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Excursion to a World Without Types:
Scripting Languages
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Scripting Languages
University of Freiburg

Lightweight programming languages evolved from command
languages

Lightweight data structures hashmap (object), strings

Lightweight syntax familiar, no semicolon, (often not well
specified), . . .

Lightweight typing dynamic, weak, duck typing

Lightweight metaprogramming

Lightweight implementation interpreted, few tools
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JavaScript, a Typical Scripting Language
University of Freiburg

Initially developed by Brendan Eich of Netscape Corp.

Standardized as ECMAScript (ECMA-262 Edition 6)

Application areas (scripting targets)

client-side web scripting (dynamic HTML, SVG, XUL, GWT)
server-side scripting (Whitebeam, Cocoon, iPlanet, nodejs)
animation scripting (diablo, dim3, k3d)
cloud scripting (Google Apps Script)
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JavaScript, Technically
University of Freiburg

Java-style syntax

Object-based imperative language

no classes, but prototype concept
objects are hashtables

First-class functions

a functional language

Weak, dynamic type system

Slogan Any type can be converted to any other reasonable
type
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JavaScript, The Good and the Bad Parts
University of Freiburg
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Problems with JavaScript
University of Freiburg

Symptomatic for other scripting languages

No module system

No namespace management
No interface descriptions

No static type system

No application specific datatypes
primitive datatypes, strings, hashtables

Type conversions are sometimes surprising
“A scripting language should never throw an exception [the
script should just continue]” (Rob Pike, Google)

Few development tools (debugger)

⇒ Conceived for small applications, but . . .
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Specific Problems with JavaScript
University of Freiburg

Most popular applications

client-side scripting
AJAX

Dynamic modification of page content via DOM interface

DOM = document object model
W3C standard interface for accessing and modifying XML
Mainly used in web browers

Incompatible DOM implementations in Web browsers

⇒ programming recipes instead of techniques

⇒ platform independent libraries like jQuery

Security holes via dynamically loaded code or XSS

⇒ sandboxing, analysis
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Can You Write Reliable Programs in JavaScript?
University of Freiburg

Struggle with the lack of e.g. a module system

Ad-hoc structuring of large programs
Naming conventions
Working in a team

Work around DOM incompatibilities

Use existing JavaScript frameworks (widgets, networking)
Frameworks are also incompatible

Wonder about unexpected results
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An Ultra-Brief JavaScript Tutorial
University of Freiburg

Rule 1:

JavaScript is object-based. An object is a hash table that maps
named properties to values.

Rule 2:

Every value has a type. For most reasonable combinations, values
can be converted from one type to another type.

Rule 3:

Types include null, boolean, number, string, object, and
function.

Rule 4:

‘Undefined’ is a value (and a type).
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Some Quick Questions
University of Freiburg

Let’s define an object obj: var obj = { x: 1 }
What are the values/outputs of

obj.x

obj.y

print(obj.y)

obj.y.z
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Answers
University of Freiburg

var obj = {x:1}
obj.x

→ 1

obj.y

→
print(obj.y)

→ undefined

obj.y.z

→ “<stdin>”, line 12: uncaught JavaScript exception:
ConversionError: The undefined value has no properties.
(<stdin>; line 12)
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Weak, Dynamic Types in JavaScript II
University of Freiburg

Rule 5:

An object is really a dynamic mapping from strings to values.

var x = ’x’

obj[x]

→ 1

obj.undefined = ’gotcha’

→ gotcha

obj[obj.y]

What is the effect/result of the last expression?

→ obj[obj.y]== obj[undefined]==

obj[’undefined’]==obj.undefined==’gotcha’
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Weak, Dynamic Types in JavaScript III
University of Freiburg

Recall Rule 2:

Every value has a type. For most reasonable combinations, values
can be converted from one type to another type.

var a = 17

a.x = 42

→ 42

a.x

→

What is the effect/result of the last expression?
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Weak, Dynamic Types in JavaScript III
University of Freiburg

Wrapper objects for numbers

m = new Number (17); n = new Number (4)

m+n

→ 21

Wrapper objects for booleans

flag = new Boolean(false);

result = flag ? true : false;

What is the value of result?
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Weak, Dynamic Types in JavaScript IV
University of Freiburg

