
Compiler Construction
Instruction Selection

University of Freiburg

Peter Thiemann, Matthias Keil

University of Freiburg

12. Dezember 2016



Instruction Selection
University of Freiburg

Naive approach

Macro-expand each IR node into machine instructions

Independent expansion requires invariants between nodes
(e.g., all intermediate results in registers)

⇒ poor code quality

Thiemann, Keil Compiler Construction 12. Dezember 2016 2 / 29



Instruction Selection (cont’d)
University of Freiburg

Tree matching approach

Each instruction is associated with a tree pattern (“tile”)

Covering of the IR tree with tiles yields an instruction
sequence

Alternative approach

Model target machine state as IR is expanded (interpretive
code generation)

Thiemann, Keil Compiler Construction 12. Dezember 2016 3 / 29



Registers and Temporaries
University of Freiburg

Temporaries

Pseudo registers introduced for intermediate values

Expected to be mapped to registers

May be spilled to stack frame if not enough registers

Register allocation

Task: Assign processor registers to temporaries

Limited number of processor registers

Register allocator

chooses temporaries to spill
inserts code to spill/restore as needed
generates mapping

Thiemann, Keil Compiler Construction 12. Dezember 2016 4 / 29



Tiling with Tree Patterns
University of Freiburg

Tree Patterns

Express each machine instruction as a tree pattern
(a fragment of an IR tree with associated cost)

A tree pattern may contain zero or more wildcards, which
match all IR trees

Instruction selection amounts to tiling the IR tree with the
patterns available

The root of a tile matches either the root of the IR tree or
the node in a wildcard of another tile

Cost of the tiling = sum of cost of all tiles

Thiemann, Keil Compiler Construction 12. Dezember 2016 5 / 29



Optimal vs Optimum Tiling
University of Freiburg

Optimal Tiling

No two adjacent tiles can be replaced by a larger tile of lower cost.

Optimum Tiling

The total cost of the tiling is minimal among all possible tilings.

Tiling is optimum ⇒ tiling is optimal

Thiemann, Keil Compiler Construction 12. Dezember 2016 6 / 29



Implementation of Optimal Tiling
Maximal Munch Algorithm (Top Down)
University of Freiburg

// tiles ordered from largest to smallest cost

List<Pattern> tiles;

Temp munchExpr (Tree.Exp e) {

foreach (p : tiles)

if (matches(p, e)) { pattern = p; break; }

// wildcard(pattern, e) returns the list of

// subexpressions of e matched to wildcards

foreach (e_i : wildcard (pattern, e))

recursively invoke temp_i = munchExpr (e_i)

emit INS using temp_i as arguments

putting result into new temp_0

return temp_0

}

Thiemann, Keil Compiler Construction 12. Dezember 2016 7 / 29



Optimum Tiling
Example
University of Freiburg

MEM

+

CONST1 CONST2

pattern instr tile cost wildcard cost total cost
CONST ADDI 1 0 1

Thiemann, Keil Compiler Construction 12. Dezember 2016 8 / 29



Optimum Tiling
Example (cont’d)
University of Freiburg

pattern instr tile cost wildcard cost total cost

+

ADD 1 1+1 3

+

CONST ADDI 1 1 2

+

CONST ADDI 1 1 2

Thiemann, Keil Compiler Construction 12. Dezember 2016 9 / 29



Optimum Tiling
Example (cont’d)
University of Freiburg

pattern instr tile cost wildcard cost total cost

MEM

LOAD 1 2 3

MEM

+

CONST LOAD 1 1 2

MEM

+

CONST ADDI 1 1 2

Thiemann, Keil Compiler Construction 12. Dezember 2016 10 / 29



Optimum Tiling
Emitted Code
University of Freiburg

ADDI r1 ← r0 + 1
LOAD r1 ← M[r1 + 2]

Thiemann, Keil Compiler Construction 12. Dezember 2016 11 / 29



Implementation of Optimum Tiling
Dynamic Programming (Bottom Up)
University of Freiburg

void matchExpr (Tree.Exp e) {

for (Tree.Exp kid : e.kids())

matchExpr (kid);

cost = INFINITY

for each pattern P_i

if (P_i.matches (e)) {

cost_i = cost(P_i)

