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Mutual Exclusion

• Today we will try to formalize our 
understanding of mutual exclusion

• We will also use the opportunity to 
show you how to argue about and 
prove various properties in an 
asynchronous concurrent setting



Mutual Exclusion

In his 1965 paper E. W. Dijkstra wrote:
 "Given in this paper is a solution to a problem which, to 

the knowledge of the author, has been an open question 
since at least 1962, irrespective of the solvability. [...]  
Although the setting of the problem might seem 
somewhat academic at first, the author trusts that 
anyone familiar with the logical problems that arise in 
computer coupling will appreciate the significance of the 
fact that this problem indeed can be solved."
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Mutual Exclusion

• Formal problem definitions
• Solutions for 2 threads
• Solutions for n threads
• Fair solutions
• Inherent costs
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Warning

• You will never use these protocols
– Get over it

• You are advised to understand 
them
– The same issues show up everywhere
– Except hidden and more complex
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Why is Concurrent 
Programming so Hard?

• Try preparing a seven-course banquet
– By yourself
– With one friend
– With twenty-seven friends …

• Before we can talk about programs
– Need a language
– Describing time and concurrency
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• “Absolute, true and mathematical time, of itself 
and from its own nature, flows equably without 
relation to anything external.” 
(I. Newton, 1689)

• “Time is, like, Nature’s way of making sure that 
everything doesn’t happen all at once.”
 (Anonymous, circa 1968)

Time

time
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time

• An event  a0 of thread A is
– Instantaneous
– No simultaneous events (break ties)

a0

Events
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time

• A thread A is (formally) a sequence 
a0, a1, ... of events 
– “Trace” model

– Notation: a0  a1 indicates order

a0

Threads

a1 a2 …



Art of Multiprocessor 
Programming

10

• Assign to shared variable
• Assign to local variable
• Invoke method
• Return from method
• Lots of other things …

Example Thread Events
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Threads are State 
Machines

Events are 
transitions

a0

a1a2

a3
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States

• Thread State
– Program counter
– Local variables

• System state
– Object fields (shared variables)
– Union of thread states
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time

• Thread A

Concurrency
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time

time

• Thread A

• Thread B

Concurrency
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time

Interleavings

• Events of two or more threads
– Interleaved
– Not necessarily independent (why?)
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time

• An interval  A0 =(a0,a1) is

– Time between events a0 and a1 

a0 a1

Intervals

A0
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time

Intervals may Overlap

a0 a1A0

b0 b1B0
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time

Intervals may be Disjoint

a0 a1A0

b0 b1B0
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time

Precedence

a0 a1A0

b0 b1B0

Interval A0 precedes interval B0
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Precedence

• Notation: A0  B0

• Formally,
– End event of A0 before start event of B0

– Also called “happens before” or “precedes” 
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Precedence Ordering

• Remark: A0  B0 is just like saying 

– 1066 AD  1492 AD, 

– Middle Ages  Renaissance,

• Oh wait, 
– what about this week vs this month?
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Precedence Ordering

• Never true that A  A 

• If A B then not true that B A

• If A B & B C then A C

• Funny thing: A B & B A might both be false! 
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Partial Orders

• Irreflexive:
– Never true that A  A 

• Antisymmetric:
– If A  B then not true that B  A 

• Transitive:
– If A  B & B  C then A  C
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Total Orders

• Also
– Irreflexive
– Antisymmetric
– Transitive

• Except that for every distinct A, B,
– Either A  B or B  A 
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Repeated Events

while (mumble) {
  a0; a1;

}  

a0
k

k-th occurrence 
of event a0

A0
k

k-th occurrence of 
interval A0 =(a0,a1)
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Implementing a Counter

public class Counter {
  private long value;

  public long getAndIncrement() {
    temp  = value;
    value = temp + 1;
    return temp;
  }
}

