Compiler Construction 2016/2017

Loop Optimizations

Peter Thiemann

January 16, 2017



@ Loops



@ Loops are everywhere
= worthwhile target for optimization



Definition: Loop

A loop with header his a set L of nodes in a CFG such that
@ hel
@ (Vs € L) exists path from hto s
@ (Vs € L) exists path from sto h
o (Vt¢ L) (Vsel)ifthereis an edge from tto s, thens=nh

Special loop nodes

@ A loop entry node has a predecessor outside the loop.
@ A loop exit node has a successor outside the loop.




Example Loops



Example Loops
18-1a



Example Loops
18-1b



Example Loops
18-1c



Example Loops

18-1d



Example Loops
18-1e

o§..



Program for 18-1e

1 int isPrime (int n) {
2 i=2;

3 do {

4 Jj = 2;

5 do {

6 if (ixj==n) {
7 return 0;

3 } else {

9 j = 3+1;

10 }

11 } while (j<n);
12 i = 1i+1;

13 } while (i<n);

14 return 1;



Reducible Flow Graphs

@ Arbitrary flow graphs: Spaghetti code

@ Reducible flow graphs arise from structured control
if-then-else

while-do

repeat-until

for

break (multi-level)



Irreducible Flow Graphs
18-2a: Not a loop



Irreducible Flow Graphs

18-2b: Not a loop



Irreducible Flow Graphs
18-2c: Not a loop

@ Reduces to 18-2a: collapse edges (x, y) where x is the
only predecessor of y

@ A flow graph is irreducible if exhaustive collapsing leads to
a subgraph like 18-2a.



e Dominators



Dominators

Objective
Find all loops in flow graph

Assumption
Each CFG has unique entry node sy without predecessors

Domination relation

A node d dominates a node n if every path from sy to n must go
through d.

Remark
Domination is reflexive



Algorithm for Finding Dominators

Lemma

Let nbe a node with predecessors py, ..., px and d # n a node.
d dominates n iff (v1 < i < k) d dominates p;

Domination equation
Let D[n] be the set of nodes that dominate n.

Dl ={n}u () Dlp]

pepred(n]

@ Solve by fixed point iteration

@ Start with (Vn € N) D[n] = N (all nodes in the CFG)
@ Observe that D[sy] = {so} because pred(sy) = 0

@ Watch out for unreachable nodes



Immediate Dominators

Let G be a connected, rooted graph. If d dominates nand e
dominates n, then either d dominates e or e dominates d.

@ Proof: by contradiction

@ Consequence: Each node n # sy has one immediate
dominator idom(n) such that
@ idom(n) #n
@ idom(n) dominates n
© idom(n) does not dominate another dominator of n



Dominator Tree

Dominator Tree

The dominator tree is a directed graph where the nodes are the
nodes of the CFG and there is an edge (x, y) if x = idom(y).

dominator tre

@ back edge in CFG: from nto h so that h dominates n



Finding Loops

Natural Loop

The natural loop of a back edge (n, h) where h dominates nis
the set of nodes x such that

@ hdominates x
@ exists path from x to n not containing h
his the header of this natural loop.




Nested Loops

Nested Loop

If A and B are loops with headers a # b and b € A, then B C A.
Loop B is nested within A. B is the inner loop.

Algorithm: Loop-nest Tree

@ Compute the dominators of the CFG

© Compute the dominator tree

© Find all natural loops with their headers

© For each loop header h merge all natural loops of hinto a
single loop looplh]

© Construct the tree of loop headers such that h; is above h,
if hp € loop[h]

@ Leaves are innermost loops
@ Procedure body is pseudo-loop at root of loop-nest tree




A Loop-Nest Tree



Adding a Loop Preheader

@ loop optimizations need a CFG node before the loop as a
target to move code out of the loop

= add preheader node like P in example




© Loop-Invariant Computations



Loop-Invariant Computations

@ Suppose t < a® b occurs in a loop.

@ If a and b have the same value for each iteration of the
loop, then t always gets the same value.

= t's definition is loop-invariant, but its computation is
repeated on each iteration

Goals

@ Detect such loop-invariant definitions
@ Hoist them out of the loop



Approximation to Loop-Invariance

Loop-Invariance

The definition d : t < ay ® a» is loop-invariant for loop Lif d € L
and, for each a;, one of the following conditions holds:

@ g3 is a constant,
@ all definitions of a; that reach d are outside of L, or

© only one definition of a; reaches d and that definition is
loop-invariant.

