
Mutual Exclusion

Companion slides for
The Art of Multiprocessor

Programming
by Maurice Herlihy & Nir Shavit

Art of Multiprocessor
Programming

2

Mutual Exclusion

• Today we will try to formalize our
understanding of mutual exclusion

• We will also use the opportunity to
show you how to argue about and
prove various properties in an
asynchronous concurrent setting

Mutual Exclusion

In his 1965 paper E. W. Dijkstra wrote:
 "Given in this paper is a solution to a problem which, to

the knowledge of the author, has been an open question
since at least 1962, irrespective of the solvability. [...]
Although the setting of the problem might seem
somewhat academic at first, the author trusts that
anyone familiar with the logical problems that arise in
computer coupling will appreciate the significance of the
fact that this problem indeed can be solved."

Art of Multiprocessor
Programming

3

Art of Multiprocessor
Programming

4

Mutual Exclusion

• Formal problem definitions
• Solutions for 2 threads
• Solutions for n threads
• Fair solutions
• Inherent costs

Art of Multiprocessor
Programming

5

Warning

• You will never use these protocols
– Get over it

• You are advised to understand
them
– The same issues show up everywhere
– Except hidden and more complex

Art of Multiprocessor
Programming

6

Why is Concurrent
Programming so Hard?

• Try preparing a seven-course banquet
– By yourself
– With one friend
– With twenty-seven friends …

• Before we can talk about programs
– Need a language
– Describing time and concurrency

Art of Multiprocessor
Programming

7

• “Absolute, true and mathematical time, of itself
and from its own nature, flows equably without
relation to anything external.”
(I. Newton, 1689)

• “Time is, like, Nature’s way of making sure that
everything doesn’t happen all at once.”
 (Anonymous, circa 1968)

Time

time

Art of Multiprocessor
Programming

8

time

• An event a0 of thread A is
– Instantaneous
– No simultaneous events (break ties)

a0

Events

Art of Multiprocessor
Programming

9

time

• A thread A is (formally) a sequence
a0, a1, ... of events
– “Trace” model

– Notation: a0 a1 indicates order

a0

Threads

a1 a2 …

Art of Multiprocessor
Programming

10

• Assign to shared variable
• Assign to local variable
• Invoke method
• Return from method
• Lots of other things …

Example Thread Events

Art of Multiprocessor
Programming

11

Threads are State
Machines

Events are
transitions

a0

a1a2

a3

Art of Multiprocessor
Programming

12

States

• Thread State
– Program counter
– Local variables

• System state
– Object fields (shared variables)
– Union of thread states

Art of Multiprocessor
Programming

13

time

• Thread A

Concurrency

Art of Multiprocessor
Programming

14

time

time

• Thread A

• Thread B

Concurrency

Art of Multiprocessor
Programming

15

time

Interleavings

• Events of two or more threads
– Interleaved
– Not necessarily independent (why?)

Art of Multiprocessor
Programming

16

time

• An interval A0 =(a0,a1) is

– Time between events a0 and a1

a0 a1

Intervals

A0

Art of Multiprocessor
Programming

17

time

Intervals may Overlap

a0 a1A0

b0 b1B0

Art of Multiprocessor
Programming

18

time

Intervals may be Disjoint

a0 a1A0

b0 b1B0

Art of Multiprocessor
Programming

19

time

Precedence

a0 a1A0

b0 b1B0

Interval A0 precedes interval B0

Art of Multiprocessor
Programming

20

Precedence

• Notation: A0 B0

• Formally,
– End event of A0 before start event of B0

– Also called “happens before” or “precedes”

Art of Multiprocessor
Programming

21

Precedence Ordering

• Remark: A0 B0 is just like saying

– 1066 AD 1492 AD,

– Middle Ages Renaissance,

• Oh wait,
– what about this week vs this month?

Art of Multiprocessor
Programming

22

Precedence Ordering

• Never true that A A

• If A B then not true that B A

• If A B & B C then A C

• Funny thing: A B & B A might both be false!