Rule 6:

Functions are first-class, but behave differently when used as
methods or as constructors.

function f () { return this.x }
f()

→ x

obj.f = f

→ function f() { return this.x; }
obj.f()

→ 1

new f()

→ [object Object]
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Distinguishing Absence and Undefinedness I
University of Freiburg

obju = { u : {}.xx }
→ [object Object]

objv = { v : {}.xx }
→ [object Object]

print(obju.u)

→ undefined

print(objv.u)

→ undefined
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Distinguishing Absence and Undefinedness II
University of Freiburg

Rule 7:

The with construct puts its argument object on top of the
current environment stack.

u = ’defined’

→ defined

with (obju) print(u)

→ undefined

with (objv) print(u)

→ defined
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Distinguishing Absence and Undefinedness III
University of Freiburg

Rule 8:

The for construct has an in operator to range over all defined
indexes.

for (i in obju) print(i)

→ u

for (i in objv) print(i)

→ v

delete objv.v

→ true

for (i in objv) print(i)

→
delete objv.v

→ true

Matthias Keil, Peter Thiemann Compiler Construction 21. November 2016 20 / 79



Thesis
University of Freiburg

Common errors such as

using non-objects as objects, e.g. using numbers as functions
invoking non-existing methods
accessing non-existing fields
surprising conversions

can all be caught by a

Static Type System

and much more.
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Types and Type Correctness
University of Freiburg

Large software systems: many people involved

project manager, designer, programmer, tester, . . .

Essential: divide into components with clear defined
interfaces and specifications

How to divide the problem?
How to divide the work?
How to divide the tests?

Problems

Are suitable libraries available?
Do the components match each other?
Do the components fulfill their specification?
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Requirements
University of Freiburg

Programming language/environment has to ensure:

each component implements its interfaces
the implementation fulfills the specification
each component is used correctly

Main problem: meet the interfaces and specifications

Minimal interface: management of names
Which operations does the component offer?
Minimal specification: types
Which types do the arguments and the result of the
operations have?
See interfaces in Java
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Questions
University of Freiburg

Which kind of security do types provide?

Which kind of errors can be detected by using types?

How do we provide type safety?

How can we formalize type safety?
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JAUS: Java-Expressions
University of Freiburg

Grammar for a subset of Java expressions

x ::= . . . variables
n ::= 0 | 1 | . . . numbers
b ::= true | false truth values
e ::= x | n | b | e+e | !e expressions
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Correct and Incorrect Expressions
University of Freiburg

Type correct expressions

1 boolean flag;

2 int num;

3 0

4 true

5 17+4

6 !flag

Expressions with type errors

1 !num

2 flag+1

3 17+(! false)

4 !(2+3)
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Typing Rules
University of Freiburg

For each kind of expression a typing rule defines

if an expression is type correct and
how to obtain the result type of the expression from the
types of the subexpressions.

Five kinds of expressions

Constant numbers have type int.
Truth values have type boolean.
The expression e1+e2 has type int, if e1 and e2 have type
int.
The expression !e has type boolean, if e has type boolean.
A variable x has the type, with which it was declared.
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Formalization of “Type Correct Expressions”
University of Freiburg

The Language of Types

τ ::= int | boolean types

Typing judgment: expression e has type τ

` e : τ
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Formalization of “Typing Rules”
University of Freiburg

A typing judgment is valid, if it is derivable according to the
typing rules.

To infer a valid typing judgment J we use a deduction
system.

A deduction system consists of a set of typing judgments
and a set of typing rules.

A typing rule (inference rule) is a pair (J1 . . . Jn, J0) which
consists of a list of judgments (assumptions, J1 . . . Jn) and a
judgment (conclusion, J0) that is written as

J1 . . . Jn

J0

If n = 0, a rule (ε, J0) is an axiom.
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Example: Typing Rules for JAUS
University of Freiburg

A number n has type int.

(INT)

` n : int

A truth value has type boolean.

(BOOL)

` b : boolean
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Example: Typing Rules for JAUS (cont’d)
University of Freiburg

An expression e1+e2 has type int if e1 and e2 have type
int.

(ADD)

` e1 : int ` e2 : int

` e1+e2 : int

An expression !e has type boolean, if e has type boolean.