+ sum ((wildcard (P_i, e)).mincost)

if (cost_i < cost) { cost = cost_i; choice = i; }

}

e.matched = P_{choice}

e.mincost = cost

}

Thiemann, Keil Compiler Construction 12. Dezember 2016 12 / 29



Implementation of Optimum Tiling
Collecting the Match (Top Down)
University of Freiburg

Temp emission (Tree.Exp e) {

foreach (e_i : wildcard (e.matched, e)) {

temp_i = emission (e_i)

}

emit INS using temp_i as arguments

putting result into new temp_0

return temp_0

}

Thiemann, Keil Compiler Construction 12. Dezember 2016 13 / 29



Implementation of Pattern Matching
University of Freiburg

Additional side conditions (e.g., size of constants, special
constants)

Matching of patterns can be done with a decision tree that
avoids checking the same node twice

The bottom up matcher can remember partial matches and
avoid rechecking the same nodes

⇒ tree automata

Thiemann, Keil Compiler Construction 12. Dezember 2016 14 / 29



Tree Automata
University of Freiburg

A bottom-up tree automaton is M = (Q,Σ, δ,F ) where

Q is a finite set of states

Σ a ranked alphabet (the tree constructors)

δ ⊆ Σ(n) × Qn × Q (∀n) the transition relation

F ⊆ Q the set of final states

M is deterministic if δ is a function.

Define ⇒ on TΣ+Q (the set of terms/trees where nodes are
labels with symbols from Σ or Q) by

t[σ(q1, . . . , qn)]⇒ t[q0] if (σ, q1, . . . , qn, q0) ∈ δ
∧ σ ∈ Σ(n)

t ∈ L(M) if t ⇒∗ q with q ∈ F

Thiemann, Keil Compiler Construction 12. Dezember 2016 15 / 29



Tree Automata
Example
University of Freiburg

Tree automaton for

MEM

+

CONST

Q = {qt , qc , qa, qm}
F = {qm}
δ = Σ q1 q2 qout

CONST qc
TEMP qt

+ qc qt qa
MEM qa qm

Thiemann, Keil Compiler Construction 12. Dezember 2016 16 / 29



Optimum Tiling with Tree Automata
University of Freiburg

Generate a bu tree automaton for each pattern

Simulate them in parallel on expression tree

At each node

determine all patterns whose root matches the current node
compute their cost and mark the node with the minimum
cost pattern

There are tools to compile a pattern specification to such an
automaton ⇒ BURG (Fraser, Hanson, Proebsting)

Thiemann, Keil Compiler Construction 12. Dezember 2016 17 / 29



Tree Grammars
University of Freiburg

Tree patterns assume that the result of an IR tree is always
used in the same way

Some architectures habe different kinds of registers that
obey different restrictions

Extension: introduce a different set of patterns for each kind
of register

Example: M680x0 distinguishes data and address registers,
only the latter may serve for address calculations and
indirect addressing

⇒ Tree grammar needed

Thiemann, Keil Compiler Construction 12. Dezember 2016 18 / 29



Tree Grammars
Definition
University of Freiburg

A context-free tree grammar is defined by G = (N,Σ,P,S) where

N is a finite set of non-terminals

Σ is a ranked alphabet

S ∈ N is the start symbol

P ⊆ N × TΣ+N

Define ⇒ on TΣ+N by

t[A]⇒ t[r ] in A→ r ∈ P

t ∈ L(G) if S ⇒∗ t ∈ TΣ

Thiemann, Keil Compiler Construction 12. Dezember 2016 19 / 29



Tree Grammars
Example: The Schizo-Jouette Architecture (Excerpt)
University of Freiburg

Instruction Effect Pattern

ADD di ← dj + dk

D → +

D D

ADDI di ← dj + c

D → +

D CONST

MOVEA di ← aj D → A
MOVED ai ← dj A→ D

LOAD di ← M[aj + c]

D → MEM

+

A CONST

Thiemann, Keil Compiler Construction 12. Dezember 2016 20 / 29



Efficiency of Tiling
University of Freiburg

N number of nodes in input tree

T number of patterns

K average number of labeled nodes in pattern

K ′ maximum number of nodes to check for a match

T ′ average number of patterns that match at each node

Maximal munch. Each match consumes K nodes: test for
matches at N/K nodes. At each candidate node, choose
pattern with K ′ + T ′ tests.
(K ′ + T ′)N/K steps on average. Worst case: K = 1.

