Compiler Construction 2016/2017 Loop Optimizations

Peter Thiemann

January 16, 2017

Outline

- Loops
- 2 Dominators
- 3 Loop-Invariant Computations
- Induction Variables
- 6 Array-Bounds Checks
- 6 Loop Unrolling

Loops

- Loops are everywhere
- ⇒ worthwhile target for optimization

Loops

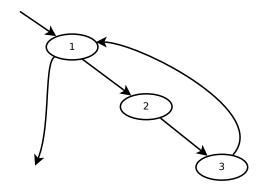
Definition: Loop

A <u>loop</u> with <u>header</u> *h* is a set *L* of nodes in a CFG such that

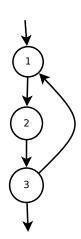
- h ∈ L
- $(\forall s \in L)$ exists path from h to s
- $(\forall s \in L)$ exists path from s to h
- $(\forall t \notin L)$ $(\forall s \in L)$ if there is an edge from t to s, then s = h

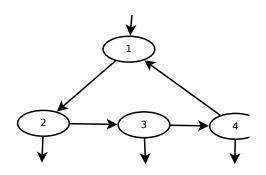
Special loop nodes

- A loop entry node has a predecessor outside the loop.
- A loop exit node has a successor outside the loop.



18-1a

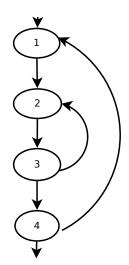




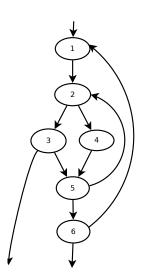
18-1c



18-1d



18-1e



Program for 18-1e

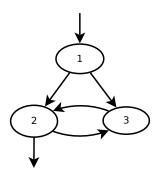
```
1 int isPrime (int n) {
    i = 2;
    do {
     j = 2;
5
     do {
         if (i*j==n) {
6
          return 0;
7
         } else {
8
           j = j+1;
       } while (j<n);
      i = i+1;
12
    } while (i<n);</pre>
13
    return 1;
14
15 }
```

Reducible Flow Graphs

- Arbitrary flow graphs: Spaghetti code
- Reducible flow graphs arise from structured control
 - if-then-else
 - while-do
 - repeat-until
 - for
 - break (multi-level)

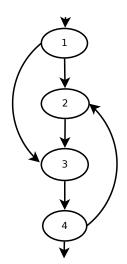
Irreducible Flow Graphs

18-2a: Not a loop



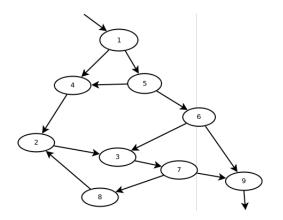
Irreducible Flow Graphs

18-2b: Not a loop



Irreducible Flow Graphs

18-2c: Not a loop



- Reduces to 18-2a: collapse edges (x, y) where x is the only predecessor of y
- A flow graph is <u>irreducible</u> if exhaustive collapsing leads to a subgraph like 18-2a.

Outline

- 1 Loops
- 2 Dominators
- 3 Loop-Invariant Computations
- Induction Variables
- 5 Array-Bounds Checks
- 6 Loop Unrolling

Dominators

Objective

Find all loops in flow graph

Assumption

Each CFG has unique entry node s_0 without predecessors

Domination relation

A node d dominates a node n if every path from s_0 to n must go through d.

Remark

Domination is reflexive

Algorithm for Finding Dominators

Lemma

Let n be a node with predecessors p_1, \ldots, p_k and $d \neq n$ a node. d dominates n iff $(\forall 1 \leq i \leq k)$ d dominates p_i

Domination equation

Let D[n] be the set of nodes that dominate n.

$$D[n] = \{n\} \cup \bigcap_{p \in pred[n]} D[p]$$

- Solve by fixed point iteration
- Start with $(\forall n \in N) D[n] = N$ (all nodes in the CFG)
- Observe that $D[s_0] = \{s_0\}$ because $pred(s_0) = \emptyset$
- Watch out for unreachable nodes

Immediate Dominators

Theorem

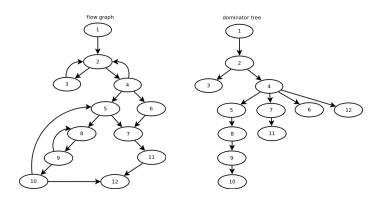
Let G be a connected, rooted graph. If d dominates n and e dominates n, then either d dominates e or e dominates d.

