
Compiler Construction 2016/2017
Lexical Analysis

Peter Thiemann

November 2, 2016

Outline

1 Lexical Analysis

Lexical Analysis

source --> [scanner] --> tokens

Scanner:
partitions input into lexemes — the basic unit of syntax
maps lexemes into tokens
x = x + 1; becomes
<id, x> <sym,=> <id, x> <sym,+> <num, 1> <sym,;>

typical tokens: number, id, +, -, *, /, do, end
eliminates white space (tabs, blanks, comments)
a key issue is speed

Specification of a scanner

lexemes
tokens
mapping from lexemes to tokens

lexemes should be recognized efficiently
⇒ specify lexemes using regular expressions
⇒ compile regular expressions to deterministic finite

automata
⇒ recognize lexemes in linear time (i.e., as fast as possible)

Regular expressions

Let Σ be a fixed alphabet (in practice Unicode).
Define the set of regular expressions (over Σ).

1 ε is a regular expression.
2 a is a regular expression, if a ∈ Σ.
3 If r and s are regular expressions, then

(r |s) is a regular expression (alternation).
(rs) is a regular expression (concatenation).
(r∗) is a regular expression (closure).

If we adopt a precedence for operators, the extra parentheses
can go away. We assume closure, then concatenation, then
alternation as the order of precedence.

Language recognized by RE/Step 1

We write N(r) if a RE r recognizes the empty word.

N(ε) = true
N(a) = false

N(r |s) = N(r) ∨ N(s)

N(rs) = N(r) ∧ N(s)

N(r∗) = true

Language recognized by RE/Step 2

For a ∈ Σ, RE r recognizes the word aw if there is an RE in
∂a(r) that recognizes word w .

∂a(ε) = ∅
∂a(a) = {ε}
∂a(b) = ∅ a 6= b ∈ Σ

∂a(r |s) = ∂a(r) ∪ ∂a(s)

∂a(rs) = ∂a(r) · s ∪ (if N(r) then ∂a(s) else ∅)
∂a(r∗) = ∂a(r) · (r∗)

Construction of DFA

∂a is transition function of a NFA
the powerset construction yields a DFA for r
set of states Q

{r} ∈ Q
for all q ∈ Q, s ∈ q, and a ∈ Σ:

⋃
{∂a(s) | s ∈ q} ∈ Q

δ(q,a) =
⋃
{∂a(s) | s ∈ q}

initial state {r}

Example: Numbers

0|(1|2)(0|1|2)*
-0-> eps
-1,2-> (0|1|2)*

-0,1,2-> (0|1|2)*

Q = {0|(1|2)(0|1|2)*,eps,(0|1|2)*, ∅}

Language recognized by RE/Summary

Step 1 and 2 are easy to implement
Optimized version of this approach is used in professional
regexp matchers
Is equivalent to a nondeterministic finite automaton
Can be compiled to a deterministic automaton that runs in
linear time (this is done by scanner generators like lex)
Generators offer further extensions of RE for convenience:
character classes, repetitions r{m,n}, context r/s

Examples

White space
[\t][\t]*

Keywords and operators
if
then

*

Comments (approximate)
/*[^*]**/

Examples/2

Identifiers
[a-zA-Z][a-zA-Z0-9_]*

Numbers
0|[1-9][0-9]*
(0|[1-9][0-9]*)?.[0-9]*

Disambiguation and the longest match

A scanner tries to match all specified lexeme kinds at once
⇒ it run several automata in parallel

Problem: ambiguous matching
Keyword: do
Identifier: door

Approach: Principle of the longest match
choose the longest input accepted by one of the automata
In this example: return <id,door>

Scanner implementation

Suppose there are n ≥ 1 token classes.
Class i is recognized by a DFA with states Qi , initial state
qi

0, transition function δi , and accepting states F i .
The state of the scanner is a vector ~q ∈ Q1 × · · · ×Qn

Input is available in array in from position p

Scanner implementation

lc ← 0 last accepted class: none
lp ← p position after last lexeme
~q ← ~q0 initial state

while(true)

a← in[p + +] get character and advance

~q ← ~δ(~q,a) apply all transitions in parallel

c ← min{i | qi ∈ F i} find matches
if c > 0 if there is a match . . .
then lc ← c; lp ← p save class and position
else if ~q is a sink state
then p ← lp; return lc

Optimization

All characters in a character class behave the same
⇒ Map character to its class before applying the transition
⇒ Table char_class

a-z A-Z 0-9 other
value letter letter digit other

Transition maps state and character class to next state
⇒ Table next_state

class 0 1 2 3
letter 1 1 — —
digit 3 1 — —
other 3 2 — —

Table final_state

Change table⇔ change language

Language features that can cause problems

PL/I has no reserved words
if then then then = else; else else = then;

FORTRAN and Algol68 ignore blanks
do 10 i = 1,25
do 10 i = 1.25

String constants
special characters in strings

Finite closures
some languages limit identifier lengths
adds states to count length
FORTRAN 66: 6 characters

	Lexical Analysis

