
Threads and Tasks

Parallel Programming Practice

Susanne Cech Previtali
Thomas Gross

Last update: 2009-10-29, 09:12

Wednesday, January 20, 2010



2102: Parallel Programming Practice, HS 2009

Thread objects

java.lang.Thread
‣ Each thread is associated with an instance of the class Thread 

Two strategies for using Thread objects

‣ To directly control thread creation and management

‣ Instantiate Thread each time for an asynchronous task

‣  Abstract thread management from the rest of the application

‣ Pass the tasks to an Executor

2

Wednesday, January 20, 2010



2102: Parallel Programming Practice, HS 2009

Today

Low-level: basic building blocks

‣ Thread API

‣ Wait and notify mechanism

High-level: concurrency API

‣ Executor framework

3

Wednesday, January 20, 2010



2102: Parallel Programming Practice, HS 2009

Thread API

4

Wednesday, January 20, 2010



2102: Parallel Programming Practice, HS 2009

How to create a thread

1. Declare a class that implements the Runnable interface

‣ Separates Runnable task from the Thread object that executes the task 

‣ Applicable to high-level thread management APIs (Executor)

5

public class HelloRunnable implements Runnable {
    public void run() {
        System.out.println("Hello from a thread!");
    }
    public static void main(String args[]) {
        Thread t = new Thread(new HelloRunnable());
        t.start();
    }
}

preferable way!

Wednesday, January 20, 2010



2102: Parallel Programming Practice, HS 2009

How to create a thread

2. Declare a class to be a subclass of Thread

6

public class HelloThread extends Thread {
    public void run() {
        System.out.println("Hello from a thread!");
    }
    public static void main(String args[]) {
        Thread t = new HelloThread();
        t.start();
    }
}

Wednesday, January 20, 2010



2102: Parallel Programming Practice, HS 2009 7

java.lang.Thread: Properties

Property Getter Setter Description

long id ✓ Identifier

int priority ✓ ✓ Priority

String name ✓ ✓ Name

boolean isDaemon ✓ ✓ User or daemon thread

Wednesday, January 20, 2010



2102: Parallel Programming Practice, HS 2009 8

java.lang.Thread: Queries

Instance methods Description

boolean isAlive() Is the current thread alive?

boolean isInterrupted() Has the current thread been interrupted?

Class methods Description

Thread currentThread() Reference to the currently executing thread

boolean interrupted() Has the current thread been interrupted?

Wednesday, January 20, 2010



2102: Parallel Programming Practice, HS 2009 9

java.lang.Thread: Commands

Instance methods Description

void run() Default: returns ⇒ override

void start() Start a Thread instance and execute its run() method

void interrupt() Interrupt the current thread

void join([long]) Block until the other thread exits
[for at most the given milliseconds]

Class methods Description

void sleep(long) Stop temporarily (for the given milliseconds) the 
execution of the current thread 

Wednesday, January 20, 2010



2102: Parallel Programming Practice, HS 2009

JMM: Happens-before rules for threads

Thread start rule

‣ T1.start() happens-before every action in T1
Thread termination rule

‣ Any action in T1 happens-before any action in T2 that detects that T1 
has terminated

‣ Detection in T2: T1.join() returns or T1.isAlive() == false
Interruption rule

‣ In T1: T2.interrupt() happens-before interrupt detection (by any 
thread including T2)

‣ Detection: throw InterruptException, invoke T2.isInterrupted(), 
Thread.interrupted()

10

Wednesday, January 20, 2010



2102: Parallel Programming Practice, HS 2009 11

public class SimpleThreads {
  public static void main(String args[]) throws InterruptedException {                                                                                   
    long patience = 1000 * 60 * 60; // 1 hour delay
    long startTime = System.currentTimeMillis();

    Thread t = new Thread(new MessageLoop()).start();
    while (t.isAlive()) {
       t.join(1000); // wait for t to finish (max. 1 second)
       if (((System.currentTimeMillis() - startTime) > patience) && 
              t.isAlive()) {
           t.interrupt(); // tired of waiting -> interrupt t
           t.join();  // wait indefinitely for t to finish
       }
    }
  }
}

See example at http://java.sun.com/docs/books/tutorial/essential/concurrency/simple.html

Thread control example: Main

Wednesday, January 20, 2010



2102: Parallel Programming Practice, HS 2009

Thread control example: MessageLoop

12

public class MessageLoop implements Runnable {
    public void run() {
        String importantInfo[] = { "A", "B", "C", "D" };
        try {
            for (int i = 0; i < importantInfo.length; i++) {
                Thread.sleep(4000); // pause for 4 seconds
                printMessage(importantInfo[i]);
            }
        } catch (InterruptedException e) {
            printMessage("I wasn't done!");
        }
    }
}