- Proof: by contradiction
- Consequence: Each node n ≠ s₀ has one immediate dominator idom(n) such that
 - \bigcirc idom(n) \neq n
 - idom(n) dominates n
 - \bigcirc *idom*(*n*) does not dominate another dominator of *n*

Dominator Tree

Dominator Tree

The <u>dominator tree</u> is a directed graph where the nodes are the nodes of the CFG and there is an edge (x, y) if x = idom(y).



• back edge in CFG: from *n* to *h* so that *h* dominates *n*

Finding Loops

Natural Loop

The <u>natural loop</u> of a back edge (n, h) where h dominates n is the set of nodes x such that

- h dominates x
- exists path from x to n not containing h

h is the <u>header</u> of this natural loop.

Nested Loops

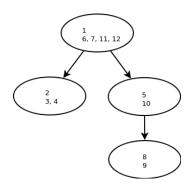
Nested Loop

If *A* and *B* are loops with headers $a \neq b$ and $b \in A$, then $B \subseteq A$. Loop *B* is <u>nested</u> within *A*. *B* is the <u>inner loop</u>.

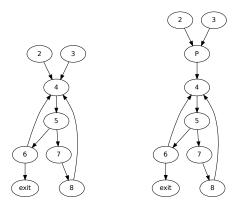
Algorithm: Loop-nest Tree

- Compute the dominators of the CFG
- 2 Compute the dominator tree
- Find all natural loops with their headers
- For each loop header h merge all natural loops of h into a single loop loop[h]
- **⑤** Construct the tree of loop headers such that h_1 is above h_2 if $h_2 \in loop[h_1]$
 - Leaves are innermost loops
 - Procedure body is pseudo-loop at root of loop-nest tree

A Loop-Nest Tree



Adding a Loop Preheader



- loop optimizations need a CFG node <u>before the loop</u> as a target to move code out of the loop
- ⇒ add preheader node like *P* in example

Outline

- Loops
- 2 Dominators
- 3 Loop-Invariant Computations
- Induction Variables
- 5 Array-Bounds Checks
- 6 Loop Unrolling

Loop-Invariant Computations

- Suppose $t \leftarrow a \oplus b$ occurs in a loop.
- If *a* and *b* have the same value for each iteration of the loop, then *t* always gets the same value.
- \Rightarrow *t*'s definition is <u>loop-invariant</u>, but its computation is repeated on each iteration

Goals

- Detect such loop-invariant definitions
- Hoist them out of the loop

Approximation to Loop-Invariance

Loop-Invariance

The definition $d: t \leftarrow a_1 \oplus a_2$ is <u>loop-invariant for loop L</u> if $d \in L$ and, for each a_i , one of the following conditions holds:

- $\mathbf{0}$ a_i is a constant,
- all definitions of a_i that reach d are outside of L, or
- only one definition of a_i reaches d and that definition is loop-invariant.

Algorithm: Loop-Invariance

- Identify all definitions whose operands are constant or defined outside the loop
- Add loop-invariant definitions until a fixed point is reached

Hoisting

- Suppose $t \leftarrow a \oplus b$ is loop-invariant.
- Can we hoist it out of the loop?

	I .		
L ₀	L ₀	L ₀	L ₀
t ←0	t ←0	<i>t</i> ←0	<i>t</i> ←0
L ₁	L ₁	L ₁	L ₁
<i>i</i> ← <i>i</i> + 1	if $i \ge N$ goto L_2	<i>i</i> ← <i>i</i> + 1	$M[j] \leftarrow t$
$t \leftarrow a \oplus b$	<i>i</i> ← <i>i</i> + 1	t ←a ⊕ b	<i>i</i> ← <i>i</i> + 1
$M[i] \leftarrow t$	t ←a ⊕ b	$M[i] \leftarrow t$	t ←a ⊕ b
if $i < N$ goto L_1	$M[i] \leftarrow t$	t ←0	$M[i] \leftarrow t$
L ₂	goto L ₁	$M[j] \leftarrow t$	if $i < N$ goto L_1
<i>x</i> ← <i>t</i>	L ₂	if $i < N$ goto L_1	L ₂
	<i>x</i> ← <i>t</i>	L ₂	<i>x</i> ← <i>t</i>

Hoisting

- Suppose $t \leftarrow a \oplus b$ is loop-invariant.
- Can we hoist it out of the loop?

