

- Insert $\left(a_{i}^{\prime}\right)=\Phi\left[a_{i}\right]$ (for all live registers) in front of each instruction with register constraints
\Rightarrow all live variables can change register at that point
\Rightarrow interference graph breaks in two unconnected components
\Rightarrow each color occurs only once as pre-coloring in each component
- first do coloring, then Perm-Optimization

Example Register Constraints

Code and Colored Interference Graph

Example Register Constraints with Φ Inserted

Code and Colored Interference Graph

$$
\begin{aligned}
a_{R_{1}} & \leftarrow \cdots \\
b & \leftarrow \ldots \\
c & \leftarrow b+1 \\
d & \leftarrow a+1 \\
\left(\begin{array}{c}
b^{\prime} \\
c^{\prime} \\
d^{\prime}
\end{array}\right) & \leftarrow \Phi\left[\begin{array}{l}
b \\
c \\
d
\end{array}\right] \\
e_{R_{1}} & \leftarrow b^{\prime}+c^{\prime} \\
f & \leftarrow c^{\prime}+d^{\prime} \\
& \vdots
\end{aligned}
$$

- f, R_{3}

Outline

（1）Motivation
（2）Foundations
（3）Spilling
（4）Coloring
（5）Coalescing
（6）Register Constraints
（7）Conclusion

Conclusion

- Interference graphs for SSA programs are chordal
\Rightarrow main phases of register allocation (spilling, coloring, coaleascing) can be decoupled
- Procedure for spilling based on the correspondence live sets \leftrightarrow cliques in interference graph (without constructing the graph)
- (Optimal spilling via ILP solving)
- Optimal coloring in linear time (w/o constructing the graph)
- Optimal coalescing is NP-complete
- Heuristic
- (Optimal coalescing via ILP solving)
- Register constraints expressible

Alternatives

- [Pereira\&Palsberg, APLAS 2005] observe that 95\% of the methods in the Java 1.5 library give rise to chordal interference graphs and give an algorithm for register allocation under this assumption
- [Pereira\&Palsberg, PLDI 2008] give a general, industrial strength framework for register allocation based on puzzle solving. It first transforms its input to elementary programs, a strengthening of SSA programs.
- [Pereira\&Palsberg, CC 2009] propose a different, spill-free way to perform SSA elimination after register coloring
- [Pereira\&Palsberg, CC 2010] present Punctual Coalescing, a scalable, linear time, locally optimal algorithm for coalescing.
- [Hack\&Good, PLDI 2008] register coalescing by graph recoloring.
- [Braun\&Hack, CC 2009] present an improved spilling algorithm for programs in SSA form.

[^0]: source: http://upload.wikimedia.org/wikipedia/commons/thumb/3/34/Chordal-graph.svg/