Art of Multiprocessor
Programming

23

Partial Orders

• Irreflexive:
– Never true that A A

• Antisymmetric:
– If A B then not true that B A

• Transitive:
– If A B & B C then A C

Art of Multiprocessor
Programming

24

Total Orders

• Also
– Irreflexive
– Antisymmetric
– Transitive

• Except that for every distinct A, B,
– Either A B or B A

Art of Multiprocessor
Programming

25

Repeated Events

while (mumble) {
 a0; a1;

}

a0
k

k-th occurrence
of event a0

A0
k

k-th occurrence of
interval A0 =(a0,a1)

Art of Multiprocessor
Programming

26

Implementing a Counter

public class Counter {
 private long value;

 public long getAndIncrement() {
 temp = value;
 value = temp + 1;
 return temp;
 }
}

Make these steps
indivisible using

locks

Art of Multiprocessor
Programming

27

Locks (Mutual Exclusion)

public interface Lock {

 public void lock();

 public void unlock();
}

Art of Multiprocessor
Programming

28

Locks (Mutual Exclusion)

public interface Lock {

 public void lock();

 public void unlock();
}

acquire
lock

Art of Multiprocessor
Programming

29

Locks (Mutual Exclusion)

public interface Lock {

 public void lock();

 public void unlock();
}

release
lock

acquire
lock

Art of Multiprocessor
Programming

30

Using Locks

public class Counter {
 private long value;
 private Lock lock;
 public long getAndIncrement() {
 lock.lock();
 try {
 int temp = value;
 value = temp + 1;
 } finally {
 lock.unlock();
 }
 return temp;
 }}

Art of Multiprocessor
Programming

31

Using Locks

public class Counter {
 private long value;
 private Lock lock;
 public long getAndIncrement() {
 lock.lock();
 try {
 int temp = value;
 value = temp + 1;
 } finally {
 lock.unlock();
 }
 return temp;
 }}

acquire
Lock

Art of Multiprocessor
Programming

32

Using Locks

public class Counter {
 private long value;
 private Lock lock;
 public long getAndIncrement() {
 lock.lock();
 try {
 int temp = value;
 value = temp + 1;
 } finally {
 lock.unlock();
 }
 return temp;
 }}

Release lock
(no matter what)

Art of Multiprocessor
Programming

33

Using Locks

public class Counter {
 private long value;
 private Lock lock;
 public long getAndIncrement() {
 lock.lock();
 try {
 int temp = value;
 value = temp + 1;
 } finally {
 lock.unlock();
 }
 return temp;
 }}

Critical
section

Art of Multiprocessor
Programming

34

Mutual Exclusion

• Let CSi
k be thread i’s k-th critical

section execution

Art of Multiprocessor
Programming

35

Mutual Exclusion

• Let CSi
k be thread i’s k-th critical

section execution

• And CSj
m be thread j’s m-th critical

section execution

Art of Multiprocessor
Programming

36

Mutual Exclusion

• Let CSi
k be thread i’s k-th critical

section execution

• And CSj
m be j’s m-th execution

• Then either
– or

Art of Multiprocessor
Programming

37

Mutual Exclusion

• Let CSi
k be thread i’s k-th critical

section execution

• And CSj
m be j’s m-th execution

• Then either
– or

CSi
k CSj

m

Art of Multiprocessor
Programming

38

Mutual Exclusion

• Let CSi
k be thread i’s k-th critical

section execution

• And CSj
m be j’s m-th execution

• Then either
– or

CSi
k CSj

m

CSj
m CSi

k

Art of Multiprocessor
Programming

39

Deadlock-Free

• If some thread calls lock()
– And never returns
– Then other threads must complete

lock() and unlock() calls infinitely
often

• System as a whole makes progress
– Even if individuals starve

Art of Multiprocessor
Programming

40

Starvation-Free

• If some thread calls lock()
– It will eventually return

• Individual threads make progress

Art of Multiprocessor
Programming

41

Two-Thread vs n -Thread
Solutions

• Two-thread solutions first
– Illustrate most basic ideas
– Fits on one slide

• Then n-Thread solutions

Art of Multiprocessor
Programming

42

class … implements Lock {
 …
 // thread-local index, 0 or 1
 public void lock() {
 int i = ThreadID.get();
 int j = 1 - i;
 …
 }
}

Two-Thread Conventions

Art of Multiprocessor
Programming

43

class … implements Lock {
 …
 // thread-local index, 0 or 1
 public void lock() {
 int i = ThreadID.get();
 int j = 1 - i;
 …
 }
}

Two-Thread Conventions

Henceforth: i is current
thread, j is other thread

Art of Multiprocessor
Programming

44

LockOne
class LockOne implements Lock {
private boolean[] flag =new boolean[2];
public void lock() {
 flag[i] = true;
 while (flag[j]) {}
 }
public void unlock() {
 flag[i] = false;
}

