
Prof. Dr. Peter Thiemann
Matthias Keil Winter Semester 2016/2017

Compiler Construction
http://proglang.informatik.uni-freiburg.de/teaching/compilerbau/2016ws/

Exercise Sheet 2

1 Lexing and Parsing of MiniJava (6 + 2 + 2 Points)

MiniJava is a subset of Java. The semantics of a MiniJava program is given by its semantics
as a Java program. Overloading is not allowed in MiniJava. The MiniJava statement
System.out.println(...); can only print integers. The MiniJava expression e.length

only applies to expressions of type int[].

Grammar

Program → MainClass ClassDecl*
MainClass → class id { public static void main (String [] id) { VarDecl* Statement* } }
ClassDecl → class id {VarDecl* MethodDecl* }

→ class id extends id {VarDecl* MethodDecl* }
VarDecl → Type id ;

MethodDecl → public Type id (ParamList?) {VarDecl* Statement* return Exp; }
ParamList → Type id ParamRest*
ParamRest → ,Type id

Type → int []
→ boolean
→ int
→ id

Statement → { Statement* }
→ if (Exp) Statement else Statement
→ while (Exp) Statement
→ System.out.println (Exp) ;
→ id =Exp;
→ id [Exp] =Exp;

Exp → Exp op Exp
→ Exp[Exp]
→ Exp . length
→ Exp . id (ExpList?)
→ true
→ false
→ id
→ 〈integer literal〉

→ this
→ new int [Exp]
→ new id ()
→ ! Exp
→ (Exp)

ExpList → Exp ExpRest*
ExpRest → , Exp

id → 〈identifier〉
op → &&

→ +
→ -
→ *
→ <

Project - Part 1

• Implement a lexer and parser for MiniJava in SableCC. Insert for the package declara-
tion Package minijava; . You may assume that an identifier is a sequence of letters,
digits, and underscores, starting with a letter. Further, integer literals will be only
given in decimal notation and without suffix.

Remember, there are two kinds of comments in Java: block comments (/* text */)
where all the text from the ASCII characters /* to the ASCII characters */ is ignored,
and end-of-line comments (// text) where all the text from the ASCII characters //
to the end of the line is ignored.

• As the concrete syntax often is rather complex and not-suitable for tree traversals,
SableCC 3.6 offers the possibility to specify also a simpler abstract syntax within the
grammar specification. Define such an abstract grammar for MiniJava and annotate
the concrete syntax to define how it is translated to the abstract syntax.

• Describe the overall structure of your specification shortly. In particular, explain how
you implemented operator precedence.

Submission

• Deadline: 17.11.2016, 12:00 (noon). Late submissions will not be accepted.

• Submit your solution to the subversion repository. Your submission will consist of one
folder (exercise2) which includes your solution.

• Your solution will consist of a file minijava.sable with the grammar specification
and a pdf minijava-<your name>.pdf with a description.

• If invoking SableCC on the grammar specification leads to errors, you will receive no
points.

• If it can be compiled, but crashes or loops on all test cases, it will receive no points.

• You are strongly encouraged to test your solution with the provided test data. Add
test cases as you might think necessary. You need not submit your own test cases.

• The description must be limited to one page. Submitting more than one page will lead
to reduction in points.

• The description may be either German or English. Clear and understandable style is
required.

