
Concurrency WS 2010/2011
Testing Concurrent Programs for Correctness

and Performance

Annette Bieniusa

December 20, 2010



Testing concurrent programs1

Use and extend ideas for testing sequential programs
Nondeterminism (scheduling, interaction of threads,...)
increase the complexity
Test code can influence the timing or synchronization of
your code!

1Slides are based on the book Java Concurrency in Practice



Kinds of tests

Tests for safety: usually check for invariants
e.g. in a linked list, compare size of list with number of
elements
need some sort of atomic snapshot or test points

Tests for liveness: progress and nonprogress
Is a thread blocked or running slowly?
How long do you have to test?

Tests for performance
Throughput the rate at which a set of concurrent tasks is

completed;
Responsiveness the delay between request and

completion of some action (also called
latency);

Scalability the improvement in throughput as more
resources are made available.



Outline

1 Testing for liveness

2 Testing safety

3 Testing for performance



Testing for correctness

Start with testing in a sequential context
Identify invariants and postconditions (according to the
specification!)
Write unit tests, e.g. with JUnit

⇒ Remove first all bugs that are not related to concurrency
issues!



Test setup

Testing frameworks are usually not concurrency-friendly
E.g. threads are not associated with a test run
Threads have to report success or failure information back
to the main test runner thread
You have to provide start up/tear down/thread joining

Have a look at the testing framework for JSR166:
http://gee.cs.oswego.edu/cgi-bin/viewcvs.cgi/jsr166/src/test/tck/JSR166TestCase.java

http://gee.cs.oswego.edu/cgi-bin/viewcvs.cgi/jsr166/src/test/tck/JSR166TestCase.java


Blocking Operations

How do you test that a thread does not proceed?
If the method returns normally, the test has failed
Problem: once the method blocks successfully, you have to
convince it to unblock again
Idea: make an interrupt after some time delay
You might have to fine-tune the delay!



Example: BoundedBuffer

1 void testTakeBlockWhenEmpty() {
2 final BoundedBuffer<Integer> bb =
3 new BoundedBuffer<Integer>(10);
4 Thread taker = new Thread() {
5 public void run() {
6 try {
7 int unused = bb.take();
8 fail(); //if we get here, it is an error
9 } catch (InterruptedException success) { }
10 }};
11 try {
12 taker.start();
13 Thread.sleep(LOCK_DETECT_TIMEOUT);
14 taker.interrupt();
15 taker.join(LOCK_DETECT_TIMEOUT);
16 assertFalse(taker.isAlive());
17 //do not query Thread.getState()
18 } catch (Exception unexpected) {
19 fail();
20 }}



Detecting deadlocks

Use open calls, i.e. never call an alien method while
holding a lock
Prefer timed lock attempts as this allows for adding log
output
Thread dumps show locking cycles (ctrl- on Unix,
ctrl-Break on windows)



Outline

1 Testing for liveness

2 Testing safety

3 Testing for performance



Detecting data races

Chicken-egg problem: the test programs themselves are
concurrent programs

Identify properties that can easily be checked and fail with high
probability if something goes wrong, but do not let the testing
code limit concurrency artificially.

⇒ Heisenbugs are bugs that disappear when you are
debugging and testing



Detecting data races

Example: Order-insensitive checksum function for set
implementations

Use a checksum per thread and combine the results in the
end
Do not use consecutive integers as a smart compiler could
precompute the result
Beware: Random number generators can be a great
bottleneck!
⇒ Each thread needs own RNG, or a pseudo-random
function (Marsaglia RNG)

1 //start input can be hashCode or nanoTime
2 static int xorShift(int y) {
3 y ^= (y << 6);
4 y ^= (y >>> 21);
5 y ^= (y << 7);
6 return y;
7 }



Generating more interleavings

Use more active threads than CPUs
Test on a variety of systems (different processor
architectures, OS, VMs, ...)
Employ Thread.yield or Thread.sleep(10)
Special tools like ConTest



Outline

1 Testing for liveness

2 Testing safety

3 Testing for performance



Testing performance

What are typical usage patterns of the class under test?
Optimize the common case, not the rare one
Often used to determine sizings for various bounds (e.g.
number of threads, buffer capacities)
Include a timer when starting and shutting down the test
threads



Timer

1 public class BarrierTimer implements Runnable {
2 private boolean started;
3 private long startTime, endTime;
4 public synchronized void run() {
5 long t = System.nanoTime();
6 if (!started) {
7 started = true;
8 startTime = t;
9 } else {
10 endTime = t;
11 }
12 public synchronized void clear() {
13 started = false;
14 }
15 public synchronized long getTime() {
16 return endTime - startTime;
17 }
18 }



Measuring responsiveness

Small variance of service time gives better predictability
Histograms of task completion give nice visualization
Beware: Too small timer granularity can distort the
measurements!



Pitfall: Garbage collection

Timing of GC is unpredictable and can yield strange results
(e.g. stop-the-world GCs)
JVM flag -verbose:gc gives some information
Solution 1: ensure that no GC run is necessary by
increasing the heap size
Solution 2: let the program run long enough to include
several GC cycles
Use realistic sampling of code paths



Pitfall: Dynamic compilation

Timing of JIT is unpredictable and can yield strange results
Code can be also decompiled or recompiled (after loading
new classes, for example)
Timing tests should run only after all code has been
compiled (as this usually the case for real programs)
Solution 1: let the program run for a long time (at least
several minutes)
Solution 2: “warm-up” runs



Pitfall: Work loads

Often two sorts of work: accessing shared data and
thread-local computation
Their balance gives different levels of contention⇒
different performance/scaling
Try to approximate the thread-local computation to get
more realistic results



Pitfall: Dead code elimination

Benchmarks are easy target for optimizers
This might involuntarily speed up your program...
Make sure that every computed result is somehow used by
your program (in a way that does not require
synchronization or substantial computation)
Cheap trick

1 if (foo.x.hashCode() == System.nanoTime())
2 System.out.print(" ");

Beware of static test input!



Beyond testing

Code review
Static analysis tools aim at detecting certain bug patterns

Inconsistent synchronization
Unreleased locks
Double-checked locking
Starting a thread from a constructor
sleep/notify/wait errors



Tools

VisualVM (profiling)
FindBugs - Find Bugs in Java Programs
ConTest - A Tool for Testing Multi-threaded Java
Applications


	Testing for liveness
	Testing safety
	Testing for performance