Art of Multiprocessor
Programming

45

LockOne
class LockOne implements Lock {
private boolean[] flag =
 new boolean[2];
public void lock() {
 flag[i] = true;
 while (flag[j]) {}
 }

Set my flag

Art of Multiprocessor
Programming

46

class LockOne implements Lock {
private boolean[] flag =
 new boolean[2];
public void lock() {
 flag[i] = true;
 while (flag[j]) {}
 }

LockOne

Wait for other
flag to go false

Set my flag

Art of Multiprocessor
Programming

47

• Assume CSA
j overlaps CSB

k

• Consider each thread's last (j-th
and k-th) read and write in the
lock() method before entering

• Derive a contradiction

LockOne Satisfies Mutual
Exclusion

Art of Multiprocessor
Programming

48

• writeA(flag[A]=true)
readA(flag[B]==false) CSA

• writeB(flag[B]=true)
readB(flag[A]==false) CSB

From the Code

class LockOne implements Lock {
…
public void lock() {
 flag[i] = true;
 while (flag[j]) {}
 }

Art of Multiprocessor
Programming

49

• readA(flag[B]==false)
writeB(flag[B]=true)

• readB(flag[A]==false)
writeA(flag[A]=true)

From the Assumption

Art of Multiprocessor
Programming

50

• Assumptions:
– readA(flag[B]==false) writeB(flag[B]=true)

– readB(flag[A]==false) writeA(flag[A]=true)

• From the code
– writeA(flag[A]=true) readA(flag[B]==false)

– writeB(flag[B]=true) readB(flag[A]==false)

Combining

Art of Multiprocessor
Programming

51

• Assumptions:
– readA(flag[B]==false) writeB(flag[B]=true)

– readB(flag[A]==false) writeA(flag[A]=true)

• From the code
– writeA(flag[A]=true) readA(flag[B]==false)

– writeB(flag[B]=true) readB(flag[A]==false)

Combining

Art of Multiprocessor
Programming

52

• Assumptions:
– readA(flag[B]==false) writeB(flag[B]=true)

– readB(flag[A]==false) writeA(flag[A]=true)

• From the code
– writeA(flag[A]=true) readA(flag[B]==false)

– writeB(flag[B]=true) readB(flag[A]==false)

Combining

Art of Multiprocessor
Programming

53

• Assumptions:
– readA(flag[B]==false) writeB(flag[B]=true)

– readB(flag[A]==false) writeA(flag[A]=true)

• From the code
– writeA(flag[A]=true) readA(flag[B]==false)

– writeB(flag[B]=true) readB(flag[A]==false)

Combining

Art of Multiprocessor
Programming

54

• Assumptions:
– readA(flag[B]==false) writeB(flag[B]=true)

– readB(flag[A]==false) writeA(flag[A]=true)

• From the code
– writeA(flag[A]=true) readA(flag[B]==false)

– writeB(flag[B]=true) readB(flag[A]==false)

Combining

Art of Multiprocessor
Programming

55

• Assumptions:
– readA(flag[B]==false) writeB(flag[B]=true)

– readB(flag[A]==false) writeA(flag[A]=true)

• From the code
– writeA(flag[A]=true) readA(flag[B]==false)

– writeB(flag[B]=true) readB(flag[A]==false)

Combining

Art of Multiprocessor
Programming

56

Cycle!

Im
poss

ib
le

in
 p

arti
al a

ord
er

Art of Multiprocessor
Programming

57

Deadlock Freedom

• LockOne Fails deadlock-freedom
– Concurrent execution can deadlock

– Sequential executions OK

 flag[i] = true; flag[j] = true;
 while (flag[j]){} while (flag[i]){}

Art of Multiprocessor
Programming

58

LockTwo
public class LockTwo implements Lock {
 private int victim;
 public void lock() {
 victim = i;
 while (victim == i) {};
 }

 public void unlock() {}
}

Art of Multiprocessor
Programming

59

LockTwo
public class LockTwo implements Lock {
 private int victim;
 public void lock() {
 victim = i;
 while (victim == i) {};
 }

 public void unlock() {}
}

Let other go
first

Art of Multiprocessor
Programming

60

LockTwo
public class LockTwo implements Lock {
 private int victim;
 public void lock() {
 victim = i;
 while (victim == i) {};
 }

 public void unlock() {}
}

Wait for
permission

Art of Multiprocessor
Programming

61

LockTwo
public class Lock2 implements Lock {
 private int victim;
 public void lock() {
 victim = i;
 while (victim == i) {};
 }

 public void unlock() {}
}

Nothing to
do

Art of Multiprocessor
Programming

62

public void LockTwo() {
 victim = i;
 while (victim == i) {};
 }

LockTwo Claims

• Satisfies mutual exclusion
– If thread i in CS
– Then victim == j
– Cannot be both 0 and 1

