
Compiler Construction 2016/2017
Storage Allocation

Peter Thiemann

November 16, 2016



Outline

1 Storage Organization and Allocation



Storage Organization and Allocation

The compiler organizes data according to different aspects.
extent

entire program run — static allocation
coupled to a procedure invocation — stack allocation
independent of program structure — heap allocation

size (in bytes)
depending on type
architecture

alignment
constraint on base address of a datatype
multiple of 2n, for some n depending on size of data
architectural constraints
unaligned access either slow or leads to memory fault



Memory map

Stack
One stack frame for each procedure activation
Growing downwards

Statically allocated data

Heap
Dynamically allocated data
Growing upwards

Program text

High addresses



Stack frames

each procedure invocation allocates a frame that contains
data local to this invocation
as procedure invocations are properly nested, frames are
allocated on a stack

procedure entry/call: push a new frame on the stack
procedure exit/return: pop its frame from the stack

structure of stack frame is (partially) prescribed
by architecture
by run-time system
by API of operating system

size of frame limited by addressing modes



Example stack frame layout

Return address

Parameter area

Register save area

Static local data

[dynamic local data]

Frame pointer

stack pointer



Intermediate machines

Stack machine
intermediate results on the stack
all operations operate on the stack
uniform data size required
example: JVM

Register machine
intermediate results in (unlimited number of virtual)
registers
register operations (2-address or 3-address)
register allocation
data size may be different



Data allocation (JVM)

word size 32 bits
most data items represented in one word

one entry on the stack
one slot in local variables, object fields

except long and double: two words
two adjacent entries on the stack
two adjacent slots in local variables and object fields

object: reference to sequence of fields
objects aligned at 8 bytes
special objects: arrays

byte[] reference to contiguous sequence of bytes
short[] reference to contiguous sequence of 16 bit
halfwords
etc . . .



Data allocation (C)

each type has size and alignment constraint
variables (global, local) and struct elements are packed
Example: size 4 bytes, alignment 4
struct {
char c; // 1 byte, offset 0
char d; // 1 byte, offset 1
short e; // 2 byte, offset 2

}

A struct is always aligned according to the largest
alignment requirement of a member
stack alignment (Linux) 16 bytes



Data allocation (2)

Example: size 24 bytes, alignment 8

struct {
char c; // 1 byte, offset 0

// compiler inserts 7 bytes padding
double d; // 8 byte, offset 8
char e; // 1 byte, offset 16

// 7 bytes padding
}

Wastes space; C compiler not allowed to reorder fields: better

struct { // size 16 bytes
char c; // 1 byte, offset 0
char e; // 1 byte, offset 1

// compiler inserts 6 bytes padding
double d; // 8 byte, offset 8

}



Arrays in C

alignment inherited from base type (type of elements)
contiguous memory with adjacent base type values

struct {
char a[3]; // 3 bytes, offset 0
char b; // 1 byte, offset 3
short c[3]; // 3*2 bytes, offset 4

// 2 bytes padding
int d; // 4 bytes, offset 12

}



Bitfields in C

Consider this (taken from Eric S. Raymond’s
http://www.catb.org/esr/structure-packing/)

struct foo6 {
short s;
char c;
int flip:1; // 1 bit
int nybble:4; // 4 bits
int septet:7; // 7 bits

};

However, bitfields must not cross the word boundaries of the
underlying machine architecture.

http://www.catb.org/esr/structure-packing/


Bitfields in C for 32-bit architecture

struct foo6 {
short s; // 2 bytes - 16 bits
char c; // 1 byte - 8 bits
int flip:1; // 1 bit
int nybble:4; // 4 bits
int __pad1:3; // 3 bits - padding to 32 bits
int septet:7; // 7 bits
int __pad2:25; // 25 bits - padding to 32 bits

};



Unions in C

unions introduce aliasing
union {
int d; // 4 bytes, offset 0
char f; // 1 byte, offset 0

}

d and f share the same memory cells
changing d changes f and vice versa
size and alignment is maximum of components
structs and unions can be nested arbitrarily



Dynamic memory (C)

malloc (n) returns base address of free memory of size
n, satisfying all alignment constraints (i.e., 16 byte)
sizeof type number of bytes, computed at compile time
programmer responsible for consistent use


	Storage Organization and Allocation