(NOT)

` e : boolean

` !e : boolean
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Derivation Trees and Validity
University of Freiburg

A judgment J is valid if a derivation tree for J exists.

Definition: A derivation tree for the judgment J is either

1 J, if J is an instance of an axiom, or

2
J1 . . .Jn

J
, if

J1 . . . Jn

J
is an instance of a rule and each Jk is

a derivation tree for Jk .
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Example: Derivation Trees
University of Freiburg

(INT)

` 0 : int is a derivation tree for judgment ` 0 : int.

(BOOL)

` true : boolean is a derivation tree for ` true : boolean.

The judgment ` 17 + 4 : int holds, because of the
derivation tree

(ADD)
(INT)

` 17 : int

(INT)

` 4 : int

` 17 + 4 : int
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Variable
University of Freiburg

Programs declare variables

Programs use variables according to their declaration

Declarations are collected in a type environment.

Γ ::= ∅ | Γ, x : τ type environment

An open typing judgment contains a type environment: The
expression e has the type t in the type environment Γ.

Γ ` e : τ

Typing rule for variables:
A variable has the type, with which it is declared.

(VAR)

x : τ ∈ Γ

Γ ` x : τ
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Extension of the Remaining Typing Rules
University of Freiburg

The typing rules propagate the typing environment.

(INT)

Γ ` n : int

(BOOL)

Γ ` b : int

(ADD)

Γ ` e1 : int Γ ` e2 : int

Γ ` e1+e2 : int

(NOT)

Γ ` !e : boolean

Γ ` e : boolean
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Example: Derivation with Variable
University of Freiburg

The declaration boolean flag; matches the type assumption

Γ = ∅, flag : boolean

Hence the derivation

flag : boolean ∈ Γ

Γ ` flag : boolean

Γ ` ! flag : boolean
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Intermediate Result
University of Freiburg

Formal system for

syntax of expressions and types (CFG, BNF)
typing judgments
validity of typing judgments

Open questions

How to evaluate expressions?
Connection between evaluation and typing judgments
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Evaluation of Expressions
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Approach: Syntactic Rewriting
University of Freiburg

Define a binary reduction relation e −→ e ′ over expressions

Expression e reduces in one step to e ′ (Notation: e −→ e ′) if
one computational step leads from e to e ′.

Example:

5+2 −→ 7

(5+2)+14 −→ 7+14
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Result of Computations
University of Freiburg

A value v is a number or a truth value.

An expression can reach a value after many steps:

0 steps: 0
1 step: 5+2 −→ 7

2 steps: (5+2)+14 −→ 7+14 −→ 21

but

!4711
1+false

(1+2)+false −→ 3+false

These expressions cannot perform a reduction step. They
correspond to run-time errors.

Observation: these errors are type errors!
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Formalization: Results and Reduction Steps
University of Freiburg

A value is a number or a truth value.

v ::= n | b values

One reduction step
If the two operands are numbers, we can add the two
numbers to obtain a number as result.

(B-ADD)

dn1e+dn2e −→ dn1 + n2e

dne stands for the syntactic representation of the number n.
If the operand of a negation is a truth value, the negation
can be performed.

(B-TRUE)

!true −→ false

(B-FALSE)

!false −→ true
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Formalization: Nested Expressions
University of Freiburg

What happens if the operands of operations are not values?
Evaluate the subexpressions first.

Negation
(B-NEG)

e −→ e ′

!e −→ !e ′

Addition, first operand

(B-ADD-L)

e1 −→ e ′1

e1+e2 −→ e ′1+e2

Addition, second operand (only evaluate the second, if the
first is a value)

(B-ADD-R)

e −→ e ′

v+e −→ v+e ′
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Variable
University of Freiburg

An expression that contains variables cannot be evaluated
with the reduction steps.

Eliminate variables with substitution, i.e., replace each
variable with a value. Then reduction can proceed.

Applying a substitution [v1/x1, . . . vn/xn] to an expression e,
written as

e[v1/x1, . . . vn/xn]

changes in e each occurrence of xi to the corresponding
value vi .

