Compiler Construction 2016/2017

Register Allocation for Programs in SSA-Form

Peter Thiemann

January 26, 2017

0 Motivation

Foundation: Sebastian Hack, Daniel Grund, Gerhard Goos.
Towards Register Allocation for Programs in SSA-Form. 2005.

@ register allocation maps temporaries to physical registers
such that their live ranges do not interfere

@ common technique: graph coloring [Chaitin] of the
interference graph

Example: Program and its Interference Graph

Three Registers Needed

b+ a+a e« 1

c«a+1 d+ a+1
d+« b+1 store e

store ¢

Example Program in SSA Form

b« a+a e« 1 °
c+a+i dy < a+1
dy < b+1 store e
store ¢
S S S
d3 + ¢(dy, da) : N\ & @
store d3

@ Two registers available: but copy instruction needed
@ Three registers available: use all and eliminate copy

SSA and Register Allocation

@ ¢-functions replaced by moves before register allocation
@ moves lead to coalescing
@ may lead to spill

Background

@ any undirected graph is inference graph of a program

@ finding a minimal k-coloring of a general graph is
NP-complete

@ hence, the heuristic feedback algorithm
Build — Coalesce — Color — Spill?

@ [coalescing changes colorability of graph]

Background Graph Theory

Definition: Chordal Graph, Triangulated Graph

A graph is chordal (also: triangulated) if every cycle of four or
more nodes has a chord, i.e., two the nodes from the cycle are
connected by an edge that does not belong to the cycle.

source: http://upload.wikimedia.org/wikipedia/commons/thumb/3/34/Chordal-graph.svg/
220px-Chordal-graph.svg.png

http://upload.wikimedia.org/wikipedia/commons/thumb/3/34/Chordal-graph.svg/220px-Chordal-graph.svg.png
http://upload.wikimedia.org/wikipedia/commons/thumb/3/34/Chordal-graph.svg/220px-Chordal-graph.svg.png

(a) (b) (c)

Background Graph Theory

@ Clique: fully connected subgraph.
@ Clique number w(G): Size of largest clique of G.

@ Chromatic number x(G): Minimum k such that G is
k-colorable.

w(G) < x(G)

Perfect Graphs

@ If (V,E)isagraphand V' C V,
then the subgraph induced by V'is (V' En (V' x V')).

@ A graph is perfect if the chromatic number of each induced
subgraph is equal to the size of its largest clique.

Facts about perfect graphs
° w(G) =x(G)
@ graph coloring can be solved in polynomial time

Graph Coloring and SSA Form

Insight

Interference graphs of SSA programs are chordal graphs
see also [Pereira&Palsberg 2005] [Brisk 2005]
[Bouchez,Darte&Rastello 2005]

Fact
Every chordal graph is perfect

Consequences

@ number of registers needed = size of largest clique
largest # of variables that are live at the same time

@ spilling done once and for all before register allocation
@ spilling and coaleascing can be decoupled

Graph Coloring and SSA Form
Direct Path [Pereira&Palsberg 2005]

@ A vertex is simplicial if its neighborhood is a clique.

@ A simplicial elimination ordering for G= (V,E). isa
bijection o : {1,...,|V|} — V such that o(/) is simplicial in
the subgraph induced by {c(1),...,0(i)}.

@ Greedy coloring (i.e., the algorithm that we discussed
earlier) is optimal if nodes are selected according to a
simplicial elimination ordering.

@ Algorithm Maximum Cardinality Search recognizes and
determines a simplicial elimination ordering ¢ of a chordal
graph in O(|E| + |V]) time.

Maximum Cardinality Search

MAXIMUMCARDINALITYSEARCH
input: a chordal graph G = (V, E)
output: a simplicial elimination ordering o
forv e Vdo
A(v) «<0
fori«<1,...,]V|do
choose v € V such that Vu € V: A(v) > A(u)
o(i) v
for u € N(v) do
AU) A(u) +1
V+— V\{v}

Graph Coloring and SSA Form
But the story does not end here . ..