• Not deadlock free
– Sequential execution deadlocks
– Concurrent execution does not

Art of Multiprocessor
Programming

63

Peterson’s Algorithm

public void lock() {
 flag[i] = true;
 victim = i;
 while (flag[j] && victim == i) {};
}
public void unlock() {
 flag[i] = false;
}

Art of Multiprocessor
Programming

64

Peterson’s Algorithm

public void lock() {
 flag[i] = true;
 victim = i;
 while (flag[j] && victim == i) {};
}
public void unlock() {
 flag[i] = false;
}

Announce
I’m

interested

Art of Multiprocessor
Programming

65

Peterson’s Algorithm

public void lock() {
 flag[i] = true;
 victim = i;
 while (flag[j] && victim == i) {};
}
public void unlock() {
 flag[i] = false;
}

Announce
I’m

interested
Defer to other

Art of Multiprocessor
Programming

66

Peterson’s Algorithm

public void lock() {
 flag[i] = true;
 victim = i;
 while (flag[j] && victim == i) {};
}
public void unlock() {
 flag[i] = false;
}

Announce I’m
interested

Defer to other

Wait while other
interested & I’m

the victim

Art of Multiprocessor
Programming

67

Peterson’s Algorithm

public void lock() {
 flag[i] = true;
 victim = i;
 while (flag[j] && victim == i) {};
 }
public void unlock() {
 flag[i] = false;
}

Announce I’m
interested

Defer to other

Wait while other
interested & I’m

the victimNo longer
interested

Art of Multiprocessor
Programming

68

public void lock() {
 flag[i] = true;
 victim = i;
 while (flag[j] && victim == i) {};

Mutual Exclusion

• If thread 1 in critical
section,
– flag[1]=true,

– !flag[0] ||
victim = 0

• If thread 0 in critical
section,
– flag[0]=true,

– !flag[1] ||

victim = 1

Cannot both be true

Art of Multiprocessor
Programming

69

Thread A

write_A(flag[A]=true)

write_A(victim=A)

read_A(flag[B])

read_A(victim)

CS_A

Mutual Exclusion Proved
Thread B

write_B(flag[B]=true)

write_B(victim=B)

read_B(flag[A])

read_B(victim)

CS_B

Art of Multiprocessor
Programming

70

Deadlock Free

• Thread blocked
– only at while loop
– only if it is the victim

• One or the other must not be the victim

public void lock() {
 …
 while (flag[j] && victim == i) {};

Art of Multiprocessor
Programming

71

Starvation Free

• Thread i blocked
only if j
repeatedly re-
enters so that

 flag[j] == true and
victim == i

• When j re-enters
– it sets victim to j.
– So i gets in

public void lock() {
 flag[i] = true;
 victim = i;
 while (flag[j] && victim == i) {};
}

public void unlock() {
 flag[i] = false;
}

Art of Multiprocessor
Programming

72

The Filter Algorithm for n
Threads

There are n-1 “waiting rooms”
called levels

• At each level
– At least one enters level
– At least one blocked if
 many try

• Only one thread makes it through

ncs

cs

Art of Multiprocessor
Programming

73

Filter
class Filter implements Lock {
 int[] level; // level[i] for thread i
 int[] victim; // victim[L] for level L

 public Filter(int n) {
 level = new int[n];
 victim = new int[n];
 for (int i = 1; i < n; i++) {
 level[i] = 0;
 }}
…

}

level

victim

n-1

n-1

0

1

0 0 0 0 0 04

2

2

Thread 2 at level 4

0

4

Art of Multiprocessor
Programming

74

Filter
class Filter implements Lock {
 …

 public void lock(){
 for (int L = 1; L < n; L++) {
 level[i] = L;
 victim[L] = i;

 while ((∃ k != i level[k] >= L) &&
 victim[L] == i);
 }}
 public void unlock() {
 level[i] = 0;
 }}