Example:

(!flag)[false/flag] ≡ !false
(m+n)[25/m, 17/n] ≡ 25+17
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Type Correctness Informally
University of Freiburg

Type correctness: If there exists a type for an expression e,
then e evaluates to a value in a finite number of steps.

In particular, no run-time error happens.

For the language JAUS the converse also holds (this is not
correct in general, like in full Java).

Prove in two steps (after Wright and Felleisen)
Assume e has a type, then it holds:

Progress: Either e is a value or there exists a reduction
step for e.

Preservation: If e −→ e ′, then e ′ and e have the same type.
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Theorem: Type Soundness of JAUS
University of Freiburg

If ` e : τ , then there exists a value v with ` v : τ and
reduction steps

e0 −→ e1, e1 −→ e2, . . . , en−1 −→ en

with e ≡ e0 and en ≡ v .

If e contains variables, then we have to substitute them with
suitable values (choose values with same types as the
variables).
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Type Safety of Java
University of Freiburg

1995 public presentation of Java

Obtained importance very quickly

Questions

Type safety?
Semantics of Java?

1997/98 resolved

Drossopoulou/Eisenbach
Flatt/Krishnamurthi/Felleisen
Igarashi/Pierce/Wadler (Featherweight Java, FJ)
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Featherweight Java
University of Freiburg

Construction of a formal model:
consideration of completeness and compactness

FJ: minimal model (compactness)

complete definition: one page

ambition:

the most important language features
short proof of type soundness
FJ ⊆ Java
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The Language FJ
University of Freiburg

class definition

object creation new

method call (dynamic dispatch), recursion with this

field access

type cast

method override

subtypes
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Omitted
University of Freiburg

assignment

interfaces

overloading

super-calls

null-references

primitive types

abstract methods

inner classes

shadowing of fields of super classes

access control (private, public, protected)

exceptions

concurrency

reflection, generics, variable argument lists
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Example Programs
University of Freiburg

1 class A extends Object { A() { super (); } }

2

3 class B extends Object { B() { super (); } }

4

5 class Pair extends Object {

6 Object fst;

7 Object snd;

8 // Constructor

9 Pair (Object fst , Object snd) {

10 super(); this.fst = fst; this.snd = snd;

11 }

12 // Method definition

13 Pair setfst (Object newfst) {

14 return new Pair (newfst , this.snd);

15 }

16 }
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Explanation
University of Freiburg

Class definition: always define super class

Constructors:

one per class, always defined
arguments correspond to fields
always the same form:
super-call, then copy the arguments into the fields

method body: always in the form return. . .
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Guarantees of Java’s Type System
University of Freiburg

If a Java program is type correct, then

all field accesses refer to existing fields

all method calls refer to existing methods,

but failing type casts are possible.
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Formal Definition
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Syntax
University of Freiburg

CL ::= class definition
class C extends D {C1 f1; . . . K M1 . . . }

K ::= constructor definition
C(C1 f1, . . . ) {super(g1, . . . ); this.f1 = f1; . . . }

M ::= method definition
C m(C1 x1, . . . ) {return t; }

t ::= expressions
x variable
t.f field access
t.m(t1, . . . ) method call
new C(t1, . . . ) object creation

(C) t type cast
v ::= values

new C(v1, . . . ) object creation
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Syntax—Conventions
University of Freiburg

this

special variable, do not use it as field name or parameter
implicit bound in each method body

sequences of field names, parameter names and method
names include no repetition

class C extends D {C1 f1; . . . K M1 . . . }
defines class C as subclass of D
fields f1 . . . with types C1 . . .
constructor K
methods M1 . . .
fields from D will be added to C, shadowing is not supported
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Syntax—Conventions
University of Freiburg

C(D1 g1, . . . ,C1 f1, . . . ) {super(g1, . . . ); this.f1 = f1; . . . }
define the constructor of class C
fully specified by the fields of C and the fields of the super
classes.
number of parameters is equal to number of fields in C and
all its super classes.
body start with super(g1, . . . ), where g1, . . . corresponds to
the fields of the super classes

D m(C1 x1, . . . ) {return t; }
defines method m
result type D
parameter x1 . . . with types C1 . . .
body is a return statement
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Class Table
University of Freiburg

The class table CT is a map from class names to class
definitions

⇒ each class has exactly one definition
the CT is global, it corresponds to the program
“arbitrary but fixed”

Each class except Object has a superclass

Object is not part of CT
Object has no fields
Object has no methods ( 6= Java)

The class table defines a subtype relation C <: D over class
names: the reflexive and transitive closure of subclass
definitions.
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Subtype Relation
University of Freiburg

REFL
C <: C

TRANS
C <: D D <: E

C <: E

EXT
CT(C) = class C extends D . . .

