
Concurrency WS 2010/2011
Termination Detection Barriers

Peter Thiemann

January 16, 2011



Outline

1 Termination Detection Barriers



Termination Detection Barriers

Barriers up to now
Computation organized in phases
Barrier used to synchronize phase transition

Different kind of barrier: termination detection
Thread pool: terminate when all threads have run out of
work
More complicated than bare counting
Threads must reach consensus that all of them are inactive



Termination Detection Barrier Interface

1 public interface TDBarrier {
2 void setActive (boolean state);
3 boolean isTerminated ();
4 }

setActive(true)

is called before the thread starts looking for work
setActive(false)

is called when the thread is definitively out of work
isTerminated()

returns true when all threads are unemployed



Simple Termination Detection Barrier

1 public class SimpleTDBarrier implements TDBarrier {
2 AtomicInteger count;
3 int size;
4 public SimpleTDBarrier (int n) {
5 count = new AtomicInteger (n);
6 size = n;
7 }
8 public void setActive (boolean active) {
9 if (active)

10 count.getAndDecrement();
11 else
12 count.getAndIncrement();
13 }
14 public boolean isTerminated () {
15 return count.get() == size;
16 }
17 }



Operation

Counter initialized to number of participating threads
Transitions of each thread modifies the counter:

inactive → active: decrements counter
active → inactive: increments counter

If all threads are inactive, then the counter reverts to the
number of threads: termination!



Example Use: Work Stealing Executor Pool

1 public void run () {
2 int me = ThreadID.get();
3 tdBarrier.setActive (true);
4 Runnable task = queue[me].popBottom();
5 while (true) {
6 while (task != null) {
7 task.run();
8 task = queue[me].popBottom();
9 }

10 tdBarrier.setActive (false);
11 while (task == null) {
12 int victim = random.nextInt () % queue.length;
13 if (!queue[victim].isEmpty()) {
14 tdBarrier.setActive (true);
15 task = queue[victim].popTop();
16 if (task == null)
17 tdBarrier.setActive (false);
18 }
19 if (tdBarrier.isTerminated())
20 return;
21 }
22 }
23 }



Comments

A subtlety
Tests whether queue is empty (line 13) before declaring
activity.
Otherwise, threads announce activity even if there is no
chance of successfully stealing work.

Proof obligations
Safety: if isTerminated() returns true, then the
computation has indeed terminated.
No active task may declare itself inactive. (Other way round
ok)
Liveness: if the computation terminates, then
isTerminated() eventually returns true.
See above subtlety.


	Termination Detection Barriers

