
Compiler Construction 2016/2017
Intro

Peter Thiemann

October 21, 2016

Outline

1 Introduction

Compilers

What is a compiler?
a program that reads an executable program in one
language and translates it into an executable program in
another language
we expect the program produced by the compiler to exhibit
the same behavior as the original

What is an interpreter?
A program that reads an executable program and its input;
produces the results of running that program.

This course deals mainly with compilers
Many of the same issues arise in interpreters

Experience

What qualities are important in a compiler?
1 Correct code
2 Output runs fast
3 Compiler runs fast
4 Compile time proportional to program size
5 Support for separate compilation
6 Good diagnostics for syntax errors
7 Works well with the debugger
8 Good diagnostics for flow anomalies
9 Cross language calls

10 Consistent, predictable optimization

Abstract View

source code --> [compiler] --> machine code
|
v

error messages

Traditional Two-Pass Compiler

source --> [front end] --> IR --> [back end] --> machine code
| |
v v

errors

Implications
intermediate representation (IR)
front end maps legal code into IR
back end maps IR onto target machine
simplify retargeting
allows multiple front ends
multiple passes ⇒ better code

Front End

source --> [scanner] --> tokens --> [parser] --> IR

Responsibilities
recognize legal procedure
report errors
produce IR
preliminary storage map
shape the code for the back end

Scanner

source --> [scanner] --> tokens

Scanner:
partitions input into lexemes — the basic unit of syntax
maps lexemes into tokens
x = x + 1; becomes
<id, x> <sym,=> <id, x> <sym,+> <num, 1> <sym,;>

typical tokens: number, id, +, -, *, /, do, end
eliminates white space (tabs, blanks, comments)
a key issue is speed

Front end/Parser

tokens --> [parser] --> IR

Parser
recognize context-free syntax
guide context-sensitive analysis
construct IR(s)
produce meaningful error messages
attempt error correction

Parser generators

Front End/Context-Free Syntax

Context-free syntax is specified with a context-free grammar,
often in Backus-Naur form (BNF).

<sheep noise> ::= baa
| baa <sheep noise>

The noises sheep make under normal circumstances

<sheep noise> variable, nonterminal symbol
::= and | metasymbols
everything else: terminal symbols that appear in the input
convention: first variable is the goal or start variable

Syntax/Expressions

Context free syntax can be put to better use

1 <goal> ::= <expr>
2 <expr> ::= <expr> <op> <term>
3 | <term>
4 <term> ::= number
5 | id
6 <op> ::= +
7 | -

Simple expressions with addition and subtraction over tokens id
and number

Derive an expression

Starting from the goal variable, repeatedly replace a variable by
its right-hand side until no variables are left.
Ex: x + 2 - y

Front End/IR

The result of parsing can be represented by a derivation tree.

Front End/AST

A derivation tree contains information that is useless for
compiling. Hence, use abstract syntax trees (AST) as IR.

Back End

IR --> [instruction selection]
--> [register allocation] --> machine code

Responsibilities
translate IR into target machine code
choose instructions for each IR operation
decide what to keep in registers at each point
ensure conformance with system interfaces

Back End/Instruction Selection

IR --> [instruction selection] --> IR’

Instruction selection
produce compact, fast code
use available addressing modes
pattern matching problem

ad hoc techniques
tree pattern matching
string pattern matching
dynamic programming

Back End/Register Allocation

IR’ --> [register allocation] --> machine code

Register Allocation
have value in a register when used
limited resources
changes instruction choices
can move loads and stores
optimal allocation is difficult

Further Passes

IR --> [transform] --> IR

Code Improvement
analyzes and changes IR
goal is to reduce runtime, space usage, energy usage, . . .
must preserve values
sometimes several passes, in certain order, run repeatedly

	Introduction

