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Syntax Analysis

tokens --> [parser] --> IR

Parser
recognize context-free syntax
guide context-sensitive analysis
construct IR(s)
produce meaningful error messages
attempt error correction



Syntax/Expressions

An expression grammar in BNF

1 <goal> ::= <expr>
2 <expr> ::= <expr> <op> <expr>
3 | num
4 | id
5 <op> ::= +
6 | -
7 | *
8 | /

Simple expressions with numbers and identifiers



Derivation

To derive a word/sentence from a BNF, we start with the
goal variable
In each derivation step, we replace a variable with the right
hand side of one of its rules
leftmost derivation: choose the leftmost variable in each
step
rightmost derivation: choose the rightmost variable in each
step
parsing is the discovery of a derivation:
given a sentence, find a derivation from the goal variable
that produces this sentence



Derivation, formally

We write α, β, γ for (possibly empty) strings of terminal
symbols and variables
If N is a variable and N ::= β is a rule for N, then we write
αNγ ⇒ αβγ for a single derivation step
We write α⇒∗ β if there is a (possibly empty) sequence of
derivation steps from α to β
We write α⇒+ β if there is a non-empty sequence of
derivation steps from α to β



Example: x + 2 * y

Compare leftmost derivation with rightmost derivation



Grammar with built-in precedence

G-ETF

1 <goal> ::= <expr>
2 <expr> ::= <expr> + <term>
3 | <expr> - <term>
4 | <term>
5 <term> ::= <term> * <factor>
6 | <term> / <factor>
7 | <factor>
8 <factor> ::= num
9 | id

Enforces precedence



Example: x + 2 * y with precedence

Only one possible derivation



Ambiguity

If a grammar has more than one derivation for a single
sentence, then it is ambiguous
Example:

<stmt> ::= if <expr> then <stmt>
| if <expr> then <stmt> else <stmt>
| other stmts

Consider deriving the sentence:

if E1 then if E2 then S1 else S2

It has two derivations.



Ambiguity fixed

May be able to eliminate ambiguities by rearranging the
grammar:

<stmt> ::= <matched>
| <unmatched>

<matched> ::= if <expr> then <matched> else <matched>
| other stmts

<unmatched> ::= if <expr> then <stmt>
| if <expr> then <matched> else <unmatched>

This grammar generates the same language as the ambiguous
grammar, but applies the common sense rule:
match each else with the closest unmatched then
Generally accepted resolution of this ambiguity



Two approaches to parsing

Top-down parsing
start at the root of the derivation tree
extend derivation by “guessing” the next production
may require backtracking

Bottom-up parsing
start at the leaves of the derivation tree
combine tree fragments to larger fragments
bookkeeping of successful fragments (by finite automaton)
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Top-down parsing / Recursive descent

Approach
Define a procedure for each syntactic variable
The procedure for N

consumes token sequences derivable from N
has an alternative path for each rule for N

The code for a rule N ::= α consists of a code fragment for
each symbol in α

consider the symbols in α from left to right
a terminal symbol consumes the symbol
a variable N ′ calls the procedure for N ′



Recursive descent for G-ETF

// <factor> ::= NUM | ID

IR factor() {
if( cur_token == NUM ) {
next_token(); return IR_NUM;

}
if( cur_token == ID ) {
next_token(); return IR_ID;

}
syntax_error("NUM or ID expected");

}



Recursive descent for G-ETF/2

/* <term> ::= <term> * <factor>
| <term> / <factor>
| <factor>

**/

IR term() {
if( ??? ) {
term(); check(MUL); factor();
return IR_MUL(...);

}
if( ??? ) {
term(); check(DIV); factor();
return IR_DIV(...);

}
return factor();

}



Trouble with recursive descent / top-down parsing

Alternatives
How do we decide on one of the productions?
Would it help to look at the next token?

Left recursion
If we choose the first or second rule, we end up in an
infinite recursion without consuming input.
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Fact: Top-down parsers cannot deal with left recursion

A variable N in a BNF is left recursive, if there is a
derivation such that N ⇒+ Nα, where α is an arbitrary
string of variables and terminals.

