Compiler Construction 2016/2017
Liveness Analysis
Peter Thiemann

December 19, 2016

0 Liveness Analysis

Liveness Analysis

IR after instruction selection
@ abstract assembly code
@ operates on unbounded number of temporaries

Next goal

@ register allocation

Register allocation

@ instruction operands in registers

@ bounded number of registers = limited resource
@ questions to be addressed

e how many registers are needed at every program point?
e what to do if fewer registers are available than needed?

@ optimal allocation is NP-complete

How many registers are needed?

Concept: Live range

The live range of a temporary spans all instructions that may be
executed between its definition and one of its uses.

Concept: Liveness

A temporary is live at some instruction if its value may be used
in the future.

@ At any given instruction, all live temporaries may be
needed.

@ Temporaries that are not needed at the same time may
share a register.

What if fewer registers are available than needed?

Concept: Spill

Spilling a temporary means
@ allocate it in a stack frame
@ insert store instruction right after its definition

@ insert load instruction before every use

Consequences of spilling

@ shortens the live range of a temporary
@ increases the size of a stack frame
@ accessing the temporary becomes more expensive

@ control-flow graph
@ liveness analysis
© interference graph

Control Flow Graph (CFG)

Graphical representation of control flow in a program

CFG of a program

@ Nodes: entry, exit, and each occurrence of a statement in
program

@ Edges: an edge from nto n’ represents a potential control
transfer from (the end of) n to (the beginning of) n’
Terminology
Out-edges from n lead to successor nodes, succ|n|

In-edges to n come from predecessor nodes, pred|n]

Example CFG

a«<>»0

Ly: b+—a+1
c+cCc+b
a«—bx?2
if a < N goto L4
return €

return ¢

Definitions and uses

Consider a CFG

@ A variable v gets defined by node n,
if the statement at n assigns to v.

@ A variable v gets used by node n,
if v occurs in an expression at n, i.e., it reads from v.

@ def[n| set of variables defined by n
@ use|[n] set of variables used by n
@ def[n] and use[n] are fixed by program/CFG

Example def-use

def[n] use[n]

a+0 {a} 0
Ly: b+—a+1 {b} {a}

c«c+b {c} {c,b}

a+—bx2 {a} {b}

if a < N goto L4 0 {a}
return C 0 {c}

Liveness

Definition
Variable v is live on edge e if there is an execution path from e
to a use of v that does not pass through any definition of v.

Liveness Analysis

A data flow analysis that computes the variables that may be
live at each edge of a control flow graph.

Definition for analysis

Variable v is live on edge e if there is a directed path from e to
a use of v that does not pass through any definition of v.

More on liveness

Liveness at node n

@ vis live-in at nif v is live on any in-edge of n
in[n] variables live-in at n

@ vis live-out at nif v is live on any out-edge of n
out[n] variables live-out at n

Liveness analysis

Computation rules for liveness

@ v € use[n] implies v live-in at n

@ v live-in at nimplies v live-out at all m € pred[n]

© v live-out at nand v ¢ def[n] implies v live-in at n
= liveness information is propagated backwards

Liveness analysis

Computation rules for liveness

@ v € use[n] implies v live-in at n
@ v live-in at nimplies v live-out at all m € pred|n]

© v live-out at nand v ¢ def[n] implies v live-in at n
= liveness information is propagated backwards

Inequations from computation rules

in[n] O use[n] U (out[n] \ def[n])
——"

rule 1 rule 3
out[n] > | J in[m|

mesucc[n]

rule 2

Liveness analysis

@ Each solution of the inequations is valid liveness
information

@ Wanted: least solution that does not contain spurious
information

@ computed by fixpoint iteration

e treat inequations (from right to left) as functions
e update the left-hand in[n] and out[n] until no further
change happens

@ result is a fixpoint because afterwards

in[n] = use[n] U (out[n] \ def[n])

out[n]= | J in[m]

mesucc|n]