Make these steps 
indivisible using 

locks
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Locks (Mutual Exclusion)

public interface Lock {

 public void lock();

 public void unlock();
}
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Locks (Mutual Exclusion)

public interface Lock {

 public void lock();

 public void unlock();
}

acquire 
lock
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Locks (Mutual Exclusion)

public interface Lock {

 public void lock();

 public void unlock();
}

release 
lock

acquire 
lock
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Using Locks

public class Counter {
  private long value;
  private Lock lock;
  public long getAndIncrement() {
   lock.lock();
   try {
    int temp = value;
    value = temp + 1;
   } finally {
     lock.unlock();
   }
   return temp;
  }}
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Using Locks

public class Counter {
  private long value;
  private Lock lock;
  public long getAndIncrement() {
   lock.lock();
   try {
    int temp = value;
    value = temp + 1;
   } finally {
     lock.unlock();
   }
   return temp;
  }}

acquire 
Lock
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Using Locks

public class Counter {
  private long value;
  private Lock lock;
  public long getAndIncrement() {
   lock.lock();
   try {
    int temp = value;
    value = temp + 1;
   } finally {
     lock.unlock();
   }
   return temp;
  }}

Release lock
(no matter what)
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Using Locks

public class Counter {
  private long value;
  private Lock lock;
  public long getAndIncrement() {
   lock.lock();
   try {
    int temp = value;
    value = temp + 1;
   } finally {
     lock.unlock();
   }
   return temp;
  }}

Critical 
section
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Mutual Exclusion

• Let CSi
k      be thread i’s k-th critical 

section execution
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Mutual Exclusion

• Let CSi
k      be thread i’s k-th critical 

section execution

• And CSj
m      be thread j’s m-th critical 

section execution
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Mutual Exclusion

• Let CSi
k      be thread i’s k-th critical 

section execution

• And CSj
m      be j’s m-th execution

• Then either
–            or
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Mutual Exclusion

• Let CSi
k      be thread i’s k-th critical 

section execution

• And CSj
m      be j’s m-th execution

• Then either
–            or

CSi
k  CSj

m
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Mutual Exclusion

• Let CSi
k      be thread i’s k-th critical 

section execution

• And CSj
m      be j’s m-th execution

• Then either
–            or

CSi
k  CSj

m

  

CSj
m  CSi

k
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Deadlock-Free

• If some thread calls lock()
– And never returns
– Then other threads must complete 

lock() and unlock() calls infinitely 
often

• System as a whole makes progress
– Even if individuals starve
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Starvation-Free

• If some thread calls lock()
– It will eventually return

• Individual threads make progress
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Two-Thread vs n -Thread 
Solutions

• Two-thread solutions first
– Illustrate most basic ideas
– Fits on one slide

• Then n-Thread solutions 
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class … implements Lock {
  …
  // thread-local index, 0 or 1
  public void lock() {
    int i = ThreadID.get();
    int j = 1 - i; 
  …
  }
}

Two-Thread Conventions
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class … implements Lock {
  …
  // thread-local index, 0 or 1
  public void lock() {
    int i = ThreadID.get();
    int j = 1 - i; 
  …
  }  
}

Two-Thread Conventions

Henceforth: i is current 
thread, j is other thread
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LockOne
class LockOne implements Lock {
private boolean[] flag =new boolean[2];
public void lock() {
  flag[i] = true;
  while (flag[j]) {}
 }
public void unlock() {
  flag[i] = false;
}
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LockOne
class LockOne implements Lock {
private boolean[] flag = 
                        new boolean[2]; 
public void lock() {
  flag[i] = true;
  while (flag[j]) {}
 }

Set my flag
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class LockOne implements Lock {
private boolean[] flag = 
                        new boolean[2]; 
public void lock() {
  flag[i] = true;
  while (flag[j]) {}
 }

LockOne

Wait for other 
flag to go false

Set my flag
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• Assume CSA
j overlaps CSB

k

• Consider each thread's last (j-th 
and k-th) read and write in the 
lock() method before entering 

• Derive a contradiction

LockOne Satisfies Mutual 
Exclusion
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• writeA(flag[A]=true)  
readA(flag[B]==false) CSA

• writeB(flag[B]=true)  
readB(flag[A]==false)  CSB

From the Code

class LockOne implements Lock {
… 
public void lock() {
  flag[i] = true;
  while (flag[j]) {}
 }
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• readA(flag[B]==false)  
writeB(flag[B]=true)

• readB(flag[A]==false)  
writeA(flag[A]=true)

From the Assumption
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• Assumptions:
– readA(flag[B]==false)  writeB(flag[B]=true)

– readB(flag[A]==false)  writeA(flag[A]=true)

• From the code
– writeA(flag[A]=true)  readA(flag[B]==false)

– writeB(flag[B]=true)  readB(flag[A]==false)

Combining
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• Assumptions:
– readA(flag[B]==false)  writeB(flag[B]=true)