Fact: if a BNF has a left recursive variable, then top-down
parsing for this BNF may not terminate.
Cure: remove left recursion by transforming the BNF
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Elimination of direct left recursion

Suppose G has a left recursive variable A with rules

A→ Aα1 | · · · | Aαn | β1 | · · · | βm

where none of the βi starts with A and all αj 6= ε

Add a new variable A′

Remove all productions for A
Add new productions

A→ β1A′ | · · · | βmA′

A′ → ε | α1A′ | · · · | αnA′

This transformation is always possible: same language, but
A no longer left recursive



Example: transforming G-ETF

Original grammar G-ETF

<goal> ::= <expr>
<expr> ::= <expr> + <term>

| <expr> - <term>
| <term>

<term> ::= <term> * <factor>
| <term> / <factor>
| <factor>

<factor> ::= num
| id

→

After elimination of left recursion

<goal> ::= <expr>
<expr> ::= <term> <expr’>
<expr’> ::= + <term> <expr’>

| - <term> <expr’>
|

<term> ::= <factor> <term’>
<term’> ::= * <factor> <term’>

| / <factor> <term’>
|

<factor> ::= num
| id



Twist: different derivation trees

elimination of left recursion changes the derivation trees
consider 10 - 2 + 3



What about alternatives?

/* <term’> ::= * <factor> <term’>
| / <factor> <term’>
|

**/
IR term1(IR arg1) {

if( cur_token == MUL ) {
next_token(); IR arg2 = factor();
return term1(IR_MUL(arg1, arg2));

}
if( cur_token == DIV ) {

next_token(); IR arg2 = factor();;
return term1(IR_DIV(arg1, arg2));

}
if ( cur_token ??? ) {

return arg1;
}
syntax_error ("MUL, DIV, or ??? expected");

}



How do we select between several alternative rules?

Solution: lookahead — what is the next token?

But how do we determine lookahead symbols?

First symbols
For each right hand side α of a rule and k > 0, we want to
determine

FIRSTk (α) = {w |k | α⇒∗ w}

k -Cutoff of a word

w |k =

w |w | ≤ k

w1 w = w1w2, |w1| = k
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First symbols

Computing first symbols

FIRSTk (ε) = {ε}
FIRSTk (aα) = {(aw)|k | w ∈ FIRSTk (α)}
FIRSTk (Nα) = {(vw)|k | v ∈ FIRSTk (N),w ∈ FIRSTk (α)}

Computing first symbols for N

FIRSTk (N) =
⋃
{FIRSTk (α) | N ::= α is a rule}



First symbols

Computing first symbols

FIRSTk (ε) = {ε}
FIRSTk (aα) = {(aw)|k | w ∈ FIRSTk (α)}
FIRSTk (Nα) = {(vw)|k | v ∈ FIRSTk (N),w ∈ FIRSTk (α)}

Computing first symbols for N

FIRSTk (N) =
⋃
{FIRSTk (α) | N ::= α is a rule}



Example G-ETF/LR and k = 1

<goal> ::= <expr>
<expr> ::= <term> <expr’>
<expr’> ::= + <term> <expr’>

| - <term> <expr’>
|

<term> ::= <factor> <term’>
<term’> ::= * <factor> <term’>

| / <factor> <term’>
|

<factor> ::= num
| id

FIRST1(G) = FIRST1(E)

FIRST1(E) = FIRST1(T )� FIRST1(E
′)

= {num, id}

FIRST1(E
′) = {+,−, ε}

FIRST1(T ) = FIRST1(F )� FIRST1(T
′)

= {num, id}

FIRST1(T
′) = {∗, /, ε}

FIRST1(F ) = {num, id}
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Lookahead, 1. Attempt

If A ::= α1 | · · · | αn is the list of all rules for A, then the
first-sets of all right hand sides must be disjoint:

∀i 6= j : FIRST1(αi) 6= FIRST1(αj)

On input aw , the parser for N chooses the right hand side i
with a ∈ FIRST1(αi)

Signal syntax error, if no such i exists.



Another example for FIRST

A ::= B | Cx | ε
B ::= C | yA

C ::= B | z

FIRST1(A) = FIRST1(B) ∪ FIRST1(C)� {x} ∪ {ε}
FIRST1(B) = FIRST1(C) ∪ {y}
FIRST1(C) = FIRST1(B) ∪ {z}

Computing FIRST by fixpoint

A B C
0 − − −
1 ε y z
2 y , z, ε z, y y , z
3 y , z, ε z, y y , z no further change, fixpoint reached
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Epsilon rules and FOLLOW

What if there is a rule A ::= ε?
As FIRST(ε) = ε, this rule is always applicable!

