
Compiler Construction
Garbage collection

University of Freiburg

Annette Bieniusa, Konrad Anton, Matthias Keil

University of Freiburg

30. Januar 2017



Outline
University of Freiburg

1 Introduction

2 Reference counting

3 Mark-and-Sweep

4 Copying Collection

5 Generational Collection

6 Incremental and Concurrent Collection

7 Integration with compiler

Bieniusa, Anton, Keil Compiler Construction 30. Januar 2017 2 / 39



Types of storage
University of Freiburg

Static allocation

All names in the program are bound to a storage location
known at compile-time

Very fast due to direct access

Safe as the program cannot run out of memory

Drawback: recursion not possible

Bieniusa, Anton, Keil Compiler Construction 30. Januar 2017 3 / 39



Types of storage (cont’d)
University of Freiburg

Stack allocation (procedure local data)

Stored in an activation record/frame

Values do not persist from one activation to next

Size may depend on parameters passed to procedure

Only objects whose size is known at compile time can be
returned by a procedure

Bieniusa, Anton, Keil Compiler Construction 30. Januar 2017 4 / 39



Types of storage (cont’d)
University of Freiburg

Heap allocation

Data allocation and deallocation independent from program
flow

Size of data structures may vary dynamically

Dynamically-sized objects can be returned by procedure

Required for recursive data structures (lists, trees, etc)

Bieniusa, Anton, Keil Compiler Construction 30. Januar 2017 5 / 39



Stack vs. Heap Allocation
University of Freiburg

Stack allocation

Fast access

No explicit de-allocate required

No fragmentation (efficient space management)

Local variables only

Limit on stack size

Heap allocation

Global variables

No limit on memory size

Slower access

Memory become fragmented over time

Bieniusa, Anton, Keil Compiler Construction 30. Januar 2017 6 / 39



Management of dynamically allocated storage
University of Freiburg

Manual memory management

API for allocation and deallocation, e.g., for C

malloc (size) — returns a pointer to an unused,
contiguous record of memory of demanded size
free (record) — declares that the record is no longer used
and can be reclaimed
manages a freelist that contains unused records of
different sizes; allocation takes a record from the freelist

and splits it to obtain one of demanded size; deallocation
returns the record to the freelist

Advantages: flexible, application specific policies, semantic
deallocation, efficient

Disadvantages: error prone, memory leaks, premature
deallocation, complicated reasoning

Bieniusa, Anton, Keil Compiler Construction 30. Januar 2017 7 / 39



Management of dynamically allocated storage
University of Freiburg

Automatic memory management — Garbage Collection

API only provides allocation; deallocation is automatic

Goal: reclaim unused records as early as possible

Advantages: no user/programmer interaction for deallocation
required, no premature deallocation (safety)

Disadvantages: extra time needed for memory management,
deallocation based on reachability ⇒ memory leaks

Terminology

mutator = user program

collector = memory management agent

Bieniusa, Anton, Keil Compiler Construction 30. Januar 2017 8 / 39



Reachability
University of Freiburg

Program variables and heap-allocated records form a
directed graphs

Local and global variables are roots of this graph

Reachability

A record in the heap is reachable if its address is held in a root,
or there is a pointer to it held in another live heap record.

reach = {n ∈ Records | (∃r ∈ Roots : r → n)
∨ (∃m ∈ reach : m→ n)}

Requirement: no random access to locations in address space
— the program only points to previously allocated records

(safe) approximation

Bieniusa, Anton, Keil Compiler Construction 30. Januar 2017 9 / 39



Reference counting
University of Freiburg

Idea: track during execution how many pointers to a record exist!