– readB(flag[A]==false)  writeA(flag[A]=true)

• From the code
– writeA(flag[A]=true)  readA(flag[B]==false)

– writeB(flag[B]=true)  readB(flag[A]==false)

Combining
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• Assumptions:
– readA(flag[B]==false)  writeB(flag[B]=true)

– readB(flag[A]==false)  writeA(flag[A]=true)

• From the code
– writeA(flag[A]=true)  readA(flag[B]==false)

– writeB(flag[B]=true)  readB(flag[A]==false)

Combining
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• Assumptions:
– readA(flag[B]==false)  writeB(flag[B]=true)

– readB(flag[A]==false)  writeA(flag[A]=true)

• From the code
– writeA(flag[A]=true)  readA(flag[B]==false)

– writeB(flag[B]=true)  readB(flag[A]==false)

Combining
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• Assumptions:
– readA(flag[B]==false)  writeB(flag[B]=true)

– readB(flag[A]==false)  writeA(flag[A]=true)

• From the code
– writeA(flag[A]=true)  readA(flag[B]==false)

– writeB(flag[B]=true)  readB(flag[A]==false)

Combining
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• Assumptions:
– readA(flag[B]==false)  writeB(flag[B]=true)

– readB(flag[A]==false)  writeA(flag[A]=true)

• From the code
– writeA(flag[A]=true)  readA(flag[B]==false)

– writeB(flag[B]=true)  readB(flag[A]==false)

Combining
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Cycle!

Im
poss

ib
le 

in
 p

arti
al a

 

ord
er
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Deadlock Freedom

• LockOne Fails deadlock-freedom
– Concurrent execution can deadlock

– Sequential executions OK

  flag[i] = true;    flag[j] = true;
  while (flag[j]){}  while (flag[i]){}
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LockTwo
public class LockTwo implements Lock {
 private int victim;
 public void lock() {
  victim = i;
  while (victim == i) {}; 
 }

 public void unlock() {}
}



Art of Multiprocessor 
Programming

59

LockTwo
public class LockTwo implements Lock {
 private int victim;
 public void lock() {
  victim = i;
  while (victim == i) {}; 
 }

 public void unlock() {}
}

Let other go 
first
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LockTwo
public class LockTwo implements Lock {
 private int victim;
 public void lock() {
 victim = i;
  while (victim == i) {}; 
 }

 public void unlock() {}
}

Wait for 
permission
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LockTwo
public class Lock2 implements Lock {
 private int victim;
 public void lock() {
  victim = i;
  while (victim == i) {}; 
 }

 public void unlock() {}
}

Nothing to 
do
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public void LockTwo() {
  victim = i;
  while (victim == i) {}; 
 }

LockTwo Claims

• Satisfies mutual exclusion
– If thread i in CS
– Then victim == j
– Cannot be both 0 and 1

• Not deadlock free
– Sequential execution deadlocks
– Concurrent execution does not
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Peterson’s Algorithm

public void lock() {
 flag[i] = true; 
 victim  = i; 
 while (flag[j] && victim == i) {};
}
public void unlock() {
 flag[i] = false;
}



Art of Multiprocessor 
Programming

64

Peterson’s Algorithm

public void lock() {
 flag[i] = true; 
 victim  = i; 
 while (flag[j] && victim == i) {};
}
public void unlock() {
 flag[i] = false;
}

Announce 
I’m 

interested
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Peterson’s Algorithm

public void lock() {
 flag[i] = true; 
 victim  = i; 
 while (flag[j] && victim == i) {};
}
public void unlock() {
 flag[i] = false;
}

Announce 
I’m 

interested
Defer to other
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Peterson’s Algorithm

public void lock() {
 flag[i] = true; 
 victim  = i; 
 while (flag[j] && victim == i) {};
}
public void unlock() {
 flag[i] = false;
}

Announce I’m 
interested

Defer to other

Wait while other 
interested & I’m 

the victim
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Peterson’s Algorithm

public void lock() {
 flag[i] = true; 
 victim  = i; 
 while (flag[j] && victim == i) {};
 }
public void unlock() {
 flag[i] = false;
}

Announce I’m 
interested

Defer to other

Wait while other 
interested & I’m 

the victimNo longer 
interested



Art of Multiprocessor 
Programming

68

public void lock() {
  flag[i] = true; 
  victim  = i;
  while (flag[j] && victim == i) {};