Solution
Consider the symbols that can possibly follow A!

FOLLOWk (A) = {w |k | S ⇒∗ αAw}
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Computing FOLLOW

FOLLOWk (A) =
⋃
{FIRSTk (β)�k FOLLOWk (B)

| B ::= αAβ is a rule}

We assume that the goal variable G does not appear on the
right hand side of productions and that FOLLOWk (G) = {ε}



Example G-ETF/LR and FOLLOW1

<goal> ::= <expr>
<expr> ::= <term> <expr’>
<expr’> ::= + <term> <expr’>

| - <term> <expr’>
|

<term> ::= <factor> <term’>
<term’> ::= * <factor> <term’>

| / <factor> <term’>
|

<factor> ::= num
| id

FOLLOW1(G) = {ε}
FOLLOW1(E) = FOLLOW1(G)

= {ε}

FOLLOW1(E
′) = FOLLOW1(E)

= {ε}

FOLLOW1(T ) = FIRST1(E
′)� (FOLLOW1(E) ∪ FOLLOW1(E

′))

= {+,−, ε} � FOLLOW1(E
′)

= {+,−, ε}

FOLLOW1(T
′) = FOLLOW1(T )

= {+,−, ε}

FOLLOW1(F ) = FIRST1(T
′)� (FOLLOW1(T ) ∪ FOLLOW1(T

′))

= {∗, /, ε} � {+,−, ε}
= {∗, /,+,−, ε}



Example G-ETF/LR and FOLLOW1

<goal> ::= <expr>
<expr> ::= <term> <expr’>
<expr’> ::= + <term> <expr’>

| - <term> <expr’>
|

<term> ::= <factor> <term’>
<term’> ::= * <factor> <term’>

| / <factor> <term’>
|

<factor> ::= num
| id

FOLLOW1(G) = {ε}
FOLLOW1(E) = FOLLOW1(G)

= {ε}

FOLLOW1(E
′) = FOLLOW1(E)

= {ε}

FOLLOW1(T ) = FIRST1(E
′)� (FOLLOW1(E) ∪ FOLLOW1(E

′))

= {+,−, ε} � FOLLOW1(E
′)

= {+,−, ε}

FOLLOW1(T
′) = FOLLOW1(T )

= {+,−, ε}

FOLLOW1(F ) = FIRST1(T
′)� (FOLLOW1(T ) ∪ FOLLOW1(T

′))

= {∗, /, ε} � {+,−, ε}
= {∗, /,+,−, ε}



Example G-ETF/LR and FOLLOW1

<goal> ::= <expr>
<expr> ::= <term> <expr’>
<expr’> ::= + <term> <expr’>

| - <term> <expr’>
|

<term> ::= <factor> <term’>
<term’> ::= * <factor> <term’>

| / <factor> <term’>
|

<factor> ::= num
| id

FOLLOW1(G) = {ε}
FOLLOW1(E) = FOLLOW1(G)

= {ε}

FOLLOW1(E
′) = FOLLOW1(E)

= {ε}

FOLLOW1(T ) = FIRST1(E
′)� (FOLLOW1(E) ∪ FOLLOW1(E

′))

= {+,−, ε} � FOLLOW1(E
′)

= {+,−, ε}

FOLLOW1(T
′) = FOLLOW1(T )

= {+,−, ε}

FOLLOW1(F ) = FIRST1(T
′)� (FOLLOW1(T ) ∪ FOLLOW1(T

′))

= {∗, /, ε} � {+,−, ε}
= {∗, /,+,−, ε}



Lookahead, 2. Attempt

Lookahead set for a rule

LAk (A ::= α) = FIRSTk (α)�k FOLLOWk (A)

Definition LL(k) grammar
A BNF is an LL(k) grammar, if for each variable A its rule set
A ::= α1 | · · · | αn fulfills

∀i 6= j : LAk (A ::= αi) ∩ LAk (A ::= αj) = ∅

LL(k) Parsing
On input w , the parser for A chooses the unique right hand side
αi such that w |k ∈ LAk (A ::= αi) and signals a syntax error if no
such i exists.



