Compiler Construction 2012/2013

Functional Programming Languages

Peter Thiemann

February 6, 2017

Functional Programming Languages

@ Based on the mathematical notion of function
@ Equational reasoning: f(a) = f(a)
@ Pure/impure functional programming languages
@ Characteristic feature:
higher-order functions with nested lexical scope
see also: delegates, anonymous classes, . ..
@ Well known functional programming languages

o OCaml (F#, Standard ML),
o Haskell,
e Lisp (Scheme, Racket, Clojure)

Q FunJava

Three Flavors of FP

@ Minidava with higher-order functions
@ Side effects permitted, cf. Scheme, ML
@ Impure, higher-order functional language

@ FundJava without side effects
@ Pure, higher-order functional language

LazyFundJava

@ PureFundava with lazy evaluation
@ Nonstrict, pure functional, cf. Haskell

FundJava, the Language

MiniJava + function types

ClassDecl ::= type id = TypeExp;

TypeExp == TypeExp —> TypeExp
| (TypeList) —>TypeExp
| (TypeExp)
| Type

TypeList = TypeExp TypeRest*
| €

TypeRest := | TypeExp

FundJava, the Language

MiniJava + function types

ClassDecl ::= type id = TypeExp;

TypeExp == TypeExp —> TypeExp
| (TypeList) —>TypeExp
| (TypeExp)
| Type

TypeList = TypeExp TypeRest*
| €

TypeRest := | TypeExp

type constl = int —> int —-> int

type arithT = (int, int) —-> int

type runariT = arithT -> int -> int -> int
type thunkT = () —-> int

FundJava, the Language

Minidava + function calls

Exp := Exp(ExpList)
| Exp.id
@ If v is an object with method int m (int[]),thenv.m
evaluates to a function of type (int[]) -> int.

@ Evaluating v.m does not invoke the method.

FundJava, the Language

Expressions and Statements

MethodDecl ::= public Type id(FormalList) Compound

Compound ::= {VarDecl* MethodDecl* Statement*
return Exp;}

Exp = Compound

| if (Exp) Expelse Exp

@ Variables and functions/methods can be declared at the
beginning of each block. (Nested functions)

@ return produces the result for the next enclosing block.
{ return 3;} + { return 4;} yields 7.

@ The if statement is replaced by an i f expression.

FunJava Example Program

type intf = int -> int
class C {
public intf add (n: int) {
public int h (int m) { return m+n; }
return h;
}
public intf twice (f: intf) {
public int g (int x) { return £ (f (x)); }
return g;
}
public int test () {
intf addrFive = add (5);
intf addSeven = add (7);
int twenty = addFive (15);
int twentyTwo = addSeven (15);
intf addTen = twice (addFive);
int seventeen = twice (add (5)) (7);
intf addTwentyFour = twice (twice (add (6)));
return addTwentyFour (seventeen);

@ Closures

Representation of Function Values

Function pointer

Without nested functions (C)

@ function pointers
Function value = address of function’s code

@ In the IR:

MOVE (TEMP (t_ff), NAME (L_function))
CALL (TEMP (t_ff), ... parameters ...)

Representation of Function Values

Closures

@ Function pointer insufficient for nested functions h and g:

@ where does n come from?
@ where does £ come from?

@ Solution: represent function value by a closure

Closure

@ Object with one method and several instance variables
@ Closure = code address + environment
@ Environment = vector of values of free variables

Activation Records

@ Function (add) may return a locally defined function (h)

= This function h may refer to parameters and local variables
of the enclosing function add (in particular, n)

= Parameters and local variables cannot be allocated on the
stack, but must be put in an activation record on the heap.

@ Activation record holds a static link to the last activation
record of the next enclosing function.

= Need to create a closure object for h that contains the free
variable n.

Closure for n

Translation to Java

interface Intf Closure {
public int apply(int n);
}
public Intf_Closure add (int n) {
static class H implements Intf_Closure {
int n;
H(int n) {
this.n = n;
}
int apply (int m) {
return m+n;

}

return new H(n);

e PureFundJava

Immutable Variables

@ Equational reasoning not sound for Fundava

= Consider a restricted language PureFunJava
= PureFunJava prohibits side effects

e No assignments to variables
(exception: variable initialization)
e No assignments to fields of records
(exception: initialization in the constructor)
e No calls to side-effecting external functions like print1ln

@ Programs in functional style produce new objects (partial
copies) instead of changing existing ones.