C <: D

Java: Assignment compatibility

If C <: D, then

a C-value can be assigned to a D-variable and

a C-value can be passed as a D-parameter.
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Intermezzo: Extension for Interfaces
Not part of FJ
University of Freiburg

IMPL
CT(C) = class C implements I . . .

C <: I

IEXT
CT(I) = interface I extends J . . .

I <: J
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Consistency of CT
University of Freiburg

1 CT(C) = class C . . . for all C ∈ dom(CT)

2 Object /∈ dom(CT)

3 For each class name C mentioned in CT :
C ∈ dom(CT) ∪ {Object}

4 The relation <: is antisymmetric (no cycles)
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Example: Classes Do Refer to Each Other
University of Freiburg

1 class Author extends Object {

2 String name; Book bk;

3

4 Author (String name , Book bk) {

5 super();

6 this.name = name;

7 this.bk = bk;

8 }

9 }

10 class Book extends Object {

11 String title; Author ath;

12

13 Book (String title , Author ath) {

14 super();

15 this.title = title;

16 this.ath = ath;

17 }

18 }
Matthias Keil, Peter Thiemann Compiler Construction 21. November 2016 61 / 79



Auxiliary Definitions
Collect fields of classes
University of Freiburg

fields(Object) = •

CT(C) = class C extends D {C1 f1; . . . K M1 . . . }
fields(D) = D1 g1, . . .

fields(C) = D1 g1, . . . ,C1 f1, . . .

• — empty list

fields(Author) = String name; Book bk;

Usage: evaluation steps, typing rules
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Auxiliary Definitions
Compute type of a method
University of Freiburg

CT(C) = class C extends D {C1 f1; . . . K M1 . . . }
Mj = E m(E1 x1, . . . ) {return t; }

mtype(m,C) = (E1, . . . )→ E

CT(C) = class C extends D {C1 f1; . . . K M1 . . . }
(∀j) Mj 6= F m(F1 x1, . . . ) {return t; }

mtype(m,D) = (E1, . . . )→ E

mtype(m,C) = (E1, . . . )→ E

Usage: typing rules
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Auxiliary Definitions
Determine body of a method
University of Freiburg

CT(C) = class C extends D {C1 f1; . . . K M1 . . . }
Mj = E m(E1 x1, . . . ) {return t; }

mbody(m,C) = (x1 . . . , t)

CT(C) = class C extends D {C1 f1; . . . K M1 . . . }
(∀j) Mj 6= F m(F1 x1, . . . ) {return t; }

mbody(m,D) = (y1 . . . , u)

mbody(m,C) = (y1 . . . , u)

Usage: evaluation steps
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Auxiliary Definitions
Correct overriding of a method
University of Freiburg

override(m,Object, (E1 . . . )→ E)

CT(C) = class C extends D {C1 f1; . . . K M1 . . . }
Mj = E m(E1 x1, . . . ) {return t; }

override(m,C, (E1 . . . )→ E)

CT(C) = class C extends D {C1 f1; . . . K M1 . . . }
(∀j) Mj 6= F m(F1 x1, . . . ) {return t; }

override(m,D, (E1, . . . )→ E)

override(m,C, (E1, . . . )→ E)

Usage: typing rules
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Operational Semantics
(definition of the evaluation steps)
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Direct Evaluation Steps
University of Freiburg

Evaluation: relation t −→ t ′ for one evaluation step

E-ProjNew
fields(C) = C1 f1, . . .