Outline

1 Syntax Analysis
Recursive top-down parsing
Nonrecursive top-down parsing
Bottom-up parsing



Nonrecursive top-down parsing

A top-down parser may be implemented without recursion
using a pushdown automaton
The pushdown keeps track of the terminals and variables
that still need to be matched



The pushdown automaton

Q = {q} a single state, also serves as initial state
Σ is the input alphabet
Γ = Σ ∪ VAR, the set of terminals and variables, is the
pushdown alphabet
Z0 = G ∈ VAR, the pushdown bottom symbol is the goal
variable
δ is defined by

δ(q, ε,A) 3 (q, α) if A ::= α is a rule
δ(q,a,a) = (q, ε)

In the PDA, the choice of the rule is nondeterministic, in
practice we disambiguate using LL(k) grammars with
lookahead



Nonrecursive top-down parser
with parse table M

push EOF
push Start_Symbol
token ← next_token()
repeat
X ← Stack[tos]
if X is a terminal or EOF then
if X = token then
pop X
token ← next_token()

else error()
else /* X is a variable */
if M[X,token] = X ::= Y1Y2 ... Yk then

pop X
push Yk,...,Y2,Y1

else error()
until X = EOF



Parse table

The parse table M maps a variable and a lookahead symbol
(from the input) to a production (number)

1 <goal> ::= <expr>
2 <expr> ::= <term> <expr’>
3 <expr’> ::= + <term> <expr’>
4 | - <term> <expr’>
5 |
6 <term> ::= <factor> <term’>
7 <term’> ::= * <factor> <term’>
8 | / <factor> <term’>
9 |

10 <factor> ::= id
11 | num

id num + − ∗ / $

G 1 1
E 2 2
E′ 3 4 5
T 6 6
T ′ 9 9 7 8 9
F 10 11



LL(1) parse table construction

Input: a BNF
Output: parsing table M
Algorithm:

1 For all rules p of the form A ::= α
1 For each a ∈ FIRST1(α): add p to M[A,a]
2 If ε ∈ FIRST1(α)

1 For each b ∈ FOLLOW1(A): add p to M[A, b]
2 If ε ∈ FOLLOW1(A): add p to M[A, ε]

2 Set each undefined entry of M to error

Check: The BNF is LL(1) if |M[A,a]| ≤ 1 for all A and a.



A BNF that is not LL(1)

<stmt> ::= if <expr> then <stmt>
| if <expr> then <stmt> else <stmt>

Both rules have the same FIRST sets because their right hand
sides have the same prefix!

Left factorization
Coalesce to a new rule
Introduce new variable that derives the different suffixes

<stmt> ::= if <expr> then <stmt> <stmt’>
<stmt’> ::= else <stmt>

| /*empty*/
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Still not LL(1) . . .

<stmt> ::= if <expr> then <stmt> <stmt’>
<stmt’> ::= else <stmt>

| /*empty*/

FIRST1(S) = {if}
FIRST1(S′) = {else, ε}

FOLLOW1(S) = FIRST1(S′) ∪ FOLLOW1(S′)

= {else, ε} ∪ FOLLOW1(S′)
= {else, ε}

FOLLOW1(S′) = FOLLOW1(S)

= {else, ε}
LA1(S′ ::= else S) = {else}

LA1(S′ ::= ε) = {else, ε}
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<stmt> ::= if <expr> then <stmt> <stmt’>
<stmt’> ::= else <stmt>

| /*empty*/

FIRST1(S) = {if}
FIRST1(S′) = {else, ε}

FOLLOW1(S) = FIRST1(S′) ∪ FOLLOW1(S′)
= {else, ε} ∪ FOLLOW1(S′)
= {else, ε}

FOLLOW1(S′) = FOLLOW1(S)

= {else, ε}
LA1(S′ ::= else S) = {else}

LA1(S′ ::= ε) = {else, ε}



Practical fix

The rule

<stmt’> ::= else <stmt>

gets precedence on input else.
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Bottom-up parsing

Goal
Given an input string and a BNF, construct a parse tree starting
at the leaves and working up to the root.