Special Constructor Syntax

Syntax changes for PureFundava

ClassDecl := classid
{ VarDecl* MethodDecl* Constructor }
Constructor ::= public id (FormallList) { Init* }

Init = this.id=id

Continuation-Based 1/0

@ How to do I/O if side effects are disallowed?
@ Answer: Enforce proper sequencing by using function calls
@ |/O visible to type checker: ans type

Interface for functional I/O

type ans // special built-in type
type intConsumer = int -> ans
type cont = () —-> ans

interface ContIO {
public ans readByte (intConsumer c);
public ans putByte (int i, cont c);
public ans exit ();

Language Changes

@ Remove System.out.println
@ Add functional I/O types and operations
@ Remove assignment and while loops

@ Each block is limited to one statement following the
declarations

PureFunJava, Example Program

public ans getInt (intConsumer done) {
public ans nextDigit (int accum) {
public ans eatChar (int dgt) {
return if (isDigit (dgt))
nextDigit (accumx10+dgt-48)
else done (accum);
}
return ContIO.readByte (eatChar);
}

return nextDigit (0);

Optimization of PureFunJava

@ PureFundava is a proper subset of Fundava

@ All existing optimizations apply

@ Computing the control flow graph is more demanding

@ Additionally, optimization can exploit equational reasoning

Exploiting Equational Reasoning

Example Program

int al = 5;
int bl = 7;
G r = new G (al, bl);

int f (r); // no change of r possible

b
Il

int v = r.a + r.b; // must be equivalent to
al + bl;

int vy

e Inline Expansion

Inline Expansion

Definition: Inline Expansion (Inlining)
@ Replace a function call by its definition

@ Substitute actual parameter expressions for formal
parameters

@ Essential optimization for FP

e many short functions
e specializes higher-order functions
e enabled by purity

@ Further optimization enabled after inline expansion

Avoiding Variable Capture

Program with hole in scope
int x = 5
int g (int y) {
return y+x;
}
int £ (int x) {
return g (1)+ x;
}
void main () { ... £(2)+x ... }

Avoiding Variable Capture

Program with hole in scope
int x = 5
int g (int y) {
return y+x;
}
int £ (int x) {
return g (1)+ x;
}

void main () { ... £(2)+x ... }

Naive inlining of g into f (WRONG)
int £ (int x) {
return { return 1+x; } + X;

Avoiding Variable Capture

a-Conversion — Renaming of Bound Variables

First rename local variable
int g (int y) {
return y+x;

}

int £ (int a) { // renamed x —-> a
return g (1)+ a;

}

Avoiding Variable Capture

a-Conversion — Renaming of Bound Variables

First rename local variable
int g (int y) {
return y+x;

}
int £ (int a) { // renamed x —-> a
return g (1)+ a;

Then substitute g into f
int £ (int a) {
return { return 1+x; } + aj;

|

Avoiding Variable Capture

a-Conversion — Renaming of Bound Variables

First rename local variable
int g (int y) {
return y+x;

}
int £ (int a) { // renamed x —-> a
return g (1)+ a;

}

Then substitute g into f
int £ (int a) {
return { return 1+x; } + a;

Alternative

Rename all local variables so that each variable is bound at
most once in the program.

|

Inline Expansion Algorithm

If actual parameters are variables ...

Let f(Ty a1,..., Tnh an)B be in scope
Let 7(i, ..., in) be a call with j; variables
Replace the call with

B[a1 »—>i1,...,an»—> In]

Inline Expansion Algorithm

If actual parameters are variables ...
Let f(Ty a1,..., Tnh an)B be in scope

Let 7(i, ..., in) be a call with j; variables
Replace the call with

If actual parameters are expressions . ..
Let f(Ty a1,..., Th an)B be in scope

Let f(e1,. .., en) be a call with e; non-trivial expressions
Rewrite the call to
{T‘] I1 = 61, Tn in = en, return B[a1 — i‘],...,an — In]}

where j; are fresh variables

Comments on Inline Expansion Algorithm

Why introduce fresh variables?