(new C(v1, . . . )).fi −→ vi

E-InvkNew
mbody(m,C) = (x1 . . . , t)

(new C(v1, . . . )).m(u1, . . . )
−→ t[new C(v1, . . . )/this, u1, . . . /x1, . . . ]

E-CastNew
C <: D

(D)(new C(v1, . . . )) −→ new C(v1, . . . )
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Evaluation Steps in Context
University of Freiburg

E-Field
t −→ t′

t.f −→ t′.f

E-Invk-Recv
t −→ t′

t.m(t1, . . . ) −→ t′.m(t1, . . . )

E-Invk-Arg
ti −→ t′i

v.m(v1, . . . , ti , . . . ) −→ v.m(v1, . . . , t
′
i , . . . )
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Evaluation Steps in Context (cont’d)
University of Freiburg

E-New-Arg
ti −→ t′i

new C(v1, . . . , ti , . . . ) −→ new C(v1, . . . , t
′
i , . . . )

E-Cast
t −→ t′

(C)t −→ (C)t ′
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Typing Rules
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Typing Rules
University of Freiburg

Overview of typing judgments

C <: D
C is subtype of D

A ` t : C
Under type assumption A, the expression t has type C.

F m(C1 x1, . . . ) {return t; } OK in C
Method declaration is accepted in class C.

class C extends D {C1 f1; . . . K M1 . . . } OK
Class declaration is accepted

Type assumptions defined by

A ::= ∅ | A, x : C
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Accepted Class Declaration
University of Freiburg

K = C(D1 g1, . . . ,C1 f1, . . . ) {super(g1, . . . ); this.f1 = f1; . . . }
fields(D) = D1 g1 . . . (∀j) Mj OK in C

class C extends D {C1 f1; . . . K M1 . . . }
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Accepted Method Declaration
University of Freiburg

x1 : C1, . . . , this : C ` t : E
E <: F CT(C) = class C extends D . . .

override(m,D, (C1, . . . )→ F)

F m(C1 x1, . . . ) {return t; } OK in C
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Expression Has Type
University of Freiburg

T-Var
x : C ∈ A

A ` x : C

T-Field
A ` t : C fields(C) = C1 f1, . . .

A ` t.fi : Ci
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Expression Has Type (cont’d)
University of Freiburg

F-Invk
A ` t : C (∀i) A ` ti : Ci (∀i) Ci <: Di

mtype(m,C) = (D1, . . . )→ D

A ` t.m(t1, . . . ) : D

F-New
(∀i) A ` ti : Ci (∀i) Ci <: Di fields(C) = D1 f1, . . .

A ` new C(t1, . . . ) : C
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Type Rules for Type Casts
University of Freiburg

T-UCast
A ` t : D D <: C

A ` (C)t : C

T-DCast
A ` t : D C <: D C 6= D

A ` (C)t : C
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Type Safety for Featherweight Java
University of Freiburg

“Preservation” and “Progress” yields type safety

“Preservation”:
If A ` t : C and t −→ t ′, then A ` t ′ : C ′ with C ′ <: C .

“Progress”: (short version)
If A ` t : C , then t −→ t ′, for some t ′, or t ≡ v is a value,
or t contains a subexpression e ′

e ′ ≡ (C )(new D(v1, . . . ))

with D 6<:C .

⇒ All method calls and field accesses evaluate without errors.
Type casts can fail.
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Problems in the Preservation Proof
Type casts destroy preservation
University of Freiburg

Consider the expression (A) ((Object)new B())

It holds that ∅ `(A) ((Object)new B()): A

It holds that (A) ((Object)new B()) −→ (A) (new B())

But (A) (new B()) has no type!

Workaround: add additional rule for this case “stupid cast”
—subsequent evaluation step fails

T-SCast
A ` t : D C 6<:D D 6<:C

A ` (C)t : C

We can prove preservation with this rule.
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Statement of Type Safety
University of Freiburg

If A ` t : C , then one of the following cases applies:

1 t does not terminate
i.e., there exists an infinite sequence of evaluation steps

t = t0 −→ t1 −→ t2 −→ . . .

2 t evaluates to a value v after a finite number of evaluation
steps
i.e., there exists a finite sequence of evaluation steps

t = t0 −→ t1 −→ . . . −→ tn = v

3 t gets stuck at a failing cast
i.e., there exists a finite sequence of evaluation steps

t = t0 −→ t1 −→ . . . −→ tn

where tn contains a subterm (C )(new D(v1, . . . )) such that
D 6<:C .
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