Recall

Sentential form
For a BNF with start variable S, every α such that S ⇒∗ α is a
sentential form.
If α ∈ Σ∗, then α is a sentence.
A left sentential form occurs in a left derivation.
A right sentential form occurs in a right derivation.



Bottom-up parsing

Procedure:
The bottom-up parser repeatedly matches a
right-sentential form of the language against the tree’s
upper frontier.
At each match, it applies a reduction to build on the
frontier:

each reduction matches an upper frontier of the partially
built tree to the RHS of some production
each reduction adds a node on top of the frontier

The final result is a rightmost derivation, in reverse.



Example

Consider the BNF

1 S ::= aABe
2 A ::= Abc
3 | b
4 B ::= d

and the input string

abbcde

(Construct a rightmost derivation)



Handles

To construct a the rightmost derivation, we need to find handles.

Handle
A handle is a substring α of the trees frontier that matches a
rule A ::= α which is applied at that point in a rightmost
derivation

Formally
In a right-sentential form αβw , the string β is a handle for
production A ::= β

if S ⇒∗rm αAw ⇒rm αβw then β is a handle for A ::= β in
αβw
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Handle
A handle is a substring α of the trees frontier that matches a
rule A ::= α which is applied at that point in a rightmost
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Formally
In a right-sentential form αβw , the string β is a handle for
production A ::= β
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Example: G-ETF

1 <goal> ::= <expr>
2 <expr> ::= <expr> + <term>
3 | <expr> - <term>
4 | <term>
5 <term> ::= <term> * <factor>
6 | <term> / <factor>
7 | <factor>
8 <factor> ::= num
9 | id

A rightmost derivation for this grammar has unique
handles.



Stack implementation

One scheme to implement a handle-pruning, bottom-up parser
is called a shift-reduce parser.
Shift-reduce parsers use a stack and an input buffer

1 initialize stack with $
2 Repeat until the top of the stack is the goal symbol and the

input token is $
find the handle
if we don’t have a handle on top of the stack, shift an input
symbol onto the stack
prune the handle if we have a handle for A ::= β on the
stack, reduce:

pop |β| symbols off the stack
push A onto the stack



Example

Apply shift-reduce parsing to x-2*y

1 Shift until top of stack is the right end of a handle
2 Find the left end of the handle and reduce



Shift-reduce parsing

A shift-reduce parser has just four canonical actions:
1 shift — next input symbol is shifted onto the top of the stack
2 reduce — right end of handle is on top of stack; locate left

end of handle within the stack; pop handle off stack and
push appropriate non-terminal LHS

3 accept — terminate parsing and signal success
4 error — call an error recovery routine

But how do we know
that there is a complete handle on the stack?
which handle to use?



LR parsing

Recognize handles with a DFA [Knuth 1965]

DFA transitions shift states instead of symbols
accepting states trigger reductions



Skeleton for LR parsing

push s0
token ← next_token()
while(true)

s ← top of stack
if action[s,token] = SHIFT(si) then
push si
token ← next_token()

else if action[s,token] = REDUCE(A ::= β) then
pop |β| states
s′ ← top of stack
push goto[s′,A]

else if action[s, token] = ACCEPT then
return

else error()

Accepting a sentence takes k shifts, l reduces, and 1 accept,
where k is the length of the input string and l is the length of the
rightmost derivation



Example tables

1 <goal> ::= <expr>
2 <expr> ::= <term>+<expr>
3 | <term>
4 <term> ::= <factor>*<term>
5 | <factor>
6 <factor> ::= id

state ACTION GOTO
id + ∗ $ E T F

0 s4 − − − 1 2 3
1 − − − acc − − −
2 − s5 − r3 − − −
3 − r5 s6 r5 − − −
4 − r6 r6 r6 − − −
5 s4 − − − 7 2 3
6 s4 − − − − 8 3
7 − − − r2 − − −
8 − r4 − r4 − − −



Example using the tables

Start with
Stack $ 0
Input id * id + id $



Formal definition of LR(k)

A BNF is LR(k) if

S ⇒∗rm αAw ⇒rm αβw

and

S ⇒∗rm γBx ⇒rm αβy

and

w |k = y |k

implies that αAy = γBx .