Mutual Exclusion

• If thread 1 in critical 
section,
– flag[1]=true, 

– !flag[0] ||
victim = 0

• If thread 0 in critical 
section,
– flag[0]=true, 

– !flag[1] ||

victim = 1

Cannot both be true
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Thread A

write_A(flag[A]=true)

write_A(victim=A)

read_A(flag[B])

read_A(victim)

CS_A

Mutual Exclusion Proved
Thread B

write_B(flag[B]=true)

write_B(victim=B)

read_B(flag[A])

read_B(victim)

CS_B
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Deadlock Free

• Thread blocked 
– only at while loop
– only if it is the victim

• One or the other must not be the victim

public void lock() {
  …
  while (flag[j] && victim == i) {};
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Starvation Free

• Thread i blocked 
only if j 
repeatedly re-
enters so that

  flag[j] == true and 
victim == i

• When j re-enters
– it sets victim to j.
– So i gets in

public void lock() {
  flag[i] = true; 
  victim    = i;
  while (flag[j] && victim == i) {};
}

public void unlock() {
  flag[i] = false;  
}
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The Filter Algorithm for n 
Threads

There are n-1 “waiting rooms” 
called levels

• At each level 
– At least one enters level
– At least one blocked if 
   many try

• Only one thread makes it through

ncs

cs



Art of Multiprocessor 
Programming

73

Filter
class Filter implements Lock {
   int[] level;  // level[i] for thread i
   int[] victim; // victim[L] for level L

  public Filter(int n) {
  level  = new int[n];
  victim = new int[n]; 
  for (int i = 1; i < n; i++) {
      level[i] = 0;
  }}
…

}
  

level

victim

n-1

n-1

0

1

0 0 0 0 0 04

2

2

Thread 2 at level 4

0

4
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Filter
class Filter implements Lock {
  …

  public void lock(){
    for (int L = 1; L < n; L++) {
      level[i]  = L;
      victim[L] = i;

      while ((∃ k != i level[k] >= L) &&
             victim[L] == i ); 
    }} 
  public void unlock() {
    level[i] = 0;
  }}
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class Filter implements Lock {
  …
 
  public void lock() {
    for (int L = 1; L < n; L++) {
      level[i]  = L;
      victim[L] = i;

      while ((∃ k != i) level[k] >= L) &&
             victim[L] == i); 
    }} 
  public void release(int i) {
    level[i] = 0;
  }}
  

Filter

One level at a 
time
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class Filter implements Lock {
  …
 
  public void lock() {
    for (int L = 1; L < n; L++) {
      level[i]  = L;
      victim[L] = i;

      while ((∃ k != i) level[k] >= L) &&
             victim[L] == i); // busy wait
    }} 
  public void release(int i) {
    level[i] = 0;
  }}
  

Filter

Announce 
intention to 
enter level L
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class Filter implements Lock {
  int level[n];  
  int victim[n]; 
  public void lock() {
    for (int L = 1; L < n; L++) {
      level[i]  = L;
      victim[L] = i;

      while ((∃ k != i) level[k] >= L) &&
             victim[L] == i); 
    }} 
  public void release(int i) {
    level[i] = 0;
  }}
  

Filter

Give priority to 
anyone but me
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class Filter implements Lock {
  int level[n];  
  int victim[n]; 
  public void lock() {
    for (int L = 1; L < n; L++) {
      level[i]  = L;
      victim[L] = i;

      while ((∃ k != i) level[k] >= L) &&
             victim[L] == i); 
    }} 
  public void release(int i) {
    level[i] = 0;
  }}
  

Filter
Wait as long as someone else is at 

same or higher level, and I’m 
designated victim
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class Filter implements Lock {
  int level[n];  
  int victim[n]; 
  public void lock() {
    for (int L = 1; L < n; L++) {
      level[i]  = L;
      victim[L] = i;

      while ((∃ k != i) level[k] >= L) &&
             victim[L] == i); 
    }} 
  public void release(int i) {
    level[i] = 0;
  }}
  

Filter

Thread enters level L when it 
completes the loop
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Claim
• Start at level L=0
• At most n-L threads enter level L
• Mutual exclusion at level L=n-1

ncs

cs L=n-1

L=1

L=n-2

L=0
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Induction Hypothesis

• Assume all at 
level L-1 enter 
level L

• A last to write 
victim[L] 