Algorithm: liveness analysis

for all node ndo
in°[n] « 0
out’[n] + 0
end for
i=0
repeat
i+ i+1
for all node ndo
in'[n] + use[n] U (out’~"[n] \ def[n])
out'[n] < Uscsucepr N '[8]
end for .
until Vn,in'[n] = in"~'[n] A out'[n] = out'~'[n]

Notes on the algorithm

@ Each loop iteration increases in[n] and/or out[n]
@ Liveness flows backwards along control-flow arcs

@ The inner loop should visit nodes in reverse flow order as
much as possible

@ Speedup: compress nodes to basic blocks

Correctness

in*'[n] 2 in'[n] out*'[n] D out'[n]

in'[n] C use[n] U (out'[n] \ def[n])
out[njc | J in'[s]

sesucc[n]

Example analysis, 1st iteration

def[n] use[n] || in'[n] out'[n] || in’[n] out®[n] |
a+o0 {a} [{c} {c,a}
Ly: b+ a+1 {b} {a} {c,a} {c,b}
c«—c+b {c} {c,b} || {c,b} {c, b}
a<bxz2 {a} {b} {¢,b} {c,a}
ifa < N goto L 0 {a} {c,a} {c}
return C 0 {c} {c} 0

Example analysis, 2nd iteration

def[n] use[n] || in'[n] out'[n] || in®[n] out?[n]

a0 {a} 0 {c¢} Ac,at || {ct {ca}
Li: b+a+1 {b} {a} {c,a} {c,b} || {c,a} A{c,b}
C<cC+b {c} {e,b} || {c.;b} {c.b} || {c,b} {c,b}
a«<bx2 {a} {b} || {c,b} {c,a} || {c,b} {c,a}

if a< N goto L, 0 {a} {c,a} {c} {c,a} {c a}
return ¢ 0 {c} {c} 0 {c} 0

Example analysis, 2nd iteration

def[n] wuse[n] || in'[n] out'[n] || in®[n] out?[n]

a<o0 {a}] {c} {c, a} {c} {c, a}

Li: b+a+1 {b} {a} {c,a} {c,b} || {c,a} A{c,b}

c<c+b {c} {e,b} || {c.;b} {c.b} || {c,b} {c,b}

a+bx2 {a} {b} {¢,b} {c,a} || {c,b} {c,a}

if a < N goto Ly] {a} {c, a} {c} {c,a} {c a}
return ¢ 1] {c} {c} 0 {c} 1]

Fixpoint reached

@ maximum number of live variables = 2
@ 2 registers sufficient

Complexity of the algorithm

For input program of size N
@ < N nodes in CFG
= < N variables
= < N elements per in[n] and out[n]
= O(N) time per set operation

@ for-loop performs constant number of set operations per
node
= O(N?) time for the loop

@ the repeat loop cannot decrease any set
sizes of all in and out sets < 2N?
= repeat loop terminates after < 2N? iterations

= overall worst-case complexity O(N*)
@ in practice only few iterations when ordering is observed

Least fixpoints

@ Technically, the algorithm computes the least fixpoint /
least solution of the inequations

@ Any fixpoint/solution is a conservative approximation that
tacitly assumes further uses of variables

@ The least fixpoint only considers manifest uses in the CFG
@ |t is always safe to assume a variable is live
@ |t is unsafe to assume a variable is dead

Interference

Suppose that in[n] and out[n] solve the liveness inequations.

Interference graph
The interference graph is an undirected graph with
@ nodes the variables of the CFG

@ an edge {v, v’} if exists node n in the CFG such that
{v,v'} Cinn]

Interference

Suppose that in[n] and out[n] solve the liveness inequations.

Interference graph
The interference graph is an undirected graph with
@ nodes the variables of the CFG

@ an edge {v, v’} if exists node n in the CFG such that
{v,v'} Cinn]

Interference graph for example

Approach to register allocation

@ Find a coloring of the interference graph with n colors
where n is the number of available registers
@ Difficulties

e include spilling
o efficiency

2-colored interference graph for example

	Liveness Analysis

