
Prof. Dr. Peter Thiemann
Matthias Keil Winter Semester 2016/2017

Compiler Construction
http://proglang.informatik.uni-freiburg.de/teaching/compilerbau/2016ws/

Exercise Sheet 5

1 From Spiglet to Kanga (15 + 10 Points)

The simplified AST in Spiglet serves as a good base for data flow analyses. Next step:
register allocation! To this end, we define another intermediate language, Kanga, where
temporaries are mapped to registers or spilled to the stack frame. Kanga is already fairly
close to MIPS assembler, our final target language. Its grammar and semantics is defined
as follows.

Grammar

Program ::= MAIN [IntegerLiteral] [IntegerLiteral] [IntegerLiteral] StmtList END Procedure*
StmtList ::= (Label? Stmt)*
Procedure ::= Label [IntegerLiteral] [IntegerLiteral] [IntegerLiteral] StmtList END

Stmt ::= NOOP

| ERROR

| CJUMP Reg Label
| JUMP Label
| HSTORE Reg IntegerLiteral Reg
| HLOAD Reg Reg IntegerLiteral
| MOVE Reg Exp
| PRINT SimpleExp
| ALOAD Reg SpilledArg
| ASTORE SpilledArg Reg
| PASSARG IntegerLiteral Reg
| CALL SimpleExp

Exp ::= HALLOCATE SimpleExp
| Operator Reg SimpleExp
| SimpleExp

Operator ::= LT

| PLUS

| MINUS

| TIMES

SimpleExp ::= Reg
| IntegerLiteral
| Label

SpilledArg ::= SPILLEDARG IntegerLiteral
Reg ::= a0 | a1 | a2 | a3

| t0 | t1 | t2 | t3 | t4 | t5 | t6 | t7 | t8 | t9
| s0 | s1 | s2 | s3 | s4 | s5 | s6 | s7
| t8 | t9
| v0 | v1

IntegerLiteral ::= 〈integer literal〉
Label ::= 〈identifier〉

Semantics

The semantics of Kanga is in most cases equivalent to the constructs in Spiglet. However,
the following changes hold:

Labels
All labels have global scope, and should therefore be unique.

Registers
Instead of an unlimited number of temporaries with local scope, Kanga has 24 global
machine registers with global scope. The registers s0-s7 and t0-t9 can be allocated for
general use. As with MIPS, the s registers are callee-saved, whereas all other registers
are not preserved across calls. Registers a0-a3 are reserved to pass arguments to a
procedure call. Register v0 is reserved to return a result from a procedure call, and v0

and v1 are also used as temporary registers when values need to be loaded from the
stack.

Stack
Values can be loaded from and stored to the stack with the ALOAD and ASTORE instruc-
tions. Here, SPILLEDARG i denotes the ith value on the stack, the first value can be
found at SPILLEDARG 0.
Example:

ALOAD s3 SPILLEDARG 1

loads the second value from the stack into register s3.

Procedures
A procedure has now three integers in its header, e.g. procA [5] [3] [4].

The first integer denotes (as in Spiglet) the number of arguments taken by the proce-
dure.

The second integer is for the number of stack slots that the procedure requires. This is
the total number of all stack slots needed, including space for arguments (if necessary,
cf. Calls), space for any spilled temporaries, and space for any registers that have to
be saved.

The third integer is the maximum number of arguments of any call in the body of the
procedure. For example, if procA makes a call to procB that takes 3 arguments, to
procC that takes 2 arguments, and to procD that takes 4 arguments, then since 4 is

the maximum number of arguments a call in the body of procA uses, this integer is
set to 4.

Further, a procedure body is no longer a StmtExp but a StmtList. The return value is
expected to be put in register v0.

Calls
Call is now a statement. As mentioned above, registers a0-a3 are used to send ar-
guments. If the called procedure takes more than 4 arguments, you need to use the
PASSARG stmt, which saves the extra arguments to the stack. For whatever reason,
PASSARG starts at position 1, but SPILLEDARG starts at 0, so in general an argument
passed as PASSARG i is accessed in the body of the procedure as SPILLEDARG i− 1.

Example: Consider a call to some procedure with label P and arguments stored in
registers t1, t2, t3, t4, and t5. The return value should go in t6.