Why study LR grammars?

almost all context-free programming language constructs
can be expressed naturally with an LR(1) grammar
LR grammars are the most general grammar that can be
parsed by a deterministic bottom-up parser
LR(1) grammars have efficient parsers
LR parsers detect errors as early as possible
LR grammars are more general: Every LL(k) grammar is
also a LR(k) grammar



LR parsing

LR(1) — not useful in practice because tables are too big
all deterministic languages have LR(1) grammar
very large tables
slow construction

SLR(1)
smallest class of grammars
smallest tables
simple, fast construction

LALR(1)
expressivity between SLR(1) and LR(1)
same number of states as SLR(1)
clever algorithm yields fast construction



Constructing LR parse tables

Parser states are modeled with LR(k) items.

Definition
An LR(k) item is a pair [A→ α • β,w ] where

A→ αβ is a rule; the • can divide the right hand side
arbitrarily; intution: how much of the right hand side has
been seen already
w is a lookahead string containing at most k symbols

Cases of interest
k = 0: LR(0) items play a role in SLR(1) construction
k = 1: LR(1) items are used for constructing LR(1) and
LALR(1) parsers
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Examples

Consider LR(0) items without lookahead
[A→ •aBC] indicates that the parser is now looking for
input derived from aBC
[A→ aB •C] indicates that input derived from aB has been
seen, now looking for something derived from C

There are four items associated with A→ aBC



The characteristic finite state machine (CFSM)

The CFSM for a grammar is a DFA which recognizes viable
prefixes of right-sentential forms:

A viable prefix is any prefix that does not extend
beyond the handle.

The CFSM accepts when a handle has been discovered and
needs to be reduced.
A state of the CFSM is a set of items.
To construct the CFSM we need two functions wherer I is a set
of items and X is a grammar symbol:

closure0(I) to build its states
goto0(I,X ) to determine its transitions



States of the CFSM — Closure

The closure of an item [A→ α • Bβ contains the item itself and
any other item that can generate legal strings following α.
Thus if the parser has a viable prefix α on the stack, the
remaining input should be derivable from Bβ.

Closure0
For a set I of LR(0) items, the set closure0(I) is the smallest
set such that

1 I ⊆ closure0(I)
2 If [A→ α • Bβ] ∈ closure0(I) then

[B → •γ] ∈ closure0(I), for all rules B → γ.

Implementation: start with first rule, repeat second rule until
no further items can be added.



Transitions of the CFSM — Goto

Let I be a set of LR(0) items and X be a grammar symbol.

goto0(I,X ) = closure0({[A→ αX • β] | [A→ α • Xβ] ∈ I)

If I is the set of items for a viable prefix γα, then goto0(I,X ) is
the set of items for viable prefix γαX .
Accepting states of the CFSM: I is accepting if it contains a
reduce item of the form [A→ α•].



Construction of the CFSM

New start item [S′ → •S$], where
S′ is a new start symbol that does not occur on any RHS
S is the previous start symbol
$ marks the end of input

Compute the set of states S where each state is a set of items



Construction of the state set

function items(G + S′)
I ← closure0({[S′ → •S$]})
S ← {I}
W ← {I}
while W 6= ∅
remove some I from W
for each grammar symbol X
let I′ ← goto0(I,X )
if I′ 6= ∅ and I′ /∈ S then
add I′ to W and S

return S



LR(0) example

1 S → E$

2 E → E+T
3 | T
4 T → id
5 | (E)



Construction of the LR(0) parse table

Output: tables ACTION and GOTO
1 Let {I0, I1, . . . } = items(G)

2 State i of the CFSM corresponds to item Ii
if [A→ α • aβ] ∈ Ii , a ∈ Σ and goto0(Ii ,a) = Ij
then ACTION[i ,a] = SHIFT j
If [A→ α•] ∈ Ii and A 6= S′

then ACTION[i ,a] = REDUCE A→ α, for all a
If [S′ → S$•] ∈ Ii
then ACTION[i ,a] = ACCEPT, for all a

3 If goto0(Ii ,A) = Ij for variable A
then GOTO[i ,A] = j

4 set all undefined entries in ACTION and GOTO to ERROR

5 initial state of parser corresponds to
I0 = closure0({[S′ → •S$]})



Example ACTION table



Conflicts

If there are multiply defined entries in the ACTION table,
then the grammar is not LR(0).
There are two kinds of conflict

shift-reduce: shift and reduce are possible in the same item
set
reduce-reduce: two different reduce actions are possible in
the same item set

Examples
A→ ε | aα
on input a, shift a or reduce A→ ε?
a = b+c*d with expression grammar
after reading c, should we shift or reduce?