L ₀	L ₀	L ₀	L ₀
t ←0	t ←0	t ←0	t ←0
L ₁	L ₁	L ₁	L ₁
<i>i</i> ← <i>i</i> + 1	if $i \ge N$ goto L_2	<i>i</i> ← <i>i</i> + 1	$M[j] \leftarrow t$
$t \leftarrow a \oplus b$	<i>i</i> ← <i>i</i> + 1	t ←a ⊕ b	<i>i</i> ← <i>i</i> + 1
$M[i] \leftarrow t$	t ←a ⊕ b	$M[i] \leftarrow t$	t ←a ⊕ b
if $i < N$ goto L_1	$M[i] \leftarrow t$	t ←0	$M[i] \leftarrow t$
L ₂	goto L ₁	$M[j] \leftarrow t$	if $i < N$ goto L_1
x ←t	L ₂	if $i < N$ goto L_1	L ₂
	$x \leftarrow t$	L ₂	$x \leftarrow t$
yes	no	no	no

Hoisting

Criteria for hoisting

A loop-invariant definition $d: t \leftarrow a \oplus b$ can be hoisted to the end of its loop's preheader if all of the following hold

- d dominates all loop exits at which t is <u>live-out</u>
- there is only one definition of t in the loop
- t is not live-out at the loop preheader
 - ullet Attention: arithmetic exceptions, side effects of \oplus
 - Condition 1 often prevents hoisting from while loops: transform into repeat-until loops.

Outline

- 1 Loops
- 2 Dominators
- 3 Loop-Invariant Computations
- Induction Variables
- 6 Array-Bounds Checks
- 6 Loop Unrolling

Induction Variables

C-code for summation of a long array

```
1 long sum(long a[], int n) {
2  long s = 0;
3  int i = 0;
4  while (i<n) {
5   s += a[i];
6   i ++;
7  }
8  return s;
9 }</pre>
```

Induction Variables and Strength Reduction

Consider the corresponding IR

```
i \leftarrow 0
L_1: if i > n goto L_2
       j \leftarrow i \cdot 4
       k \leftarrow j + a
       x \leftarrow M[k]
        s \leftarrow s + x
       i \leftarrow i+1
       goto L_1
L_2
```

Induction Variables and Strength Reduction

Consider the corresponding IR

before after

Induction Variables

- Induction-variable analysis: identify induction variables and relations among them
- Strength reduction:
 replace expensive operation (e.g., multiplication) by cheap operation (e.g., addition)
- Induction-variable elimination: remove dependent induction variables

Induction Variables

- A basic induction variable is directly incremented
- A <u>derived induction variable</u> is computed from other induction variables
- Describe an induction variable b' by a triple (b, o, f), where
 - b is a basic induction variable
 - o is an offset
 - f is a factor

so that
$$b' = o + f \cdot b$$
.

 A <u>linear induction variable</u> changes by the same amount in every iteration.

Induction Variables in the Example

- i is a basic induction variable described by (i, 0, 1)
- j is a derived induction variable: after $j \leftarrow i \cdot 4$, it is described by (i, 0, 4)
- k is a derived induction variable:
 after k ← j + a, it is described by (i, a, 4)

Non-linear Induction Variables

Non-linear Induction Variables

before

after

Detection of Induction Variables

Basic Induction Variable (in the family of *i*)

Variable i is a <u>basic induction variable</u> if all definitions of i in loop L have the form $i \leftarrow i \pm c$ where c is loop-invariant.

Derived Induction Variable

Variable *k* is a derived ind. var. in the family of *i* in loop *L* if

- there is exactly one definition of k in L of the form k ← j ⋅ c or k ← j + d where j is an induction variable in the family of i and c, d are loop-invariant
- \circ if j is a derived induction variable in the family of i, then
 - ullet only the definition of j in L reaches (the definition of) k
 - there is no definition of i on any path between the definition of j and the definition of k
- If j is described by (i, a, b), then k is described by $(i, a \cdot c, b \cdot c)$ or (i, a + d, b), respectively.