MOVE a0 t1 // First move 4 args to the ”a” registers.
MOVE a1 t2
MOVE a2 t3
MOVE a3 t4
PASSARG 1 t5 // If there are more args, save them to the stack.

// Note that PASSARG is 1-based, not 0-based!
CALL P
MOVE t6 v0 // The return value will be in v0.

The project template contains a Kanga interpreter which tries hard to discover problems as
early as possible: it prevents procedures from reading the caller’s registers (except for a0–
a3), it detects procedures which return without having restored callee-save registers (except
for MAIN), and it clears all caller-save registers (except for v0,v1) on return. This improves
error detection in simple register allocators at the cost of making interprocedural register
allocation impossible.

Project - Part 5

Implement an AST transformation from Spiglet to Kanga. This exercise consists of two
major parts:

Liveness Analysis (5 + 10 Points)

• Specify a (intra-procedural) liveness analysis for Spiglet.

– In Spiglet, each procedure basically consists of a list of possibly labeled state-
ments. Each statement is uniquely identified by its position in the list. For a
procedure S0 . . . Sn, we define

pos(S0 . . . Sn) = {0, . . . , n}

to be the set of all possible positions within a procedure. We define as the entry
point of the procedure

initial(S0 . . . Sn) = 0

and further as the exit point

final(S0 . . . Sn) = n

The flow equations are now a mapping of labeled statement (with position) to a
set of two positions denoting an edge in the flow graph.

Example:

flow([l : NOOP]i) = {(i, i + 1)} ∀i ∈ {0, . . . , n− 1}

Specify in a similar way the flow equations for all statement types in Spiglet.

– For each statement, specify the use and def sets of temporaries. You may want
to define auxiliary definitions for expressions etc.

The formal specification should be submitted as a PDF. An example for such a speci-
fication can be found in Nielson et al., Principles of Program Analysis, Springer 2005,
Chapter 2.1 and 2.1.4. (There, use sets are called gen sets, and defs sets are called
kill sets. Further, the labels they use do not correspond to labels in Piglet, but to the
position of a statement in the statement list of a procedure.)

• Implement the construction of the flow graph and the liveness analysis for Spiglet. Test
your liveness analysis thoroughly; debugging bad liveness information by observing
misbehaving Kanga programs is not fun.

Register allocation (10 Points)

• Implement some register allocation algorithm for Spiglet and a transformation of
Spiglet code to Kanga.

• Remember that each method call requires some prologue and epilogue for caller and
callee. For Kanga, you need to take care of arguments, caller-save and callee-save
registers, and the return value. (The interpreter handles the stack pointer).

• To simplify things, you may assume that the interference graph of the temporaries is
always colorable, i.e. spilling and coalescing is not needed. (Beware, you will still need
to spill arguments when a procedure call requires more than 4 arguments!)

• Write a (short) description of your register allocation.

• On the homepage, you will find a test environment with Kanga parser, Kanga pretty-
printer and Kanga interpreter.

• As always, be careful when adding nodes to SableCC ASTs: don’t add one node twice
to a tree.

Bonus Task: Spilling and coalescing (up to 10 Points)

• Change your register allocation algorithm such that it can also spill if necessary.

• Improve it further by coalescing source and destination nodes of move instructions.

• To get points for this task, you are required to have already implemented the simplified
register allocation correctly!

Submission

• Deadline: 02.02.2017, 12:00 (noon). Late submissions will not be accepted.

• Submit your solution to the subversion repository. Your submission will consist of one
folder (exercise5) which includes your solution.

• Rewrite method spiglet.tokanga.SpigletToKangaTranslator.translateProgram

so that it calls your Kanga transformation for the given Spiglet AST.

• Your solution will consist of: 1. a zip file as generated by ant submission with the
implementation, and 2. a pdf registeralloc-<your name>.pdf with the specification
of the analyses and a description of the implemented register allocation.

• You are strongly encouraged to test your solution with the provided test data. Add
test cases as you might think necessary. You need not submit your own test cases.

• The description must be limited to ten pages. Submitting more than ten pages will
lead to reduction in points.

• The description may be either German or English. Clear and understandable style is
required.

