Concurrency WS 2010/2011

Termination Detection Barriers

Peter Thiemann

January 16, 2011



0 Termination Detection Barriers



Termination Detection Barriers

@ Barriers up to now
e Computation organized in phases
e Barrier used to synchronize phase transition
@ Different kind of barrier: termination detection
e Thread pool: terminate when all threads have run out of
work

e More complicated than bare counting
@ Threads must reach consensus that all of them are inactive



Termination Detection Barrier Interface

public interface TDBarrier ({
void setActive (boolean state);
boolean isTerminated ();

}

sw N e

@ setActive (true)
is called before the thread starts looking for work

@ setActive (false)
is called when the thread is definitively out of work

@ isTerminated()
returns true when all threads are unemployed



Simple Termination Detection Barrier

1 public class SimpleTDBarrier implements TDBarrier {

2 AtomicInteger count;

3 int size;

4 public SimpleTDBarrier (int n) {

5 count = new AtomicInteger (n);
6 size = n;

7 }

8 public void setActive (boolean active) {
9 if (active)

10 count .getAndDecrement () ;
11 else

12 count .getAndIncrement () ;
13 }

14 public boolean isTerminated () {

15 return count.get () == size;



@ Counter initialized to number of participating threads
@ Transitions of each thread modifies the counter:

@ inactive — active: decrements counter

@ active — inactive: increments counter

@ If all threads are inactive, then the counter reverts to the
number of threads: termination!



Example Use: Work Stealing Executor Pool

1 public void run () {

2 int me = ThreadID.get();

3 tdBarrier.setActive (true);

4 Runnable task = queue[me] .popBottom();

5 while (true) {

6 while (task != null) ({

7 task.run();

8 task = queue[me].popBottom() ;

9 }
10 tdBarrier.setActive (false);
11 while (task == null) {
12 int victim = random.nextInt () % queue.length;
13 if (!queue[victim].isEmpty()) {
14 tdBarrier.setActive (true);
15 task = queue[victim].popTop();
16 if (task == null)
17 tdBarrier.setActive (false);
18 }
19 if (tdBarrier.isTerminated())
20 return;
21 }
22 }



Comments

@ A subtlety
o Tests whether queue is empty (line 13) before declaring
activity.
e Otherwise, threads announce activity even if there is no
chance of successfully stealing work.
@ Proof obligations
o Safety: if isTerminated () returns true, then the
computation has indeed terminated.
e No active task may declare itself inactive. (Other way round
ok)
e Liveness: if the computation terminates, then
isTerminated () eventually returns true.
o See above subtlety.



	Termination Detection Barriers