@ Coloring a chordal graph takes O(| V| + |E|) time

@ Given the dominator tree and the live ranges, coloring
takes O(w(G) - n) time
e nnumber of instructions
e w(G) size of largest clique in G
< number of registers after spilling

@ Usually, ¢-functions — move instructions
@ Early coaleascing is harmful
@ Instead of coaleascing, try to assign the same color

e Foundations

@ ¢-functions are not functions, but a notational device
@ ¢-functions do not cause interference

@ There is no ordering among different ¢-functions at the
beginning of a block; ideally, they should “evaluate”
simultaneously

= different notation
yi < é(X11,..., X1n) Y1 X111 ... Xip
: : = : — O :

Ym < &(Xmt,- .-, Xmn) Ym Xm, .. Xmn

Interference Graphs of SSA Programs

Let Dy be the node defining v and G = (V, E) the interference
graph.
Lemma 1

If two registers v and w are live at node n, then
either D, dominates D, or D,, dominates D,,.

Lemma 2
If v and w interfere and D, dominates D, then v is live at Dy,.

Lemma 3

Let (u,v) and (v, w) € E be edges, but (u, w) ¢ E.
If D, dominates Dy, then D, dominates Dy,.

Interference Graphs of SSA Programs are Chordal

Proof of chordality
Consider a cycle of length n > 4 in the interference graph:

but no edges between x; and x;, for 1 </ <j<nandj—i>1.
Assume that Dy, dom Dy,. By induction, using Lemma 3,

Dy, dom Dy, ,, for 1 < i < n.

By the edge (x4, x»), there is some block ¢ where x; and x, are
live and ¢ must be dominated by all Dy, for 1 </ < n. Thus, for
each x; (i > 1) there is a path from Dy, to ¢, which does not go
through Dy, . Hence, the edge (xy, x;) must be in the graph.
Contradiction.

© spilling

Spilling

@ Problem: the interference graph does not reflect the
number of uses of a register

= 3 work to break the live ranges in smaller pieces

@ Bouchez [2005] shows that “splitting live ranges to lower
the register pressure to a fixed k while inserting a minimum
number of reload instructions is NP-complete”

A Foundation for Spilling

Lemma

For each clique C C G with Vg = {v4,..., vy}, thereis a
permutation o : Vo — V¢ such that D, (,,) dominates Dy, ,) for
1<i<n.

Theorem

Let G be the interference graph of an SSA program and C be
an induced subgraph of G. C is a clique in G iff there exists a
label in the program where all V are live.

Spilling with Belady’s Algorithm

@ Let ¢/ be a node where | > k variables are live

@ Belady’s algorithm spills those / — k variables whose uses
are farthest away (in minimum number of instructions
executed) from ¢ as computed by nuse.

00 if v not live at ¢

nuse(¢,v) =< o if v used at ¢

nuse'(¢,v) otherwise

nuse€' (¢,v) =1+ min nuse(?,v)
¢'esuccll]

@ Apply Belady’s algorithm to each basic block B

Belady’s Algorithm for Basic Block B

@ Let P be the set of variables passed into block B: the
variables live-in at B and the results of the ¢-functions

@ Let o : P — P be a permutation which sorts P ascendingly
according to nuse

= Pass the set of variables J = {p,(1), - - -, Po(min(k,1) } i
registers

@ Traverse the nodes in a basic block from entry to exit.

@ Let Q be the set of all variables currently in registers
(1Q] < k, initially Q « J)

Belady’s Algorithm for Basic Block B
continued

@ At instruction C:(Y1,-Ym) < 7 (X1, ..., Xn)

Dy U
set R« U\ Q

e if R +# (), then

e reloads have to be inserted and max(|R| + |Q| — k,0)
variables are removed from Q
e remove those with highest nuse

@ If v € Jis displaced before used, then v need not be
passed to B in a register.

@ Let ing be the set v € J which are used in B before they
are displaced.

Belady’s Algorithm for Basic Block B
continued

@ Instruction 7 displaces max(|Dy| + |Q| — k, 0) variables
from Q

@ To decide which variables to displace we use nusée/(¢, v)

@ Let outg be the set Q after processing the last node in a
block

Belady’s Algorithm Extended

@ To connect the blocks, ensure that each variable in ing is in
a register on entry to B.

@ At the end of each predecessor P’ of B insert reloads for
all ing \ outp: (recall edge splitting)

Q Coloring

Coloring Chordal Graphs

@ perfect elimination orderings (PEQO)

@ ordering in which variables are removed from graph

@ basis: simplicial nodes (all neighbors belong to the same
clique)

@ Lemma: Every chordal graph has a simplicial node.