@ Let int double (j) { return j+j; }

@ Consider expanding the call double (g (x)) ignoring
that the actual argument is a non-trivial expression
@ Result: g (x) + g (x)
e Computation is repeated (expensive)
e If impure, then side effect of g (x) is repeated and each call
may yield a different result
e (no problem if g is side effect-free)

@ Introducing fresh variables avoids these problems:
{ 1 =g (x); return i+i; }

Comments on Inline Expansion Algorithm

Why introduce fresh variables?

@ Let int double (j) { return j+j; }

@ Consider expanding the call double (g (x)) ignoring
that the actual argument is a non-trivial expression
@ Result: g (x) + g (x)
e Computation is repeated (expensive)
e If impure, then side effect of g (x) is repeated and each call
may yield a different result
e (no problem if g is side effect-free)

@ Introducing fresh variables avoids these problems:
{ 1 =g (x); return i+i; }
@ Remarks

o Order of aux. definitions must match evaluation order
e An implementation would handle each argument separately
e Dead function elimination possible after inlining

Inlining Recursive Functions

Some Example Code

class list {int head; int tail;} // constructor omitted
type observeInt = (int, cont) -> ans

public ans dolList (observeInt £, list 1, cont c) {

return
if (l===null)
c O
else {
public ans doRest () {

return dolList (f, l.tail, c);
}
return £ (l.head, doRest);
}i

}
public ans printTable (list 1, cont c) {

return doList (printDouble, 1, c);

Inlining Recursive Functions

Inlining doList into printTable does not yield the desired
result:

public ans printTableDL (list 1, cont c) {

return
if (l===null)
c O
else {
public ans doRest () {

return doList (printDouble, 1l.tail, c);

}
return printDouble (l.head, doRest);

i

Inlining Recursive Functions

Inlining doList into printTable does not yield the desired
result:

public ans printTableDL (list 1, cont c) {

return
if (l===null)
c O
else {
public ans doRest () {

return doList (printDouble, 1l.tail, c);

}
return printDouble (l.head, doRest);

i

@ Only the first element is processed directly with printDouble,
the remaining are still processed with the generic doList

Inlining Recursive Functions

Loop-Preheader Transformation

Given recursive function T f(ay,...,an)B
Transform to

T f(&,...,a){
T f'(ay,...,an)B[f — f]
return f/(&,,...,ap);
}

Inlining Recursive Functions

Loop-Preheader Transformation

Given recursive function T f(ay,...,an)B
Transform to

T f(&,...,a){
T f'(ay,...,an)B[f — f]
return f/(&,,...,ap);
}

@ Inlining copies specialized local function f" into the target

Inlining Recursive Functions

Loop-Preheader Transformation Applied

public ans doList (observeInt fX, list 1X, cont cX) {
public ans doListX (observeInt £, list 1, cont c) {

return
if (l===null)
c (s
else {
public ans doRest () {

return doListX (f, 1l.tail, c);
}
return £ (l.head, doRest);
bi
}
return doListX (fX, 1X, cX);

Inlining Recursive Functions

Loop-Preheader Transformation Applied

list 1X, cont cX) {

(observeInt f£fX,
cont c¢) {

public ans doList
(observelInt £, list 1,

public ans doListX
return
if (l===null)
c O;

else {
public ans doRest () {
return doListX (f, 1l.tail, c);

}

return £ (l.head, doRest);
}i

}

return doListX (fX, 1X, cX);

@ Observation: arguments £ and c are loop invariant

@ Replace by outer parameters

Inlining Recursive Functions

Hoisting Loop-Invariant Arguments

public ans doList (observeInt £, list 1X, cont c) {
public ans doListX (list 1) {

return
if (l===null)
c (s
else {
public ans doRest () {

return doListX (l.tail);
}
return f (l.head, doRest);
bi
}
return doListX (1X);

Inlining Recursive Functions

Inlining of doList into printTable continued

public ans printTable (list 1X, cont c) {
public ans doListX (list 1) {

return
if (l===null)
c O;
else {
public ans doRest () {

return doListX (l.tail);

}
return printDouble (l.head, doRest);

bi
}
return doListX (1X);

@ printDouble is called directly and can be inlined!