For each access y <- p

1 z <- y

2 z.count <- z.count -1

3 if z.count =0

4 putOnFreelist(z)

5 y <- p

6 p.count <- p.count +1

1 function putOnFreeList(p)

2 for all fields f_i of p

3 p.f_i.count <- p.f_i.count -1

4 if p.f_i.count=0 putOnFreelist(p.f_i)

5 p.f_1 <- freelist

6 freelist <- p

Bieniusa, Anton, Keil Compiler Construction 30. Januar 2017 10 / 39



Pro & Con
University of Freiburg

Advantages

Predictable

No need to know all roots

GC effort spread over run time, no pauses

Problems

Cycles of garbage cannot be reclaimed

Require programmer to break cycles explicitly
Combine reference counting with occasional mark-and-sweep

Counters are expensive

Aggregate changes to counters via data flow analysis

Complex memory management code at every pointer update

Bieniusa, Anton, Keil Compiler Construction 30. Januar 2017 11 / 39



Mark-and-Sweep Collection
University of Freiburg

Global traversal of all reachable objects to determine which
ones maybe reclaimed

Only started when available storage is exhausted

Depth-first search marks all reachable nodes

freelist contains pointers to available storage

Bieniusa, Anton, Keil Compiler Construction 30. Januar 2017 12 / 39



Algorithm
University of Freiburg

Mark phase

1 for each root v

2 DFS(v)

3

4 function DFS(x)

5 if x is pointer into heap to record p

6 if record p is not marked

7 mark p

8 for each field f_i of record p

9 DFS(p.f_i)

Bieniusa, Anton, Keil Compiler Construction 30. Januar 2017 13 / 39



Algorithm
University of Freiburg

Sweep phase

1 p <- first address in heap

2 while p < last address in heap

3 if record p is marked

4 unmark

5 else let f_1 be the first field in p

6 p.f_1 <- freelist

7 freelist <- p

8 p <- p + (size of record p)

Bieniusa, Anton, Keil Compiler Construction 30. Januar 2017 14 / 39



Cost
University of Freiburg

R = words of reachable data

H = size of heap

Analysis

Mark phase: c1R

Sweep phase: c2H

Regained memory: H − R

Amortized cost:
c1R + c2H

H − R

Bieniusa, Anton, Keil Compiler Construction 30. Januar 2017 15 / 39



Auxiliary memory usage
University of Freiburg

Worst case (for M&S)

Heap is filled with one long linked list. Calls to DFS nested Ω(H)
deep!

Countermeasures:

Emergency stop at full stack, then search heap for marked
nodes with unmarked children

Pointer reversal

While visiting y coming from t via x .f , use x .f to point back
to t.
DFS stack hidden in heap
Needs field done for each record

Bieniusa, Anton, Keil Compiler Construction 30. Januar 2017 16 / 39



1 function DFS(x)

2 if x is a pointer and record x is not marked

3 t <- nil

4 mark x; done[x] = 0

5 while true

6 i <- done[x]

7 if i < number of fields in record x

8 y <- x.f_i // index starts at 0

9 if y is a pointer and record y not

marked

10 x.f_i <- t; t <- x; x <- y

11 mark x; done[x] = 0

12 else

13 done[x] <- i+1

14 else // back to parent!

15 y <- x; x <- t

16 if x = nil then return

17 i <- done[x]

18 t <- x.f_i; x.f_i <- y

19 done[x] <- i+1

Bieniusa, Anton, Keil Compiler Construction 30. Januar 2017 17 / 39



Issues
University of Freiburg

Organizing the freelist

Array of several freelists
freelist[i] points to linked list of all records of size i
If freelist[i] is empty, grab entry from freelist[j]

(j > i) putting unused portion back to freelist[j-i]

Fragmentation

Bieniusa, Anton, Keil Compiler Construction 30. Januar 2017 18 / 39



Copying collection
University of Freiburg

Idea: build an isomorphic, compact image of the heap

Partition heap into from-heap and to-heap
Use from-heap to allocate data
When invoking garbage collection, move all reachable data to
to-heap
Everything left is garbage
Reverse role of to-heap and from-heap

To-space copy is compact ⇒ no fragmentation

Simple allocation: add requested size to next-pointer.