@ Removing a node from a chordal graph preserves
chordality

@ PEOs are related to the dominance tree

Coloring Chordal Graphs

Theorem

An SSA variable v can be added to a PEO of G if all variables
whose definitions are dominated by the definition of v have
been added to the PEO.

Proof

For a contradiction, assume v is not simplicial. Hence, v has
two neighbors a and b which are not connected.

As all variables whose definitions are dominated by D, are
already part of the PEO and removed, it must be that D,
dominates D,. By a previous lemma, D, dominates Dy,
contradicting the assumption.

Coloring Chordal Graphs

COLORPROGRAM (Program P)
COLORRECURSIVE (entry block of P)

COLORRECURSIVE (Basic block B)
assigned <« colors of the live-in(B)

for each instruction (b, ..., bn) < 7(ay,...,an) from entry
to exit do
forac {aj,...,an} do

if last use of a then
assigned <« assigned\ color(a)
for be {by,...,bs} do
color(b) < one of allcolors \ assigned
for each C where B = idom(C) do
COLORRECURSIVE(C)

e Coalescing

Coalescing Phase

@ Goal: minimize number of copy/move instructions
@ Causes of copy/move instructions

e ¢-functions
o register constraints of target architecture (pre-colored
nodes)

Implementation of ¢-functions

ip 1
ji 1

[
(2)-el} 2]

if iy < 100
return j s +iz | |
ip — j3 +1

@ Seems to require two registers

@ However, implementing ¢ by the moves i5 < io; j3 + fo
creates an interference between 5 and j»

Interference from Implementation of ¢

i ———o |

Removal of ® without Using Extra Registers

@ Consider (by,...,bp) < o(ai,...,an)

@ A multi-assignment that permutes the contents of the
registers according to o

@ For the example program, a permutation is needed that
swaps two registers:

Example Program After Register Assignment

Ry «+ 1
Ay 1
Ri)\ Lo| A R
Ro R Ry
if Ay < 100
return Ry Ry « R> + Ay |
Ry < Ry + 1

Example Where Copying is Needed

iy 1
(5)=<li 2]
I3 ik

if iy < 100

return j3 fo=i3+iz | |
ip < jg +1

@ o duplicates jy into i3 and j3

Example Where Copying is Needed

ip 1
11

[
(2)=eln 2]

if iz < 100
return j i +iz | |
ip +— j3g+1

@ j; interferes with ¢

Duplication in the Removal of ¢

@ Duplication (i.e., extra registers) are only needed if
e a ¢ argument is used multiple times in one column
e a ¢ argument is live-in at the block of ¢
@ Interference with a value defined by ¢ does not require
duplication.

Implementation of Permutations

Register swaps Swap instructions of the processor;
xortrick: a<—ad b;b+— ad b;a+adb
Moves assuming a free backup register, each cycle C can

be implemented with |C| + 1 move instructions
for example, sat in MIPS

Optimizing $-functions

@ The cost of implementation for a permutation o is related to
the number of fixpoints of o

@ Variable x is a fixpoint if

(... x...)=0c(...,x,...)

and x and x’ are assigned the same register
= no code needs to be generated for a fixpoint

Optimizing $-functions

Problem Statement

I : ~—
ym Xm1 e an
Given a k-coloring f: V — {1,..., k} define the cost of ¢ by
n

() =Y costi(y;, xj)

i=1 j=1

i f
where cost¢(a, b) = {Wab it(a) # 1(b) with wy, > 0 the cost

0 otherwise
of copying b to a.
The overall cost of a program P under coloring f is

c(P.f)= Y cl0)

£ is ®-node

Optimizing $-functions

Problem Statement

SSA-Maximize-Fixed-Points

Given an SSA program P and its interference graph G. Find a
coloring f of G for which ¢(P, f) is minimal.

SSA-Maximize-Fixed-Points is NP-complete.

Heuristics for Optimizing $-functions

@ Start with a k-coloring

@ Modify color assignments to lower the cost
Non-local changes in the coloring may be required!