Strength Reduction

- Often multiplication is more expensive than addition
- \Rightarrow Replace the definition $j \leftarrow i \cdot c$ of a derived induction variable by an addition

Procedure

- For each derived induction variable $j \sim (i, a, b)$ create new variable j'
- After each assignment i ← i + c to a basic induction variable, create an assignment j' ← j' + c · b
- Replace assignment to j with j ← j'
- Initialize $j' \leftarrow a + i \cdot b$ at end of preheader

Example Strength Reduction

Induction Variables $j \sim (i, 0, 4)$ and $k \sim (i, a, 4)$

before

after

Elimination

- Apply constant propagation, copy propagation, and dead code elimination
- Special case: elimination of induction variables that are
 - not used in the loop
 - only used in comparisons with loop-invariant variables
 - useless

Useless variable

A variable is <u>useless</u> in a loop L if

- it is dead at all exits from L
- it is only used in its own definitions

Example After removal of j, j' is useless

Almost useless variable

A variable is almost useless in loop L if

- it is only used in comparisons against loop-invariant values and in definitions of itself and
- there is another induction variable in the same family that is not useless.
- An almost useless variable can be made useless by rewriting the comparisons to use the related induction variable

Coordinated induction variables

Let $x \sim (i, a_x, b_x)$ and $y \sim (i, a_y, b_y)$ be induction variables. x and y are coordinated if

$$(x-a_x)/b_x=(y-a_y)/b_y$$

throughout the execution of the loop, except during a sequence of statements of the form $z_i \leftarrow z_i + c_i$ where c_i is loop-invariant.

Let $j \sim (i, a_j, b_j)$ and $k \sim (i, a_k, b_k)$ be coordinated induction variables.

Consider the comparison k < n with n loop-invariant. Using $(j - a_j)/b_j = (k - a_k)/b_k$ the comparison can be rewritten as follows

$$b_k(j-a_j)/b_j + a_k < n$$

$$\Leftrightarrow b_k(j-a_j)/b_j < n-a_k$$

$$\Leftrightarrow \begin{cases}
j < (n-a_k)b_j/b_k + a_j & \text{if } b_j/b_k > 0 \\
j > (n-a_k)b_j/b_k + a_j & \text{if } b_j/b_k < 0
\end{cases}$$

where the right-hand sides are loop-invariant and their computation can be hoisted to the preheader.

Restrictions

- $(n-a_k)b_j$ must be a multiple of b_k
- $oldsymbol{e}{b_j}$ and b_k must both be constants or loop invariants of known sign

Outline

- 1 Loops
- 2 Dominators
- 3 Loop-Invariant Computations
- Induction Variables
- Array-Bounds Checks
- 6 Loop Unrolling

Array-Bounds Checks

- Safe programming languages check that the subscript is within the array bounds at each array operation.
- Bounds for an array have the form 0 ≤ i < N where N > 0 is the size of the array.
- Implemented by $i <_u N$ (unsigned comparison).
- Bounds checks redundant in well-written programs ⇒ slowdown
- For better performance: let the compiler prove which checks are redundant!
- In general, this problem is undecidable.

Assumptions for Bounds Check Elimination in Loop L

- There is an induction variable j and loop-invariant u used in statement s₁ of either of the forms
 - if j < u goto L_1 else goto L_2
 - if $j \ge u$ goto L_2 else goto L_1
 - if u > j goto L_1 else goto L_2
 - if $u \ge j$ goto L_2 else goto L_1

where L_2 is out of the loop L.

- ② There is a statement s_2 of the form
 - if $k <_u n$ goto L_3 else goto L_4

where k is an induction variable coordinated with j, n is loop-invariant, and s_1 dominates s_2 .

- No loop nested within *L* contains a definition of *k*.
- 4 k increases when j does: $b_i/b_k > 0$.

Array-Bounds Checking

Objective

Insert test in preheader so that $0 \le k < n$ in the loop.