Wednesday, January 20, 2010



2102: Parallel Programming Practice, HS 2009

Wait and notify

13

Wednesday, January 20, 2010



2102: Parallel Programming Practice, HS 2009

Wait sets and notification

Each Object has an associated lock and wait set

Wait set

‣ Set of threads

‣ Holds threads blocked by Object.wait() until notifications/wait done

‣ Used by wait(), notify(), notifyAll() and thread scheduling

Wait sets interact with locks

‣ t.wait(), t.notify(), t.notifyAll() must be called only when 
synchronization lock is hold on t
‣ Otherwise IllegalMonitorStateException is thrown

14

Wednesday, January 20, 2010



2102: Parallel Programming Practice, HS 2009

Object.wait() and Object.wait(long)

15

synchronized (obj) {
    while (<condition does not hold>)
        obj.wait();
    // Perform action appropriate to condition
}

If current thread T has been interrupted by another thread

‣ return

else T is blocked

‣ T is placed in wait set of obj
‣ T releases any locks for obj (keeps other locks)

‣ Lock status is restored upon later resumption

Object.wait(long) waits for a maximum time given

Wednesday, January 20, 2010



2102: Parallel Programming Practice, HS 2009

Object.notify() and Object.notifyAll()

A thread T is arbitrarily chosen from wait set of obj
‣ No guarantees which thread

T re-obtains lock on obj
‣ T blocks until notify() releases the lock

‣ T may block if some other thread obtains lock first

T resumes after wait()
‣ wait() returns

notifyAll()
‣ Similar as notify() but for all threads in wait set of obj

16

Wednesday, January 20, 2010



2102: Parallel Programming Practice, HS 2009

To illustrate the underlying mechanisms

Attention! Broken program: liveness failure ⇒ missed signal

17

class X {
    synchronized void w() throws InterruptedException {
        before(); wait(); after();
    }
    synchronized void n() { 
        notifyAll(); 
    }
    void before() {}
    void after() {}
}

Example with useless class

✕

Wednesday, January 20, 2010



   acquire lock
before();
wait:
   release lock
   enter wait set

T1: x.w()

   acquire lock
before();
wait:
   release lock
   enter wait set

T2: x.w()

   wait for lock

   acquire lock
notifyAll();
   release lock

T3: x.n()

   exit wait set
   wait for lock
   acquire lock
after();
   release lock

   exit wait set
   wait for lock

   acquire lock
after();
   release lock

Wednesday, January 20, 2010



2102: Parallel Programming Practice, HS 2009

Remarks

Place checks for condition variables in while loops

‣ Thread only knows that is has been waken up, must re-check

Methods with guarded waits are not completely atomic

‣ On wait() lock is released ⇒ other thread can be scheduled

‣ Objects must be in consistent state before calling wait()

19

Wednesday, January 20, 2010



2102: Parallel Programming Practice, HS 2009

Typical usage

20

public class PatientWaiter {
    @GuardedBy(“this”) private volatile boolean flag = false;
    public synchronized void waitTillChange() {
        while (!flag) {
            try {
                this.wait();
            } catch (InterruptedException e) {}
        }
        // whatever needs to be done after condition is true
    }    
    public synchronized void change() {
        flag = true;
        this.notifyAll();
    }

slipped
condition
if two 
synchronized
blocks

Wednesday, January 20, 2010



2102: Parallel Programming Practice, HS 2009

Executor framework

21

Wednesday, January 20, 2010



2102: Parallel Programming Practice, HS 2009

Threaded web server

22

public class ThreadPerTaskWebServer {
    public static void main(String[] args) throws IOException {
        ServerSocket socket = new ServerSocket(80);
        while (true) {
            final Socket connection = socket.accept();
            Runnable task = new Runnable() {
                public void run() {
                    handleRequest(connection);
                }
            };
            new Thread(task).start();
        }
    }
    private static void handleRequest(Socket connection) { ... } 
} See example at http://www.javaconcurrencyinpractice.com/listings/ThreadPerTaskWebServer.java

Wednesday, January 20, 2010



2102: Parallel Programming Practice, HS 2009

Problems of the threaded solution

Discussion

‣ Up to a certain point: more threads improve throughput

‣ Beyond that: slow down, crash

Poor resource management

‣ Thread lifecycle overhead

‣ Thread creation and teardown

‣ Resource consumption

‣ More runnable threads than processors ⇒ may hurt performance

‣ Memory, garbage collection

‣ Stability

‣ Number of threads limited ⇒ OutOfMemoryError

23

Wednesday, January 20, 2010



2102: Parallel Programming Practice, HS 2009

Tasks versus threads

Task

‣ Logical unit of work

Thread

‣ Mechanism by which tasks can run asynchronously

Web server example

‣ Each task is executed in its thread

‣ Poor resource management

24

Wednesday, January 20, 2010



2102: Parallel Programming Practice, HS 2009 25

Need: High-level abstraction for task execution

Low-level constructs

‣ wait()/notify()