@ A valid k-coloring is always maintained
@ For each row j of the ®-function

P1 a ... a1
: ~ o : :
Pm am; ... d@mn

define an optimization unit (OU) consisting of p; and all a;
that do not interfere with p; (at least one)

Perm-Optimizer

COALESCE(G)
pinned < ()
for each OU (p, a4, ..., ax) do
for each color ¢ assignable to p do {Init}
C. + Glp, a1, ..., ax { conflict graph }
S¢ < max weighted stable subset of C. {weight of a; is wp;, }
Insert (c, C¢, S¢) in min-queue Q { ordered by w(S;) }
repeat { Test }
candidates + 0
g + f {copy the current coloring}
pop (c, C, S) from Q
C' «+ TesT(c, C, S)
if C' # nil then
S’ < maximum weighted stable subset of C’
Insert (¢, C’, S') into Q
until C’' = nil
if |candidates| > 1 then
pinned < pinned U candidates
f + g { update coloring }

Perm-Optimizer Il

TEST(C, C, S)
{S={p,ai,...,a} processed in this order }
for uc Sdo
(s,v) < TRYCOLOR(u,nil, c)
if s = ok then
candidates = candidates U {u}
else if s = candidate and v # p then
return (Vg, Ec U {(v,u)})
else
return (Vg, EcU{(u,u)})
return nil

Perm-Optimizer I

TRYCOLOR(V € Vg, u € Vg, 0)

cv < g(v)

if c = ¢, then
return (ok,nil)

else if v € pinned then
return (pinned,v)

else if v € candidates then
return (candidate,V)

else if cis not allowed for v then
return (forbidden,V)

for each nwith (v,n) € Eg, n# u, g(n) = cdo
{ try to swap colors with neighbor }
(s, V') < TRYCOLOR(n, v, cy)
if s+# ok then

return (s,Vv’)
g(v)«~c
return (ok,nil)

@ Register Constraints

Register Constraints

@ Most processor architectures have instructions where the
operands are restricted to specific registers
@ Graph coloring approach
@ split live range at constraining definition
@ add one pre-colored node for each register
© connect definition with all pre-colored nodes, except the
one with the required color
@ For chordal graphs, coloring is in P iff each color is used
only once in pre-coloring.
Unrealistic constraint for register allocation

= Delegate to the Perm-Optimizer

Register Constraints by Perm-Optimization

@ Insert (&) = ®[a;] (for all live registers) in front of each
instruction with register constraints

all live variables can change register at that point
interference graph breaks in two unconnected components

each color occurs only once as pre-coloring in each
component

@ first do coloring, then Perm-Optimization

Pl

Example Register Constraints
Code and Colored Interference Graph

ar, <« a, B
b +— ... b Fs
c « b+t o e
d « a+1 d, Ry

er, <+ b+c e Ry
f « c+d

Example Register Constraints with ¢ Inserted
Code and Colored Interference Graph

-
bR
C <« b+1 : ¢, Ry
Y d + a+ 1b s
o “ c , v, Ry
d/ d ¢’, Ry
d, R,
er, «— b +c on ’
f « c+d

®f Ry

e Conclusion

Conclusion

@ Interference graphs for SSA programs are chordal
= main phases of register allocation (spilling, coloring,

coaleascing) can be decoupled

@ Procedure for spilling based on the correspondence live
sets <> cliques in interference graph
(without constructing the graph)

@ (Optimal spilling via ILP solving)

@ Optimal coloring in linear time (w/o constructing the graph)

@ Optimal coalescing is NP-complete

e Heuristic
o (Optimal coalescing via ILP solving)

@ Register constraints expressible

Alternatives

@ Pereira&Palsberg [APLAS 2005] observe that 95% of the
methods in the Java 1.5 library give rise to chordal
interference graphs and give an algorithm for register
allocation under this assumption

@ Pereira&Palsberg [PLDI 2008] give a general, industrial
strength framework for register allocation based on puzzle
solving. It first transforms its input to elementary programs,
a strengthening of SSA programs.

@ Pereira&Palsberg [CC 2009] propose a different, spill-free
way to perform SSA elimination after register coloring

@ Pereira&Palsberg [CC 2010] present Punctual Coalescing,
a scalable, linear time, locally optimal algorithm for
coalescing.

@ Hack&Good [PLDI 2008] register coalescing by graph
recoloring.

@ Braun&Hack [CC 2009] present an improved spilling
algorithm for programs in SSA form.

	Motivation
	Foundations
	Spilling
	Coloring
	Coalescing
	Register Constraints
	Conclusion