Lower Bound

- Let $\Delta k_1, \ldots, \Delta k_m$ be the loop-invariant values added to k inside the loop
- $k \ge 0$ everywhere in the loop if
 - $k \ge 0$ in the loop preheader
 - $\bullet \ \Delta k_1 \geq 0 \dots \Delta k_m \geq 0$

Array-Bounds Checking

Upper Bound

- Let $\Delta k_1, \ldots, \Delta k_p$ be the set of loop-invariant values added to k on any path between s_1 and s_2 that does not go through s_1 .
- k < n at s_2 if $k < n (\Delta k_1 + \cdots + \Delta k_p)$ at s_1
- From $(k a_k)/b_k = (j a_j)/b_j$ this test can be rewritten to $j < b_j/b_k(n (\Delta k_1 + \cdots + \Delta k_p) a_k) + a_j$
- It is sufficient that $u \le b_j/b_k(n-(\Delta k_1+\cdots+\Delta k_p)-a_k)+a_j$ because the test j < u dominates the test k < n
- All parts of this test are loop-invariant!

Array-Bounds Checking Transformation

- Hoist loop-invariants out of the loop
- Copy the loop L to a new loop L' with header label L'_h
- Replace the statement "if $k <_u n$ goto L_3' else goto L_4' " by "goto L_3' "
- At the end of *L*'s preheader put statements equivalent to if $k \geq 0 \land \Delta k_1 \geq 0 \land \cdots \land \Delta k_m \geq 0$ and $u \leq b_j/b_k(n-(\Delta k_1+\cdots+\Delta k_p)-a_k)+a_j$ goto L_h' else goto L_h

Array-Bounds Checking Transformation

- This condition can be evaluated at compile time if
 - all loop-invariants in the condition are constants; or
 - 2 n and u are the same temporary, $a_k = a_j$, $b_k = b_j$ and no Δk 's are added to k between s_1 and s_2 .
- The second case arises for instance with code like this:

```
int u = a.length;
int i = 0;
while (i<u) {
   sum += a[i];
   i++;
}</pre>
```

assuming common subexpression elimination for a.length

- Compile-time evaluation of the condition means to unconditionally use L or L' and delete the other loop
- Clean up with elimination of unreachable and dead code

Array-Bounds Checking Generalization

- Comparison of $j \le u'$ instead of j < u
- Loop exit test at end of loop body: A test
 - s_2 : if j < u goto L_1 else goto L_2 where L_2 is out of the loop and s_2 dominates all loop back edges; the Δk_i are between s_2 and any back edge and
- Handle the case $b_i/b_k < 0$

between the loop header and s_1

- Handle the case where j counts downward and the loop exit tests for $j \ge l$ (a loop-invariant lower bound)
- The increments to the induction variable may be "undisciplined" with non-obvious increment:

```
1 while (i<n-1) {
2   if (sum<0) { i++; sum += i; i++ } else { i += 2; }
3   sum += a[i];
4 }</pre>
```

Outline

- 1 Loops
- 2 Dominators
- 3 Loop-Invariant Computations
- Induction Variables
- Array-Bounds Checks
- 6 Loop Unrolling

Loop Unrolling

- For loops with small body, some time is spent incrementing the loop counter and testing the exit condition
- Loop unrolling optimizes this situation by putting more than one copy of the loop body in the loop
- To unroll a loop *L* with header *h* and back edges $s_i \rightarrow h$:
 - Oopy L to a new loop L' with header h' and back edges $s'_i \rightarrow h'$
 - 2 Change the back edges in *L* from $s_i \to h$ to $s_i \to h'$
 - **3** Change the back edges in L' from $s'_i \to h'$ to $s'_i \to h$

Loop Unrolling Example (Still Useless)

before

```
x \leftarrow M[i]
                                                          s \leftarrow s + x
                                                         i \leftarrow i+4
                                                         if i < n goto L'_1 else L_2
                                                  L_1':
L_1:
      x \leftarrow M[i]
                                                          x \leftarrow M[i]
       s \leftarrow s + x
                                                          s \leftarrow s + x
       i \leftarrow i+4
                                                          i \leftarrow i+4
       if i < n goto L_1 else L_2
                                                         if i < n goto L_1 else L_2
L_2
                                                   L_2
```

after

Loop Unrolling Improved

- No gain, yet
- Needed: induction variable i such that every increment i ← i + Δ dominates every back edge of the loop
- \Rightarrow each iteration increments *i* by the sum of the Δ s
- ⇒ increments and tests can be moved to the back edges of loop
 - In general, a separate <u>epilogue</u> is needed to cover the remaining iterations because a loop that is unrolled K times can only do multiple-of-K iterations.

Loop Unrolling Example

only even numbers

with epilogue