Use lookahead to resolve conflicts



SLR(1) — simple lookahead LR

Add lookahead after computing the LR(0) item sets
1 Let {I0, I1, . . . } = items(G)

2 State i of the CFSM corresponds to item Ii
if [A→ α • aβ] ∈ Ii , for a 6= $ and goto0(Ii ,a) = Ij
then ACTION[i ,a] = SHIFT j
If [A→ α•] ∈ Ii and A 6= S′

then ACTION[i ,a] = REDUCE A→ α, for all
a ∈ FOLLOW(A)
If [S′ → S • $] ∈ Ii
then ACTION[i , $] = ACCEPT

3 If goto0(Ii ,A) = Ij for variable A
then GOTO[i ,A] = j

4 set all undefined entries in ACTION and GOTO to ERROR

5 initial state of parser corresponds to
I0 = closure0({[S′ → •S$]})



LR(1) items

Items of the form [A→ α • β,a] for a ∈ Σ

Propagate lookahead in construction to choose the correct
reduction
Lookahead has only effect on reduce items
We can decide between reductions [A→ α•,a] and
[B → α•,b] by examining the lookahead.



Closure1

Closure1
For a set I of LR(1) items, the set closure1(I) is the smallest
set such that

1 I ⊆ closure1(I)
2 If [A→ α • Bβ,a] ∈ closure0(I) then

[B → •γ,b] ∈ closure0(I), for all rules B → γ and for all
b ∈ FIRST1(βa).



Goto1

Let I be a set of LR(1) items and X be a grammar symbol.

goto1(I,X ) = closure1({[A→ αX • β,a] | [A→ α • Xβ,a] ∈ I)

Construction of the CFSM
as before



Construction of the LR(1) parse table

Output: tables ACTION and GOTO
1 Let {I0, I1, . . . } = items(G)

2 State i of the CFSM corresponds to item Ii
if [A→ α • aβ,b] ∈ Ii , a 6= $ and goto1(Ii ,a) = Ij
then ACTION[i ,a] = SHIFT j
If [A→ α•,b] ∈ Ii and A 6= S′

then ACTION[i ,b] = REDUCE A→ α
If [S′ → S•, $] ∈ Ii
then ACTION[i , $] = ACCEPT

3 If goto1(Ii ,A) = Ij for variable A
then GOTO[i ,A] = j

4 set all undefined entries in ACTION and GOTO to ERROR

5 initial state of parser corresponds to
I0 = closure1({[S′ → •S, $]})



LALR(1) parsing

The core of a set of LR(1) items is the set of LR(0) items
obtained by stripping off all lookahead.
The following two sets have the same core:

{[A→ α • β,a], [A→ α • β, c]}
{[A→ α • β,b], [A→ α • β, c]}

Key idea
If two LR(1) item sets have the same core, then we can merge
their states in the ACTION and GOTO tables.



LALR(1) table construction

Compared to LR(1) we need a single new step:

For each core present among the set of LR(1)
items, find all sets having that core and replace these
sets by their union.

The goto function must be updated to reflect the
replacement sets.

The resulting algorithm is very expensive.
There is a more efficient algorithm that analyses the LR(0)
CFSM.



Precedence and associativity

Precedence and associativity can be used to resolve
shift-reduce conflicts in ambiguous grammars.

lookahead symbol has higher precedence⇒ shift
same precedence, left associative⇒ reduce

Advantages:
more concise, albeit ambiguous, grammars
shallower parse trees⇒ fewer reductions

Classic application: expression grammars



Precedence applied

With precedence and associativity we can use a very simple
expression grammar without useless productions.

E → E∗E | E/E | E+E | E−E | (E) | −E | id | num



Left recursion vs right recursion

Right recursion
required in top-down parsers for termination
more stack space
right-associative operators

Left recursion
works fine in bottom-up parsers
limits required stack
left associative operators
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