High-level concurrency API

‣ Prefer executors and tasks to threads

‣ Prefer concurrency utilities to wait()/notify()

Wednesday, January 20, 2010



2102: Parallel Programming Practice, HS 2009

Producer-consumer design pattern

Producer

‣ Places work items on a “to do” list

Consumer

‣ Takes work items from the “to do” list for processing

26

Discussion

‣ Separates identification of work to be done from execution of that work

‣ Removes code dependencies between producer and consumer classes

‣ Simplifies workload management

Wednesday, January 20, 2010



2102: Parallel Programming Practice, HS 2009

Dish washing and drying

Producer-consumer example

27

washing drying
blockedblocked

work queue
here: bounded

consumerproducer

Wednesday, January 20, 2010



2102: Parallel Programming Practice, HS 2009

Executor framework

Based on producer-consumer pattern

Producers

‣ Submit tasks

Consumers

‣ Threads that execute tasks

28

Wednesday, January 20, 2010



2102: Parallel Programming Practice, HS 2009

Web server using Executor

29

public class TaskExecutionWebServer {
    private static final Executor exec = ...;  // see later

    public static void main(String[] args) throws IOException {
        ServerSocket socket = new ServerSocket(80);
        while (true) {
            final Socket connection = socket.accept();
            Runnable task = new Runnable() {
                public void run() {
                    handleRequest(connection);
                }
            };
            exec.execute(task);
        }
    }
}

Wednesday, January 20, 2010



2102: Parallel Programming Practice, HS 2009

Different Executor implementations

Behavior like ThreadPerTaskWebServer

30

public class ThreadPerTaskExecutor implements Executor {
    public void execute(Runnable r) {
        new Thread(r).start();
    }
}

public class WithinThreadExecutor implements Executor {
    public void execute(Runnable r) {
        r.run();
    }
}

Behavior like a single threaded web server

Wednesday, January 20, 2010



2102: Parallel Programming Practice, HS 2009

java.util.concurrent.Executor

31

public interface Executor {
    // Execute the given command at some time in the future
    void execute(Runnable command);
}

Wednesday, January 20, 2010



2102: Parallel Programming Practice, HS 2009

Executor implementations

Tasks may execute in 

‣ a newly created thread

‣ an existing task-execution thread 

‣ or the thread calling execute()
Tasks may execute sequentially or concurrently

32

Wednesday, January 20, 2010



2102: Parallel Programming Practice, HS 2009

Execution policies

Executor decouples submission from execution

Resource management tool

‣ What resources are available?

‣ Which QOS requirements?

Policies decide

‣ In what threads will tasks execute

‣ In what order? -- FIFO, LIFO, priority queue?

‣ How many concurrent tasks?

‣ How many tasks may be queued pending execution? 

‣ If system overloaded: choose victim task? notify application?

‣ Actions before/after executing a task?

33

Wednesday, January 20, 2010



2102: Parallel Programming Practice, HS 2009

Thread pool

34

work queue thread pool

task

worker thread
- request task
- execute task
- wait for next task

Advantages
‣ Amortize thread 

creation/teardown 
costs over multiple 
requests

‣ No latency of thread 
creation     better 
responsiveness

‣ Tuning parameter: size

⇒

Wednesday, January 20, 2010



2102: Parallel Programming Practice, HS 2009

Factory methods to create thread pools

35

public class Executors {
    // maintain n threads, unbounded queue
    public static ExecutorService newFixedThreadPool(int n)
    // create threads as needed (reused), unbounded queue
    public static ExecutorService newCachedThreadPool()
    // create one thread, unbounded queue
    public static ExecutorService newSingleThreadExecutor()
    // delayed and periodic task execution
    public static ExecutorService newScheduledThreadPool(int size)