Algorithm: Loop-Invariance

@ Identify all definitions whose operands are constant or
defined outside the loop

@ Add loop-invariant definitions until a fixed point is reached




@ Suppose t < a® b is loop-invariant.
@ Can we hoist it out of the loop?

Ly Ly Lo Lo
t <0 t <0 t <0 t <0

Ly Ly Ly Ly
i i1 if i > N goto Ly i i1 M[j]«t
t <adb i1 t <adb i i1
Mli]«+t t «adb M[i]«t t «adb
if i < N goto Ly M[i]«t t «0 Mli]«t

Ly goto Lq M[j]«t if i < N goto L4
X <+t Ly if i < N goto L4 Ly

X <t Ly X+t




@ Suppose t < a® b is loop-invariant.
@ Can we hoist it out of the loop?

Ly Ly Lo Lo
t <0 t <0 t <0 t <0
Ly Ly Ly Ly
i i1 if i > N goto Ly i i1 M[j]«t
t <adb i1 t <adb i i1
Mli]«+t t «adb M[i]«t t «adb
if i < N goto Ly M[i]«t t «0 Mli]«t
Ly goto Lq M[j]«t if i < N goto L4
X <+t Ly if i < N goto L4 Ly
X <t Ly X+t
yes no no no




Hoisting

Criteria for hoisting

A loop-invariant definition d : t +— a & b can be hoisted to the
end of its loop’s preheader if all of the following hold

@ d dominates all loop exits at which t is live-out
@ there is only one definition of t in the loop
© tis not live-out at the loop preheader

@ Attention: arithmetic exceptions, side effects of @

@ Condition 1 often prevents hoisting from while loops:
transform into repeat-until loops.



0 Induction Variables



Induction Variables

C-code for summation of a 1ong array

1 long sum(long a[], int n) {
2 long s = 0;

3 int i = 0;

! while (i<n) {
s += ali];
i ++;

}

return s;

v @ J o W



Induction Variables and Strength Reduction

Consider the corresponding IR

L12

S <+
i

0
0

if i > ngoto Lo

\.mx»'\

i-4
j+a
MIK]
S+ X
i+1



Induction Variables and Strength Reduction

Consider the corresponding IR

L12

s « 0
i <« 0

if i > ngoto Lo

\.mx»'\

before

i-4

j+a

Mik]
S+x
i+1

s « 0
k' «— a
b <« n-4

c <+ a+bv
if k' > ¢ goto Lp
x <+ MIK]

S <+ S+x
K + K +4
goto L4

after



Induction Variables

@ Induction-variable analysis:
identify induction variables and relations among them

@ Strength reduction:
replace expensive operation (e.g., multiplication) by cheap
operation (e.g., addition)

@ Induction-variable elimination:
remove dependent induction variables



Induction Variables

@ A basic induction variable is directly incremented

@ A derived induction variable is computed from other
induction variables

@ Describe an induction variable b’ by a triple (b, o, f), where

@ bis a basic induction variable
@ o0is an offset
e fis afactor

sothatt =o+f-b.

@ A linear induction variable changes by the same amount in
every iteration.




Induction Variables in the Example

@ / is a basic induction variable described by (/,0, 1)
@ jis a derived induction variable:

after j < i - 4, it is described by (/,0,4)
@ k is a derived induction variable:

after k < j + a, it is described by (i, a,4)



Non-linear Induction Variables

Ly :

Lg:

s « 0

if s > 0 goto Lp
i« i+b
j < i-4
x <« Mij

S < S—x
goto L4

i+ i+
S +— S+j
if i < ngoto L4



Non-linear Induction Variables

Ly :

Lg:

s « 0

if s > 0 goto Ly Ly :

i+b
i-4
Mj]

S—X

i+
J o«
X
S <
goto L4
i+
S < S+

if i < ngoto L4

before

i+ 1 Ly :

s «— 0

j o« i-4
b < b-4
n + n-4

if s > 0 goto Lp

jl — _I/"‘l_b/
jo= 7

x <« M
S + S§—x
goto L4
joe fa
S + S+j

if / < n' goto L,

after



Detection of Induction Variables

Basic Induction Variable (in the family of /)

Variable i is a basic induction variable if all definitions of i in
loop L have the form i «— i £+ ¢ where c is loop-invariant.

