Prof. Dr. Peter Thiemann
Matthias Keil Winter Semester 2016,/2017

Compiler Construction
http://proglang.informatik.uni-freiburg.de/teaching/compilerbau/2016us/

Exercise Sheet 2

1 Lexing and Parsing of MiniJava (6 + 2 + 2 Points)

MiniJava is a subset of Java. The semantics of a MiniJava program is given by its semantics
as a Java program. Overloading is not allowed in MiniJava. The MiniJava statement
System.out.println(...); can only print integers. The MiniJava expression e.length
only applies to expressions of type int[].

Grammar

MainClass ClassDecl*

class id { public static void main (String [] id) { VarDecl* Statement* } }
class id { VarDecl* MethodDecl* }

class id extends id { VarDecl* MethodDecl* }
Type id ;

public Type id (ParamList’) { VarDecl* Statement* return Exp; }
Type id ParamRest*

, Type id

int []

boolean

int

id

{ Statement™ }

if (Exp) Statement else Statement

while (Ezp) Statement

System.out.println (Exp) ;

id = Ezp;

id [Exp | = Exp;

Ezp op Exp

Ezp[Exp]

Ezp .length

Exp .id (EzpList®)

true

false

id

(integer literal)

Program
MainClass
ClassDecl

VarDecl
MethodDecl
ParamList
ParamRest

Type

Statement

Exp

A R N N A

this

new int [Ezp]
new id ()

! Fxp

(Ezp)

Exzp EzxpRest*
Ezp
identifier)

&

ExplList

FExpRest
id

op

o~

A A A

N

Project - Part 1

Implement a lexer and parser for MiniJava in SableCC. Insert for the package declara-
tion Package minijava; . You may assume that an identifier is a sequence of letters,
digits, and underscores, starting with a letter. Further, integer literals will be only
given in decimal notation and without suffix.

Remember, there are two kinds of comments in Java: block comments (/* text */)
where all the text from the ASCII characters /* to the ASCII characters */ is ignored,
and end-of-line comments (// text) where all the text from the ASCII characters //
to the end of the line is ignored.

As the concrete syntax often is rather complex and not-suitable for tree traversals,
SableCC 3.6 offers the possibility to specify also a simpler abstract syntax within the
grammar specification. Define such an abstract grammar for MiniJava and annotate
the concrete syntax to define how it is translated to the abstract syntax.

Describe the overall structure of your specification shortly. In particular, explain how
you implemented operator precedence.

Submission

Deadline: 17.11.2016, 12:00 (noon). Late submissions will not be accepted.

Submit your solution to the subversion repository. Your submission will consist of one
folder (exercise2) which includes your solution.

Your solution will consist of a file minijava.sable with the grammar specification
and a pdf minijava-<your name>.pdf with a description.

If invoking SableCC on the grammar specification leads to errors, you will receive no
points.

If it can be compiled, but crashes or loops on all test cases, it will receive no points.

You are strongly encouraged to test your solution with the provided test data. Add
test cases as you might think necessary. You need not submit your own test cases.

The description must be limited to one page. Submitting more than one page will lead
to reduction in points.

The description may be either German or English. Clear and understandable style is
required.