Art of Multiprocessor
Programming

75

class Filter implements Lock {
 …

 public void lock() {
 for (int L = 1; L < n; L++) {
 level[i] = L;
 victim[L] = i;

 while ((∃ k != i) level[k] >= L) &&
 victim[L] == i);
 }}
 public void release(int i) {
 level[i] = 0;
 }}

Filter

One level at a
time

Art of Multiprocessor
Programming

76

class Filter implements Lock {
 …

 public void lock() {
 for (int L = 1; L < n; L++) {
 level[i] = L;
 victim[L] = i;

 while ((∃ k != i) level[k] >= L) &&
 victim[L] == i); // busy wait
 }}
 public void release(int i) {
 level[i] = 0;
 }}

Filter

Announce
intention to
enter level L

Art of Multiprocessor
Programming

77

class Filter implements Lock {
 int level[n];
 int victim[n];
 public void lock() {
 for (int L = 1; L < n; L++) {
 level[i] = L;
 victim[L] = i;

 while ((∃ k != i) level[k] >= L) &&
 victim[L] == i);
 }}
 public void release(int i) {
 level[i] = 0;
 }}

Filter

Give priority to
anyone but me

Art of Multiprocessor
Programming

78

class Filter implements Lock {
 int level[n];
 int victim[n];
 public void lock() {
 for (int L = 1; L < n; L++) {
 level[i] = L;
 victim[L] = i;

 while ((∃ k != i) level[k] >= L) &&
 victim[L] == i);
 }}
 public void release(int i) {
 level[i] = 0;
 }}

Filter
Wait as long as someone else is at

same or higher level, and I’m
designated victim

Art of Multiprocessor
Programming

79

class Filter implements Lock {
 int level[n];
 int victim[n];
 public void lock() {
 for (int L = 1; L < n; L++) {
 level[i] = L;
 victim[L] = i;

 while ((∃ k != i) level[k] >= L) &&
 victim[L] == i);
 }}
 public void release(int i) {
 level[i] = 0;
 }}

Filter

Thread enters level L when it
completes the loop

Art of Multiprocessor
Programming

80

Claim
• Start at level L=0
• At most n-L threads enter level L
• Mutual exclusion at level L=n-1

ncs

cs L=n-1

L=1

L=n-2

L=0

Art of Multiprocessor
Programming

81

Induction Hypothesis

• Assume all at
level L-1 enter
level L

• A last to write
victim[L]

• B is any other
thread at level L

• No more than n-L+1 at level L-1
• Induction step: by contradiction

ncs

cs

L-1 has n-L+1
L has n-L

assume

prove

Art of Multiprocessor
Programming

82

Proof Structure
ncs

cs

Assumed to enter L-1

By way of contradiction
all enter L

n-L+1 = 4

n-L+1 = 4

A B

Last to
write
victim[L]

Show that A must have seen
B in level[L] and since victim[L] == A
could not have entered

Art of Multiprocessor
Programming

83

From the Code

(1) writeB(level[B]=L)writeB(victim[L]=B)

public void lock() {
 for (int L = 1; L < n; L++) {
 level[i] = L;
 victim[L] = i;

 while ((∃ k != i) level[k] >= L)
 && victim[L] == i) {};
 }}

Art of Multiprocessor
Programming

84

From the Code

(2) writeA(victim[L]=A)readA(level[B])

public void lock() {
 for (int L = 1; L < n; L++) {
 level[i] = L;
 victim[L] = i;

 while ((∃ k != i) level[k] >= L)
 && victim[L] == i) {};
 }}

Art of Multiprocessor
Programming

85

By Assumption

By assumption, A is the last
thread to write victim[L]

(3)
writeB(victim[L]=B)writeA(victim[L]=A)

Art of Multiprocessor
Programming

86

Combining Observations

(1) writeB(level[B]=L)writeB(victim[L]=B)

(3) writeB(victim[L]=B)writeA(victim[L]=A)

(2) writeA(victim[L]=A)readA(level[B])

Art of Multiprocessor
Programming

87

public void lock() {
 for (int L = 1; L < n; L++) {
 level[i] = L;
 victim[L] = i;
 while ((∃ k != i) level[k] >= L)
 && victim[L] == i) {};
 }}

Combining Observations

(1) writeB(level[B]=L)writeB(victim[L]=B)

(3) writeB(victim[L]=B)writeA(victim[L]=A)

(2) writeA(victim[L]=A)readA(level[B])

Art of Multiprocessor
Programming

88

Combining Observations

(1) writeB(level[B]=L)writeB(victim[L]=B)

(3) writeB(victim[L]=B)writeA(victim[L]=A)

(2) writeA(victim[L]=A)readA(level[B])

Thus, A reads level[B] ≥ L,
A was last to write victim[L],
so it could not have entered level L!