Derived Induction Variable

Variable k is a derived ind. var. in the family of i/ in loop L if

@ there is exactly one definition of k in L of the form k < j - ¢
or k < j+ d where j is an induction variable in the family of
i and ¢, d are loop-invariant
@ if j is a derived induction variable in the family of /, then
e only the definition of j in L reaches (the definition of) k
e there is no definition of / on any path between the definition
of j and the definition of k
© If jis described by (i, a, b), then k is described by
(i,a-c,b-c)or(i,a+ d,b), respectively.




Strength Reduction

@ Often multiplication is more expensive than addition

= Replace the definition j <— i - ¢ of a derived induction
variable by an addition

Procedure

@ For each derived induction variable j ~ (i, a, b) create new
variable j’

@ After each assignment j < i + ¢ to a basic induction
variable, create an assignmentj < j +c-b

@ Replace assignment to j with j « j’
@ Initialize j/ < a+ i - b at end of preheader



Example Strength Reduction

Induction Variables j ~ (i,0,4) and k ~ (i, a,4)

s « 0 s « 0
i +« 0 i+« 0
j/ « 0
K <+ a
Ly: ifi> ngoto Ly Ly: ifi> ngoto Lo
j o« i-4 IR
k «+ j+a k + K
X <+ MIK] X <« MIK]
S <+ S+X S —~ S+ X
i~ i+1 i o+~ i+
RS
kK +« kK +4
goto L4 goto L4
Lo L

before after



Elimination

@ Apply constant propagation, copy propagation, and dead
code elimination

@ Special case: elimination of induction variables that are

@ not used in the loop
e only used in comparisons with loop-invariant variables
@ useless

Useless variable

A variable is useless in a loop L if
@ itis dead at all exits from L
@ itis only used in its own definitions

Example After removal of j, j/ is useless



Rewriting Comparisons

Almost useless variable

A variable is almost useless in loop L if
@ itis only used in comparisons against loop-invariant values
and in definitions of itself and
@ there is another induction variable in the same family that
is not useless.

@ An almost useless variable can be made useless by
rewriting the comparisons to use the related induction
variable



Rewriting Comparisons

Coordinated induction variables
Let x ~ (i,ax, bx) and y ~ (i, ay, by) be induction variables.
x and y are coordinated if

(x —ax)/bx = (y — ay)/by

throughout the execution of the loop, except during a sequence
of statements of the form z; < z; + ¢; where ¢; is loop-invariant.



Rewriting Comparisons

Letj ~ (i, a;, b;) and k ~ (i, ax, bx) be coordinated induction
variables.

Consider the comparison k < n with n loop-invariant.

Using (j — &;)/b; = (k — ax)/bk the comparison can be
rewritten as follows

bk(j —a)/bj+ax <n
=
br(j — aj)/bj < Nn-—ag
=
{j< (n—ak)bj/bk+aj ifbj/bk >0

j> (n— ak)b,-/bk + a; if bj/bk <0

where the right-hand sides are loop-invariant and their
computation can be hoisted to the preheader.



Rewriting Comparisons

@ (n— ax)b; must be a multiple of by

@ b; and b, must both be constants or loop invariants of
known sign



e Array-Bounds Checks



Array-Bounds Checks

Safe programming languages check that the subscript is
within the array bounds at each array operation.

Bounds for an array have the form 0 </ < N where N >0
is the size of the array.

Implemented by i <, N (unsigned comparison).

Bounds checks redundant in well-written programs =
slowdown

For better performance: let the compiler prove which
checks are redundant!

In general, this problem is undecidable.



Assumptions for Bounds Check Elimination in Loop L

@ There is an induction variable j and loop-invariant u used
in statement sy of either of the forms
e if j < ugoto L else goto L,
if j > u goto L, else goto L,
if u > j goto Ly else goto L,
if u > j goto L, else goto Ly

where L is out of the loop L.

@ There is a statement s, of the form
e if k <, ngoto L3 else goto Ly

where K is an induction variable coordinated with j, nis
loop-invariant, and s; dominates s,.

© No loop nested within L contains a definition of k.
@ kincreases when j does: b;/by > 0.