Inlining Recursive Functions

Cascaded Inlining

public ans printTable (list 1X, cont c) {
public ans doListX (list 1) {

return
if (l===null)
c O
else {
public ans doRest () {

return doListX (l.tail);
}

return {
int 1 = 1.head;
public ans again() {return putInt (i+i, doRest);}

return putInt (i, again);
bi
}i
}
return doListX (1X);
}

Avoiding Code Explosion

@ Inline expansion copies function bodies
= The program text becomes bigger

= Expansion may not terminate
@ Controlling inlining

@ Expand very frequently executed call sites
determine frequency by static estimation or execution
profiling

@ Expand functions with very small bodies

© Expand functions called only once
rely on dead function elimination

e Closure Conversion

Closure Conversion

@ Closure = code address + environment

@ One representation of closures: objects

@ Closure conversion transforms the program so that no
function appears to access free variables

@ Approach: represent a function value of type t1 —-> t2 by
an object implementing the interface
interface I_tl t2 {
public t2 exec (tl x);
}

@ There is a separate implementation class for each function,
as the free variables differ

Closure Conversion

Example

class doRest implements I_list_answer {
doListX dlx; list 1;
public ans exec () { return dlx.exec (l.tail); }
}
class again implements I_void_answer {
doListX dlx; 1list 1; int 1i;
public ans exec () {return putInt (i+i, new doRest (dlx, 1));}
}
class doListX implements I_list_answer {
cont c;
public ans exec (list 1) {
return
if (l===null) c.exec ();
else {
return { int i1 = 1l.head;
return putInt (i, new again (this, 1, 1i)); };
bi
}
class printTable implements I_list_cont_answer {
public exec (list 1X, cont c) {
return new doListX (c).exec (1X);

e Tail Recursion

Tail Recursion

@ Functional programs have no loops (e.g., no while, for,
repeat)
@ Efficient (iterative) recursion through tail recursion

@ A function is tail recursive if each recursive function call is
a tail call

@ Tail calls defined by contexts:

B = {t1 Xq :e1;...tan:en; return B/}
B = 0O|B|if(e)B elseH

@ Acallto g is atail call if it occurs in a function definition as
follows
tf(ay,...,an)Blg(e1,...,em)]

Implementation of Tail Calls
Example

int g (int y) { int x = h(y); return f(x); }
@ h(y) is not a tail call
@ f (x) is atail call
@ Tail calls can be implemented more efficiently by a jump
instead of a call

@ Calling sequence for tail call:

@ Move actual parameters into argument registers

@ Restore callee-save registers

© Pop stack frame of the calling function (if it has one)
© Jump to the callee

Effects of Tail Calls

@ InprintTable, all calls are tail calls
= Can all be implemented with jumps
@ The generated code is very similar to the code generated
for the equivalent imperative program (with a while loop)
@ Difference: activation block on the heap vs. on the stack

@ Amendment

e By compile-time escape analysis: objects that do not
escape can be stack-allocated
e By extremely cheap heap allocation and garbage collection

ﬂ Lazy Evaluation

Lazy Evaluation

@ p-reduction: important law in equational reasoning
@ Reminder S-reduction: if f(x) = B, then f(e) = B[x — €]
@ PureFundJava violates this law

int loop (int z) {
return
if (z>0) 42
else loop (z));
}
int £ (int x) {
return if (y>8) x
else -y;
}
return f

(loop (v));

}

int loop (int z) {
return
if (z>0) 42
else loop (z));
}
int £ (int x) {
return if (y>8) x
else -y;
}
return if (y>8) loop
else -vy;

@ For y = 0, code on left loops, but code on right terminates

Unsound 5-Reduction in PureFundJava

(v)

Remedy: LazyJava With Call-By-Name Evaluation

@ LazyJava
e same syntax as PureFunJava
e but with lazy evaluation:
expressions are only evaluated if and when their value is
demanded by execution of the program
@ First step: call-by-name evaluation
e Transform each expression to a thunk

e Thunk: parameterless procedure that yields the value of the
expression when invoked

e Advantage: evaluation only when needed
e Disadvantage: evaluation can be repeated arbitrarily often

Introducing Thunks

Original Program (lookup in binary tree)

class Tree {
String key;
int binding;
Tree left;
Tree right;

}

public int look (Tree t, String k) {
int ¢ = t.key.compareTo (k);
if (c < 0) return look (t.left, k);
else if (¢ > 0) return look (t.right, k);
else return t.binding;