Dynamic programming. Tests every pattern at every node:
(K ′ + T ′)N.

⇒ same linear worst-case complexity. (K ′ + T ′)/K is constant,
anyway.

Thiemann, Keil Compiler Construction 12. Dezember 2016 21 / 29



CISC vs RISC
Challenges for Instruction Selection and Register Allocation
University of Freiburg

RISC CISC

32 registers few registers (16, 8, 6)
one class of registers different classes with restric-

ted operations
ALU instructions only bet-
ween registers

ALU operations with memory
operands

three-adress instructions r1 ←
r2 ⊕ r3

two-address instructions r1 ←
r1 ⊕ r2

one addressing mode for loa-
d/store

several addressing modes

every instruction 32 bits long different instruction lengths
one result / instruction instructions w/ side effects

Thiemann, Keil Compiler Construction 12. Dezember 2016 22 / 29



CISC Examples
University of Freiburg

Pentium / x86 (32-bit)

six GPR, sp, bp

multiply / divide only on eax

generally two-address instructions

MC 680x0 (32-bit)

8 data registers, 7 address registers, 2 stack registers

ALU operations generally on data registers, indirect
addressing only through address registers

generally two-address instructions

esoteric addressing modes (68030)

Thiemann, Keil Compiler Construction 12. Dezember 2016 23 / 29



Challenges
University of Freiburg

[Few Registers] generate temporaries and rely on register
allocation

[Restricted Registers] generate extra moves and hope that
register allocation can get rid of them. Example:

Multiply on Pentium requires one operand and destination in
eax

Most-significant word of result stored to edx

Hence for t1 ← t2 · t3 generate

mov eax,t2 eax ← t2

mul t3 eax ← eax · t3; edx ← garbage
mov t1, eax t3 ← eax

Thiemann, Keil Compiler Construction 12. Dezember 2016 24 / 29



Challenges II
University of Freiburg

[Two-address instructions]
Generate extra move instructions.
For t1 ← t2 + t3 generate

mov t1, t2 t1 ← t2

add t1, t3 t1 ← t1 + t3;

[Special addressing modes]
Example: memory addressing

mov eax,[ebp-8]

add eax, ecx add [ebp-8], ecx

mov [ebp-8], eax

Two choices:
1 Ignore and use separate load and store instructions. Same

speed, but an extra register gets trashed.
2 Avoid register pressure and use addressing mode. More work

for the pattern matcher.

Thiemann, Keil Compiler Construction 12. Dezember 2016 25 / 29



Challenges III
University of Freiburg

[Variable-length instructions]
No problem for instruction selection or register allocation.
Assembler deals with it.

[Instructions with side effects]
Example: autoincrement after memory fetch (MC 680x0)

r2 ← M[r1]; r1 ← r1 + 4

Hard to incorporate in tree-pattern based instruction
selection.

1 Ignore. . .
2 Ad-hoc solution
3 Different algorithm for instruction selection

Thiemann, Keil Compiler Construction 12. Dezember 2016 26 / 29



Abstract Assembly Language
Output of Instruction Selection
University of Freiburg

Class hierarchy for representing instructions

Instr

OPER MOVE LABEL

Each instruction specifies a

set of defined temporaries

set of used temporaries

set of branch targets

each of which may be empty

Thiemann, Keil Compiler Construction 12. Dezember 2016 27 / 29



Abstract Assembly Language
Creating an Operation
University of Freiburg

MEM

+

TEMP fp CONST 8

new OPER ("LOAD ’d0 <- M[’s0+8]",

L (new Temp(), null),// targets: defined

L (frame.FP, null)); // sources: used

Independent of register allocation and jump labels

Thiemann, Keil Compiler Construction 12. Dezember 2016 28 / 29



Abstract Assembly Language
Important
University of Freiburg

An operation’s def and use set must account for all defined and
used registers.

Example: the multiplication instruction on Pentium

new OPER ("mul ’s0",

L (pentium.EAX, L (pentium.EDX, null)),

L (argTemp, L (pentium.EAX, null)));

Example: a procedure call trashes many registers (see the
calling convention of the architecture)

return address
return-value register
caller-save registers

Thiemann, Keil Compiler Construction 12. Dezember 2016 29 / 29