  // ... more methods... consider also overloaded variants
}

Wednesday, January 20, 2010



2102: Parallel Programming Practice, HS 2009

Web server using thread pool

36

public class TaskExecutionWebServer {
    private static final int NTHREADS = 100;
    private static final Executor exec
            = Executors.newFixedThreadPool(NTHREADS);
    public static void main(String[] args) throws IOException {
        ServerSocket socket = new ServerSocket(80);
        while (true) {
            final Socket connection = socket.accept();
            Runnable task = new Runnable() {
                public void run() {
                    handleRequest(connection);
                }
            };
            exec.execute(task);
        }
    }
}

factory method for 
creating a thread pool

Wednesday, January 20, 2010



2102: Parallel Programming Practice, HS 2009

Executor lifecycle

Executor processes task asynchronously

‣ State of tasks may not be obvious

Executor provides service to applications: must be able to

‣ Shutdown

‣ Report status of tasks

‣ Also: executor implementation must shut down

‣ JVM can exit only after all threads have terminated

37

Wednesday, January 20, 2010



2102: Parallel Programming Practice, HS 2009

possible to wait 
for termination

shutdown initiated
- graceful
- abrupt

possible to wait 
for termination

shutdown initiated
- graceful
- abrupt

States of the ExecutorService

38

running shutting down terminated

all tasks have been completed

tasks submitted
and executed

if task submitted:
rejected execution handler

Wednesday, January 20, 2010



2102: Parallel Programming Practice, HS 2009

Shutdown

39

created submitted started

may be cancelled
(if “open” for 
interruption)

completed

can always 
be cancelled

cancel: no effect

submitted and started tasks can completegraceful shutdown

✕

abrupt shutdown cancel cancel

✕ ✕ ✕

Lifecycle of a task

Wednesday, January 20, 2010



2102: Parallel Programming Practice, HS 2009

java.util.concurrent.ExecutorService

40

public interface ExecutorService extends Executor {
    // graceful shutdown
    void shutdown();
    // abrupt shutdown
    // -> return list of tasks awaiting execution
    List<Runnable> shutdownNow();

    // query about state change
    boolean isShutdown();
  // ... more methods... discussed later

}

Wednesday, January 20, 2010



2102: Parallel Programming Practice, HS 2009

java.util.concurrent.ExecutorService

41

public interface ExecutorService extends Executor {
    // block until one event happens
    // (1) all tasks have completed
    // (2) the timeout occurs
    // (3) the current thread is interrupted
    boolean awaitTermination(long timeout, TimeUnit unit) 
        throws InterruptedExecution;

    // Have all tasks been completed? following shut-down
    boolean isTerminated();

  // ... more methods... discussed later
}

Wednesday, January 20, 2010



2102: Parallel Programming Practice, HS 2009 42

public class LifecycleWebServer {
    private final ExecutorService exec = Executors.newCachedThreadPool();
    public void start() throws IOException {
        ServerSocket socket = new ServerSocket(80);
        while (!exec.isShutdown()) {
            try {
                final Socket conn = socket.accept();
                exec.execute(new Runnable() {
                    public void run() {
                        handleRequest(conn);
                    }
                });
            } catch (RejectedExecutionException e) {
                if (!exec.isShutdown()) 
                    log("task submission rejected", e);
            }
        }
    }
    public void stop() { exec.shutdown(); }
}

See complete code at http://www.javaconcurrencyinpractice.com/listings/LifecycleWebServer.java

Wednesday, January 20, 2010



2102: Parallel Programming Practice, HS 2009

public interface Executor {
    // Execute the given command at some time in the future
    void execute(Runnable command);
}

Executor revisited

Runnable as basic task representation

‣ Cannot return a value

‣ Cannot throw checked exceptions

43

Other task abstractions necessary

‣ Callable: task

‣ Future: result

Wednesday, January 20, 2010



2102: Parallel Programming Practice, HS 2009

Task abstraction Callable

See Executors for utility factory methods 

‣ Example: wrap a Runnable in a Callable

44

public interface Callable<V> {
    // Task that returns a result and may throw an exception
    V call() throws Exception;
}

Wednesday, January 20, 2010



2102: Parallel Programming Practice, HS 2009

Lifecycle abstraction with Future

45

created submitted started completed

may be cancelled
(if “open” for 
interruption)

can always 
be cancelled

cancel: no effect

cancel(boolean)

isDone()
true

isCancelled()
true

get()
blocks

get()
result

Wednesday, January 20, 2010



2102: Parallel Programming Practice, HS 2009

Future

Create a future

‣ Interface ExecutorService: Future<V> submit([Callable|Runnable])

‣ Class FutureTask<V>: base implementation of Future<V>

46

public interface Future<V> {
    V get() 
          throws InterruptedException, ExecutionException;
    V get(long timeout, TimeUnit unit) 
          throws InterruptedException, ExecutionException, 
          TimeoutException;
    boolean isDone();
    boolean cancel();
    boolean isCancelled();
}

Wednesday, January 20, 2010



2102: Parallel Programming Practice, HS 2009

Study goals

47

Wednesday, January 20, 2010