Art of Multiprocessor
Programming

89

No Starvation

• Filter Lock satisfies properties:
– Like Peterson Algorithm at any level
– So no one starves

• But what about fairness?
– Threads can be overtaken by others

Art of Multiprocessor
Programming

90

Bounded Waiting

• Want stronger fairness guarantees
• Thread not “overtaken” too much
• Need to adjust definitions ….

Art of Multiprocessor
Programming

91

Bounded Waiting

• Divide lock() method into 2 parts:
– Doorway interval:

• Written DA

• always finishes in finite steps

– Waiting interval:
• Written WA

• may take unbounded steps

Art of Multiprocessor
Programming

92

• For threads A and B:
– If DA

k DB
j

• A’s k-th doorway precedes B’s j-th doorway

– Then CSA
k CSB

j+r

• A’s k-th critical section precedes B’s (j+r)-th critical
section

• B cannot overtake A by more than r times

• First-come-first-served means r = 0.

r-Bounded Waiting

Art of Multiprocessor
Programming

93

Fairness Again

• Filter Lock satisfies properties:
– No one starves
– But very weak fairness

•Not r-bounded for any r!
– That’s pretty lame…

Art of Multiprocessor
Programming

94

Lamport's Bakery
Algorithm

• Provides First-Come-First-Served
• How?

– Take a “number”
– Wait until lower numbers have been

served
• Lexicographic order

– (a,i) > (b,j)
• If a > b, or a = b and i > j

Art of Multiprocessor
Programming

95

Bakery Algorithm
class Bakery implements Lock {
 boolean[] flag;
 Label[] label;
 public Bakery (int n) {
 flag = new boolean[n];
 label = new Label[n];
 for (int i = 0; i < n; i++) {
 flag[i] = false; label[i] = 0;
 }
 }
 …

Art of Multiprocessor
Programming

96

Bakery Algorithm
class Bakery implements Lock {
 boolean[] flag;
 Label[] label;
 public Bakery (int n) {
 flag = new boolean[n];
 label = new Label[n];
 for (int i = 0; i < n; i++) {
 flag[i] = false; label[i] = 0;
 }
 }
 …

n-10

f f f f t ft

2

f

0 0 0 0 5 04 0

6

CS

Art of Multiprocessor
Programming

97

Bakery Algorithm

class Bakery implements Lock {
 …
 public void lock() {
 flag[i] = true;
 label[i] = max(label[0], …,label[n-1])+1;

 while (∃k flag[k]
 && (label[i],i) > (label[k],k));
 }

Art of Multiprocessor
Programming

98

Bakery Algorithm

class Bakery implements Lock {
 …
 public void lock() {
 flag[i] = true;
 label[i] = max(label[0], …,label[n-1])+1;

 while (∃k flag[k]
 && (label[i],i) > (label[k],k));
 }

Doorway

Art of Multiprocessor
Programming

99

Bakery Algorithm

class Bakery implements Lock {
 …
 public void lock() {
 flag[i] = true;
 label[i] = max(label[0], …,label[n-1])+1;

 while (∃k flag[k]
 && (label[i],i) > (label[k],k));
 }

I’m interested

Art of Multiprocessor
Programming

100

Bakery Algorithm

class Bakery implements Lock {
 …
 public void lock() {
 flag[i] = true;
 label[i] = max(label[0], …,label[n-1])+1;

 while (∃k flag[k]
 && (label[i],i) > (label[k],k));
 }

Take
increasing
label (read

labels in some
arbitrary

order)

Art of Multiprocessor
Programming

101

Bakery Algorithm

class Bakery implements Lock {
 …
 public void lock() {
 flag[i] = true;
 label[i] = max(label[0], …,label[n-1])+1;

 while (∃k flag[k]
 && (label[i],i) > (label[k],k));
 }

Someone is
interested

Art of Multiprocessor
Programming

102

Bakery Algorithm
class Bakery implements Lock {
 boolean flag[n];
 int label[n];

 public void lock() {
 flag[i] = true;
 label[i] = max(label[0], …,label[n-1]+1;

 while (∃k flag[k]
 && (label[i],i) >(label[k],k));
 }

Someone is
interested

With lower (label,k) in
lexicographic order

Art of Multiprocessor
Programming

103

Bakery Algorithm

class Bakery implements Lock {

 …

 public void unlock() {
 flag[i] = false;
 }
}

Art of Multiprocessor
Programming

104

Bakery Algorithm

class Bakery implements Lock {

 …

 public void unlock() {
 flag[i] = false;
 }
}

No longer
interested

labels are always increasing

Art of Multiprocessor
Programming

105

No Deadlock

• There is always one thread with
earliest label

• Ties are impossible (why?)