• B is any other 
thread at level L

•  No more than n-L+1 at level L-1 
•  Induction step: by contradiction 

ncs

cs

L-1 has n-L+1
L has n-L

assume

prove
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Proof Structure
ncs

cs

Assumed to enter L-1

By way of contradiction
all enter L

n-L+1 = 4

n-L+1 = 4

A B

Last to 
write
victim[L]

Show that A must have seen 
B in level[L] and since victim[L] == A
could not have entered 
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From the Code

(1) writeB(level[B]=L)writeB(victim[L]=B)

public void lock() {
 for (int L = 1; L < n; L++) {
   level[i] = L;
   victim[L]  = i;

   while ((∃ k != i) level[k] >= L)
          && victim[L] == i) {};
   }}    
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From the Code

(2) writeA(victim[L]=A)readA(level[B])

public void lock() {
 for (int L = 1; L < n; L++) {
   level[i] = L;
   victim[L]  = i;

   while ((∃ k != i) level[k] >= L)
          && victim[L] == i) {};
   }}    
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By Assumption

By assumption, A is the last 
thread to write victim[L]

(3) 
writeB(victim[L]=B)writeA(victim[L]=A)
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Combining Observations

(1) writeB(level[B]=L)writeB(victim[L]=B)

(3) writeB(victim[L]=B)writeA(victim[L]=A)

(2) writeA(victim[L]=A)readA(level[B])
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public void lock() {
 for (int L = 1; L < n; L++) {
   level[i]  = L;
   victim[L] = i;
   while ((∃  k != i) level[k] >= L)
          && victim[L] == i) {};
   }}    

Combining Observations

(1) writeB(level[B]=L)writeB(victim[L]=B)

(3) writeB(victim[L]=B)writeA(victim[L]=A)

(2) writeA(victim[L]=A)readA(level[B])
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Combining Observations

(1) writeB(level[B]=L)writeB(victim[L]=B)

(3) writeB(victim[L]=B)writeA(victim[L]=A)

(2) writeA(victim[L]=A)readA(level[B])

Thus, A reads level[B] ≥ L, 
A was last to write victim[L],
so it could not have entered level L!
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No Starvation

• Filter Lock satisfies properties:
– Like Peterson Algorithm at any level
– So no one starves 

• But what about fairness?
– Threads can be overtaken by others 
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Bounded Waiting

• Want stronger fairness guarantees
• Thread not “overtaken” too much
• Need to adjust definitions ….
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Bounded Waiting

• Divide lock() method into 2 parts:
– Doorway interval:

• Written DA

• always finishes in finite steps

– Waiting interval:
• Written WA

• may take unbounded steps
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• For threads A and B:
– If DA

k  DB 
j

• A’s k-th doorway precedes B’s j-th doorway

– Then CSA
k  CSB

j+r

• A’s k-th critical section precedes B’s (j+r)-th critical 
section

• B cannot overtake A by more than r times

• First-come-first-served means r = 0.

r-Bounded Waiting
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Fairness Again

• Filter Lock satisfies properties:
– No one starves
– But very weak fairness

•Not r-bounded for any r!
– That’s pretty lame…
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Lamport's Bakery 
Algorithm

• Provides First-Come-First-Served
• How?

– Take a “number”
– Wait until lower numbers have been 

served
• Lexicographic order

– (a,i) > (b,j)
• If a > b, or a = b and i > j
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Bakery Algorithm
class Bakery implements Lock {
   boolean[] flag;
   Label[] label;
  public Bakery (int n) {
    flag  = new boolean[n];
    label = new Label[n];
    for (int i = 0; i < n; i++) { 
       flag[i] = false; label[i] = 0;
    }
  }
 …
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Bakery Algorithm
class Bakery implements Lock {
   boolean[] flag;
   Label[] label;
  public Bakery (int n) {
    flag  = new boolean[n];
    label = new Label[n];
    for (int i = 0; i < n; i++) { 
       flag[i] = false; label[i] = 0;
    }
  }
 …
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Bakery Algorithm

class Bakery implements Lock {
  …
 public void lock() {  
  flag[i]  = true;  
  label[i] = max(label[0], …,label[n-1])+1;

  while (∃k flag[k]
           && (label[i],i) > (label[k],k));
 }
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Bakery Algorithm

class Bakery implements Lock {
  …
 public void lock() {  
  flag[i]  = true;  
  label[i] = max(label[0], …,label[n-1])+1;