Array-Bounds Checking

Insert test in preheader so that 0 < k < nin the loop.

@ Let Aky,..., Aky be the loop-invariant values added to k
inside the loop
@ k > 0 everywhere in the loop if

@ k> 0in the loop preheader
o Akt >0...Akp >0



Array-Bounds Checking

Upper Bound

@ Let Ak, ..., Ak, be the set of loop-invariant values added
to k on any path between s; and s, that does not go
through s;.

@ k<natsyifk <n—(Aky+---+ Akp) at s

@ From (k — ax)/bx = (j — &;)/b; this test can be rewritten to
j< bj/bk(n— (Ak1 GFoooF Akp) = ak) =+ g

@ ltis sufficient that
u < bj/bk(n— (Aky +--- + AKp) — ax) + a; because the
test j < u dominates the test k < n

@ All parts of this test are loop-invariant!



Array-Bounds Checking Transformation

@ Hoist loop-invariants out of the loop

@ Copy the loop L to a new loop L' with header label L},

@ Replace the statement “if k <, n goto Lj else goto L}” by
“goto L3”

@ At the end of L's preheader put statements equivalent to
ifk>0ANAKki >0A---ANAKp>0
and u < bj/bx(n — (Aky + - - - + Akp) — ax) + &
goto L}, else goto Ly,



Array-Bounds Checking Transformation

@ This condition can be evaluated at compile time if

@ all loop-invariants in the condition are constants; or
@ nand u are the same temporary, ax = a;, bx = b; and no
AK’s are added to k between sy and s.

@ The second case arises for instance with code like this:

1 int u = a.length;
2 int i = 0;

3 while (i<u) {

4 sum += alil]l;

5 i++;

6}

assuming common subexpression elimination for a.1ength

@ Compile-time evaluation of the condition means to
unconditionally use L or L' and delete the other loop

@ Clean up with elimination of unreachable and dead code



Array-Bounds Checking Generalization

@ Comparison of j < U/ instead of j < u
@ Loop exit test at end of loop body: A test

e s, :if j < ugoto Ly else goto Ly
where L is out of the loop and s, dominates all loop back
edges; the Ak; are between s, and any back edge and
between the loop header and s;
Handle the case b; /by < 0
Handle the case where j counts downward and the loop
exit tests for j > / (a loop-invariant lower bound)
The increments to the induction variable may be
“undisciplined” with non-obvious increment:

while (i<n-1) ¢{
if (sum<0) { i++; sum += i; i++ } else { i += 2; }
sum += ali]l;

}

S N



@ Loop Unrolling



Loop Unrolling

@ For loops with small body, some time is spent incrementing
the loop counter and testing the exit condition

@ Loop unrolling optimizes this situation by putting more than
one copy of the loop body in the loop
@ To unroll a loop L with header h and back edges s; — h:
@ Copy Lto anew loop L’ with header /' and back edges
si—H
@ Change the back edges in L from s; — htos; — W
© Change the back edges in L' from s, — W to s, — h



Loop Unrolling Example (Still Useless)

Ly :

Ly L
X <« Mji]
S — S+X
i+ i+4
if i < ngoto L else Lo
Lo Lo
before

X <« M

S +— S+X

i« i+4

if i < ngoto L else L
X <« M

S +— S+X

i «~ i+4

if i < ngoto Ly else Lp

after



Loop Unrolling Improved

4ol

No gain, yet

Needed: induction variable i/ such that every increment
i + i+ A dominates every back edge of the loop

each iteration increments i by the sum of the As

increments and tests can be moved to the back edges of
loop

In general, a separate epilogue is needed to cover the
remaining iterations because a loop that is unrolled K
times can only do multiple-of-K iterations.



Loop Unrolling Example

if i < n—4 goto Lq else Lo

Ly: x + M

S «— S+X

X <« M[i+4]

S «— S+X

i <« i+8

if i < ngoto L else Lo
Lo

only even numbers

L1Z

L
Lo :

X
S <«
X
S «
i+

Mi]
S+ X
M[i + 4]
S+ X
i+8

if i < n—4 goto Ly else L,
if i < ngoto Ly else L3

X
S
i

Mii)
S+ x
i+4

with epilogue



	Loops
	Dominators
	Loop-Invariant Computations
	Induction Variables
	Array-Bounds Checks
	Loop Unrolling