Introducing Thunks

Transformed Program (lookup in binary tree)

type th_int = () -> int;
type th_tree = () —-> Tree;
type th_string = () -> String;

class Tree {
th_String key;
th_int binding;
th_tree left;
th_tree right;
}
public th_int look (th_tree t, th_String k) {

th_int ¢ =t ().key ().compareTo(k);
if (¢ () < 0) return look (t ().left, k);
else if (c () > 0) return look (t ().right, k);

else return t () .binding;

Call-By-Need Evaluation

Second step: call-by-need evaluation
= Call-by-name evaluation with caching of result

First invocation of a thunk stores result in memo slot of the
thunk’s closure

@ Further invocations return the value from the memo slot
@ (exploits / requires purity)

Call-By-Need Transformation

Example

Recall

int vy;

f (loop (v))
is transformed to

th_int y;
f.exec (new intThunk () {
public int eval () {

return loop.exec (y);
Vi
})
With supportive definitions (requiring assignment)

abstract class intThunk {
int memo; boolean done = false;
abstract public int eval();
public int exec () {
if (!done) {
memo = this.eval();
done = true;
}

return memo;

Example Evaluation of a Lazy Program

int fact (int i) {

return if (i==0) 1 else 1 *x fact (i-1);
}
Tree t0 = new Tree ("",0,null,null);
Tree tl = t0.enter ("-one", fact (-1));
Tree t2 = tl.enter ("three", fact (3))

7
return putInt (t2.look ("three", exit));

@ Fortunately, fact (-1) is never evaluated!

Optimization

@ All the standard optimizations apply
@ Additional optimization opportunities due to equational
reasoning
e Invariant hoisting
e Dead-code removal
o Deforestation

Invariant Hoisting

type intfun = int -> int type intfun = int -> int
intfun f (int 1) { intfun f (int i) |
public int g (int j) { int hi = h (i);
return h (i) * j; public int g (int j) {
} return hi » j;
return g; }
} return gj;

}
@ In lazy functional language, left can be transformed into right

@ Incorrect in strict language: h (1) may not terminate or yield
different results on each call

Dead-Code Removal

int £ (int 1) {
int d = g (x);
return i+2;

@ dis dead after its definition
@ The LFL compiler removes this definition
@ Incorrect in strict language!

Deforestation

Example Program

Common modularization in FP

class intList {int head, intList tail;}
type intfun = int -> int;
type int2fun = (int,int) -> int;

public int sumSq (intfun inc, int2fun mul, int2fun add) {
public intList range (int i, int 3j) {
return if (i>j) then null
else new intList (i, range (inc (1), 3));
}
public intList squares (intList 1) {
return if (l==null) null
else new intList (mul (l.head, l.head), squares (l.tail));
}
public int sum (int accum, intList 1) {
return if (l==null) accum
else sum (add (accum, l.head), l.tail);
}

return sum (0, squares (range (1,100)));

Result of Deforestation

public int sumSqg (intfun inc, int2fun mul, int2fun add)
public int £ (int accum, int i, int 3j) {

return if (i>j) accum
else f (add (accum, mul (i,i)), inc (i));

}
return £ (0,1,100);

@ Deforestation removes intermediate data structures
@ Rearranges the order of function calls

@ Only legal in a pure FL

Strictness Analysis

@ A function is strict in an argument, if this argument is
always needed to produce the result of the function.

@ Put formally:
A function f(xy, ..., xp) is strict in x; if whenever the
expression a fails to terminate, then the function call
f(by,...,bi_1,a,bji1,...,bn) fails to termiante.

@ If the compiler knows that a function is strict, then it need
not allocate a thunk for the argument, but it can evaluate it
right away.

@ Program analysis can approximate strictness

Examples: Strictness

int £ (int x, int y) { return x + x + y; }
int g (int x, int y) { return if (x>0) y else x; }

Tree h (String x, int y) {
return new Tree (x, y, null, null);

}

int j (int x) { return 3j(0); }

@ fstrictinxandy
@ g strictinx notiny
@ h not strict

@ 5 strictin x

Using Strictness Information

@ Lookup in a tree is strict in the tree and in the key
@ But the binding information as well as the fields in the tree
are not strict

th_String look (Tree t, key k) {
return 1f (k < t.key.eval())
look (t.left.eval (), k)
else if (k > t.key.eval())
look (t.right.eval (), k)
else
t.binding;