Bieniusa, Anton, Keil Compiler Construction 30. Januar 2017 19 / 39



Cheney’s Algorithm
University of Freiburg

Breadth-first copying

1 scan <- next <- beginning of to -space

2 for each root r

3 r <- Forward(r)

4 while scan < next

5 for each field f_i of record at scan

6 scan.f_i <- Forward(scan.f_i)

7 scan <- scan + (size of record at scan)

Bieniusa, Anton, Keil Compiler Construction 30. Januar 2017 20 / 39



Cheney’s Algorithm
University of Freiburg

Forwarding a pointer

1 function Forward(p)

2 if p points to from -space

3 then if p.f_1 points to to -space

4 then return p.f_1

5 else for each field f_i of p

6 next.f_i <- p.f_i

7 p.f_1 <- next

8 next <- next + (size of record p)

9 return p.f_1

10 else return p

Bieniusa, Anton, Keil Compiler Construction 30. Januar 2017 21 / 39



Locality of references
University of Freiburg

Records that are copied near each other have the same
distance from the roots

If record p points to record s, they will likely be far apart
⇒ bad caching behavior

But: depth-first copying requires pointer-traversal

hybrid solution: use breadth-first copying, but take direct
children into account

Bieniusa, Anton, Keil Compiler Construction 30. Januar 2017 22 / 39



1 function Forward(p)

2 if p points to from -space

3 then if p.f_1 points to to -space

4 then return p.f_1

5 else Chase(p); return p.f_1

6 else return p

7

8 function Chase(p)

9 repeat

10 q <- next // q is the new p

11 next <- next + (size of record p)

12 r <- nil // some child of p to copy

along

13 for each field f_i of record p

14 q.f_i <- p.f_i

15 if q.f_i points to from -space

16 and q.f_i.f_1 does not point to to -

space

17 then r <- q.f_i

18 p.f_1 <- q

19 p <- r

20 until p = nil

Bieniusa, Anton, Keil Compiler Construction 30. Januar 2017 23 / 39



Cost
University of Freiburg

Analysis

Breadth-first search: O(R)

Regained memory: H/2 - R

Amortized cost:
c3R

H
2 − R

Realistic setting: H = 4R

high costs for copying! c3 � c2, c1.

Bieniusa, Anton, Keil Compiler Construction 30. Januar 2017 24 / 39



Generational Collection
University of Freiburg

Hypothesis: a newly created object is likely to die soon
(infant mortality); if it survived several collection cycles, it is
likely to survive longer

Idea: collector concentrates on younger data

Divide the heap into generations

G0 contains the most recently allocated data, G1,G2, . . .
contain older objects

Enlarge the set of roots to also include pointers from
G1,G2 . . . to G0:

need to track updating of fields
use a remembered list/set to collect updated objects and
scan this for root pointers at garbage collection

Bieniusa, Anton, Keil Compiler Construction 30. Januar 2017 25 / 39



Generational Collection
University of Freiburg

Use same system to garbage collect also older generations.

Move objects from Gi to Gi+1 after several collections.

Possible to use the virtual memory system:

Updating an old generation sets a dirty bit for the
corresponding page
If OS does not make dirty bits available, the user program
can use write-protection for the page and implement
user-mode fault handler for protection violations

Bieniusa, Anton, Keil Compiler Construction 30. Januar 2017 26 / 39



Generational Collection
University of Freiburg

Tuning parameters:

Number of generations

Relative size of generations

Promotion threshold

Bieniusa, Anton, Keil Compiler Construction 30. Januar 2017 27 / 39



Incremental and concurrent collection
University of Freiburg

Collector might interrupt the program for a long time

Undesirable for interactive or real-time programs

Idea: Perform GC in small increments

Incremental collection: collector performs only part of a
collection on each allocation

Concurrent collection: collector and mutator(s) run in parallel

Bieniusa, Anton, Keil Compiler Construction 30. Januar 2017 28 / 39



Tri-Color marking
University of Freiburg

White objects have not yet been visited.

Grey have been visited, but their children not yet.

Black have been visited as well as their children.

Basic algorithm

1 color all objects white

2 for each root r

3 if r points to an object p

4 color p grey

5 while there are any grey objects

6 select a grey record p

7 for each field f_i of p

8 if record p.f_i is white

9 color record p.f_i grey

10 color record p black

Bieniusa, Anton, Keil Compiler Construction 30. Januar 2017 29 / 39



Tri-Color marking
University of Freiburg

Invariants

1 No black object points to a white object.

2 Every grey object is on the collector’s (stack or queue) data
structure.

Mutator must not violate these invariants.