  while (∃k flag[k]
           && (label[i],i) > (label[k],k));
 }

Doorway
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Bakery Algorithm

class Bakery implements Lock {
  …
 public void lock() {  
  flag[i]  = true;  
  label[i] = max(label[0], …,label[n-1])+1;

  while (∃k flag[k]
           && (label[i],i) > (label[k],k));
 }

I’m interested
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Bakery Algorithm

class Bakery implements Lock {
  …
 public void lock() {  
  flag[i]  = true;  
  label[i] = max(label[0], …,label[n-1])+1;

  while (∃k flag[k]
           && (label[i],i) > (label[k],k));
 }

Take 
increasing 
label (read 

labels in some 
arbitrary 

order)
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Bakery Algorithm

class Bakery implements Lock {
  …
 public void lock() {  
  flag[i]  = true;  
  label[i] = max(label[0], …,label[n-1])+1;

  while (∃k flag[k]
           && (label[i],i) > (label[k],k));
 }

Someone is 
interested
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Bakery Algorithm
class Bakery implements Lock {
  boolean flag[n];
  int label[n];

 public void lock() {  
  flag[i]  = true;  
  label[i] = max(label[0], …,label[n-1]+1;

  while (∃k flag[k]
           && (label[i],i) >(label[k],k));
 }

Someone is 
interested

With lower (label,k) in 
lexicographic order
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Bakery Algorithm

class Bakery implements Lock {
  
    …

 public void unlock() {  
   flag[i] = false;
 }
}
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Bakery Algorithm

class Bakery implements Lock {
  
    …

 public void unlock() {  
   flag[i] = false;
 }
}

No longer 
interested

labels are always increasing 
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No Deadlock

• There is always one thread with 
earliest label

• Ties are impossible (why?)
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First-Come-First-Served

• If DA  DBthen A’s 
label is smaller

• And:
– writeA(label[A])  

readB(label[A])  
writeB(label[B])  
readB(flag[A])

• So B is locked out 
while flag[A] is true

class Bakery implements Lock {

public void lock() {  
  flag[i]  = true;  
  label[i] = max(label[0],
                 …,label[n-1])+1;
  while (∃k flag[k]
           && (label[i],i) > 
(label[k],k));

 }
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Mutual Exclusion

• Suppose A and B 
in CS together

• Suppose A has 
earlier label

• When B entered, 
it must have seen
– flag[A] is false, or
– label[A] > label[B]

class Bakery implements Lock {
  
public void lock() {  
  flag[i]  = true;  
  label[i] = max(label[0],
                 …,label[n-1])+1;
  while (∃k flag[k]
           && (label[i],i) > 
(label[k],k));

 }
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Mutual Exclusion

• Labels are strictly increasing so 

• B must have seen flag[A] == false
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Mutual Exclusion

• Labels are strictly increasing so 

• B must have seen flag[A] == false

• LabelingB  readB(flag[A])  
writeA(flag[A])  LabelingA
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Mutual Exclusion

• Labels are strictly increasing so 

• B must have seen flag[A] == false

• LabelingB  readB(flag[A])  
writeA(flag[A])  LabelingA

• Which contradicts the assumption 
that A has an earlier label
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Bakery Y232K Bug
class Bakery implements Lock {
  …
 public void lock() {  
  flag[i]  = true;  
  label[i] = max(label[0], …,label[n-1])+1;

  while (∃k flag[k]
           && (label[i],i) > (label[k],k));
 }
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Bakery Y232K Bug
class Bakery implements Lock {
  …
 public void lock() {  
  flag[i]  = true;  
  label[i] = max(label[0], …,label[n-1])+1;

  while (∃k flag[k]
           && (label[i],i) > (label[k],k));
 }

Mutex breaks if 
label[i] overflows
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Does Overflow Really Matter?

• Yes
– Y2K
– 18 January 2038 (Unix time_t rollover)
– 16-bit counters

• No
– 64-bit counters

• Maybe
– 32-bit counters
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Summary of Lecture

• In the 1960’s many incorrect 
solutions to starvation-free mutual 
exclusion using RW-registers were 
published…

• Today we know how to solve FIFO N 
thread mutual exclusion using 2N 
RW-Registers 
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Summary of Lecture

• N RW-Registers inefficient
–  Because writes “cover” older writes

•  Need stronger hardware operations 
– that do not have the “covering problem” 

• In next lectures - understand what these 
operations are…
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