Strictness Analysis

Exact strictness information is not computable
Conservative approximation needed
Domain: b € {0,1}

e 1 (true) evaluation may terminate

e 0 (false) evaluation does not terminate (definitely)

Result is set H containing pairs (f, b)
f strictin x; if (f,(1,...,1,0,1,...,1)) ¢ H

Strictness Analysis
For First-Order Functions

M(if Ey E; Ez,0)
M((E;,...), o)

M(Eq,0) N (M(Ez,0) v M(Es, o))
(f.(M(Ey,0),...)) € H

M(c, o) = 1

M(x, o) = X€o

M(E1 —|—E2,0’) = M(E1,0’)/\M(E2,0’)
M(new(Ey,...),0) = 1

Strictness Analysis
Fixpoint Iteration

H <+ {}
repeat
done <+ true
for each function f(xq,...,x,) = Bdo
for each sequence (by,...,by) € {0,1}" do

if (f,(by,...,bn)) ¢ Hthen
o < {X,‘ | b,' = 1}
if M(B, o) then
done + false
H <« HU{(f,(by,...,bn))}
end if
end if
end for
end for
until done

Strictness Analysis
Assessment

@ Basic analysis, quite expensive

@ Not applicable to full LazyJava

@ Does not handle data structures

@ Does not handle higher order functions
@ Better algorithms exist that handle both
@ Used in compilers for, e.g., Haskell

© Java ISR 335

JSR 335: Higher-Order Functions for Java

This JSR will extend the Java Programming Language
Specification and the Java Virtual Machine Specification to
support the following features:

@ Lambda Expressions (anonymous functions)
@ SAM Conversion
@ Method References
@ Virtual Extension Methods
Scheduled for Java SE 8

Closures

Java already has “closures” in the guise of anonymous inner

classes.

Definition
1 public interface CallbackHandler {
2 public void callback (Context c);
3}

Use

foo.doSomething (new CallbackHandler () {
public void callback (Context c) {
System.out.println ("pippo") ;
}
1)

g os W N e

Drawbacks of Anonymous Inner Classes

© Bulky syntax
@ Inability to capture non-final local variables

© Transparency issues surrounding the meaning of return,
break, continue, and ’this’

© No nonlocal control flow operators

The proposal mainly addresses items 1, 2, and 3.

Adding Lambda Expressions

@ Replacing the machinery of anonymous inner classes
@ Without introducing function types

@ Instead: SAM conversion
@ SAM = Single Abstract Method
e Many common interfaces and abstract classes have this
property, such as Runnable, Callable, EventHandler, Of
Comparator.

@ These are SAM types.
e SAM-ness is a structural property identified by the compiler

@ Introduce syntax to simplify the creation of SAM instances

Syntax of Lambda Expressions

@ #{ —> 42 yoreven #{ 42 }
no arguments, returns 42
@ #{ int x —> x + 1 }
an int argument, returns x+1
@ In general,

e body can be an expression or
e a statement list like a method body.

SAM Conversion

@ A lambda expression is only legal in a context, where a
SAM type is expected.

@ The compiler infers the argument, return, and exception
types.

@ It checks them for assignment compatibility with the type of
the method of the expected SAM type.

The name of the method is ignored.
Example:

1 CallbackHandler cb =
2 #{ Context ¢ -> System.out.println ("pippo") };

@ lllegal:

1 Object o = #{ 42 };

Method References

@ Transforming a method reference to a function

@ Example

1
2
3
4
5
6
2

8
9
10
11

class Person {
private final
private final

public static

{

public static

{
}

Person/|]

}

}

people

String name;
int age;

int compareByAge (Person a, Person b)

int compareByName (Person a, Person D)

12 Arrays.sort (people, #Person.compareByAge);

Extension Methods

@ Existing interfaces cannot be extended without breaking
implementations.

@ Closures give new opportunities for useful API additions,
e.g., in the collection classes.

@ Extension methods propose a way out of this dilemma.

@ The proposal permits to extend an interface safely by
providing a default implementation.

@ Example:

public interface Set<T> extends Collection<T> {
public int size();
// The rest of the existing Set methods
public extension T reduce (Reducer<T> r)
default Collections.<T>setReducer;

o s W N e

	FunJava
	Closures
	PureFunJava
	Inline Expansion
	Closure Conversion
	Tail Recursion
	Lazy Evaluation
	Java JSR 335