Synchronization of mutator and collector is necessary.

Bieniusa, Anton, Keil Compiler Construction 30. Januar 2017 30 / 39



The big danger
University of Freiburg

Treating garbage as possibly reachable: acceptable

Treating reachable data as garbage: bad! Happens only if:

1 Mutator stores pointer to white a into black object, and
2 the original reference to a is destroyed

Bieniusa, Anton, Keil Compiler Construction 30. Januar 2017 31 / 39



Write-barrier Algorithms
University of Freiburg

Goal: fix invariant violations whenever the mutator stores pointers
to white objects.
Possible approaches:

Whenever the mutator stores a pointer to white a into a
black object b, it colors a grey. (⇒ a reachable)

Whenever the mutator stores a pointer to white a into a
black object b, it colors b grey. (⇒ check b again)

Use paging

Mark all-black pages as read-only
When mutator writes into all-black object, page fault!
Page fault handler colors all objects on the page grey.

Bieniusa, Anton, Keil Compiler Construction 30. Januar 2017 32 / 39



Read-barrier Algorithms
University of Freiburg

Ensure that the mutator never sees a white object.

Whenever the mutator fetches a pointer b to a white object,
it colors b grey.

Use paging

Invariant: mutator only sees black objects
Goal: whenever mutator loads a non-black object, scan it and
children
Use page protection to trap reads to pages containing white
or grey objects
Page fault handler scans the page until black

Bieniusa, Anton, Keil Compiler Construction 30. Januar 2017 33 / 39



Baker’s Algorithm
University of Freiburg

When starting new gc cycle: Flip

1 Swap roles of from-space and to-space.
2 Forward all roots to to-space.
3 Resume mutator.

For each allocation:

1 Scan a few pointers at scan.
2 Allocate new record at the end of to-space.
3 When scan reaches next, terminate gc for this cycle.

For each fetch:

1 Check if fetched pointer points to from-space.
2 If so, forward pointed immediately. (Mutator never sees white

objects)

Bieniusa, Anton, Keil Compiler Construction 30. Januar 2017 34 / 39



Interface to the compiler
University of Freiburg

Compiler interacts with GC by

generating code for allocating data

describing locations of roots

describing data layout on heap

implementing read/write barriers

Bieniusa, Anton, Keil Compiler Construction 30. Januar 2017 35 / 39



Fast allocation
University of Freiburg

Example: Allocating record of size N when using copying
collection:

1 Call the allocate function.

2 Test next + N < limit? ⇒ If not, call gc.

3 Move next into result

4 Clear memory locations next, ..., next+N-1

5 next <- next + N

6 Move result into required place.

7 Store values into the record.

Bieniusa, Anton, Keil Compiler Construction 30. Januar 2017 36 / 39



Fast Allocation
University of Freiburg

How much data is allocated on average?

approximately one word of allocation per store instruction

1/7 of all instructions are stores

Possible optimization:

Inline the allocate function.

Move result directly into the right register.

Combine clearing and initialization of fields.

Allocate data for a whole block to minimize tests.

Bieniusa, Anton, Keil Compiler Construction 30. Januar 2017 37 / 39



Data layouts
University of Freiburg

Save for every heap object a pointer to its
class-/type-descriptor

What is the total size of this object?
Which fields are pointers?
(For dynamic method lookup: vtable)

Save all pointer-containing temporaries and local variables in
a pointer map

different at every program point ⇒ save it only at calls to
alloc and function calls
Collector starts at top of stack and scans all frames, handling
all the pointers in that frame as saved in the pointer-map
entry for this frame
Information about callee-save registers needs to be transfered
to callee.

Bieniusa, Anton, Keil Compiler Construction 30. Januar 2017 38 / 39



Literature
University of Freiburg

Jones, R. and Lins, R. Garbage Collection. Algorithms for
Automatic Dynamic Memory Management. John Wiley &
Sons, Chichester, England (1996).

Bieniusa, Anton, Keil Compiler Construction 30. Januar 2017 39 / 39


	Introduction
	Reference counting
	Mark-and-Sweep
	Copying Collection
	Generational Collection
	Incremental and Concurrent Collection
	Integration with compiler