Art of Multiprocessor
Programming

106

First-Come-First-Served

• If DA DBthen A’s
label is smaller

• And:
– writeA(label[A])

readB(label[A])
writeB(label[B])
readB(flag[A])

• So B is locked out
while flag[A] is true

class Bakery implements Lock {

public void lock() {
 flag[i] = true;
 label[i] = max(label[0],
 …,label[n-1])+1;
 while (∃k flag[k]
 && (label[i],i) >
(label[k],k));

 }

Art of Multiprocessor
Programming

107

Mutual Exclusion

• Suppose A and B
in CS together

• Suppose A has
earlier label

• When B entered,
it must have seen
– flag[A] is false, or
– label[A] > label[B]

class Bakery implements Lock {

public void lock() {
 flag[i] = true;
 label[i] = max(label[0],
 …,label[n-1])+1;
 while (∃k flag[k]
 && (label[i],i) >
(label[k],k));

 }

Art of Multiprocessor
Programming

108

Mutual Exclusion

• Labels are strictly increasing so

• B must have seen flag[A] == false

Art of Multiprocessor
Programming

109

Mutual Exclusion

• Labels are strictly increasing so

• B must have seen flag[A] == false

• LabelingB readB(flag[A])
writeA(flag[A]) LabelingA

Art of Multiprocessor
Programming

110

Mutual Exclusion

• Labels are strictly increasing so

• B must have seen flag[A] == false

• LabelingB readB(flag[A])
writeA(flag[A]) LabelingA

• Which contradicts the assumption
that A has an earlier label

Art of Multiprocessor
Programming

111

Bakery Y232K Bug
class Bakery implements Lock {
 …
 public void lock() {
 flag[i] = true;
 label[i] = max(label[0], …,label[n-1])+1;

 while (∃k flag[k]
 && (label[i],i) > (label[k],k));
 }

Art of Multiprocessor
Programming

112

Bakery Y232K Bug
class Bakery implements Lock {
 …
 public void lock() {
 flag[i] = true;
 label[i] = max(label[0], …,label[n-1])+1;

 while (∃k flag[k]
 && (label[i],i) > (label[k],k));
 }

Mutex breaks if
label[i] overflows

Art of Multiprocessor
Programming

113

Does Overflow Really Matter?

• Yes
– Y2K
– 18 January 2038 (Unix time_t rollover)
– 16-bit counters

• No
– 64-bit counters

• Maybe
– 32-bit counters

Art of Multiprocessor
Programming

114

Summary of Lecture

• In the 1960’s many incorrect
solutions to starvation-free mutual
exclusion using RW-registers were
published…

• Today we know how to solve FIFO N
thread mutual exclusion using 2N
RW-Registers

Art of Multiprocessor
Programming

115

Summary of Lecture

• N RW-Registers inefficient
– Because writes “cover” older writes

• Need stronger hardware operations
– that do not have the “covering problem”

• In next lectures - understand what these
operations are…

Art of Multiprocessor
Programming

116

This work is licensed under a
Creative Commons Attribution-ShareAlike 2.5 License.

• You are free:
– to Share — to copy, distribute and transmit the work
– to Remix — to adapt the work

• Under the following conditions:
– Attribution. You must attribute the work to “The Art of

Multiprocessor Programming” (but not in any way that
suggests that the authors endorse you or your use of the
work).

– Share Alike. If you alter, transform, or build upon this
work, you may distribute the resulting work only under the
same, similar or a compatible license.

• For any reuse or distribution, you must make clear to others
the license terms of this work. The best way to do this is with
a link to
– http://creativecommons.org/licenses/by-sa/3.0/.

• Any of the above conditions can be waived if you get
permission from the copyright holder.

• Nothing in this license impairs or restricts the author's moral
rights.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

