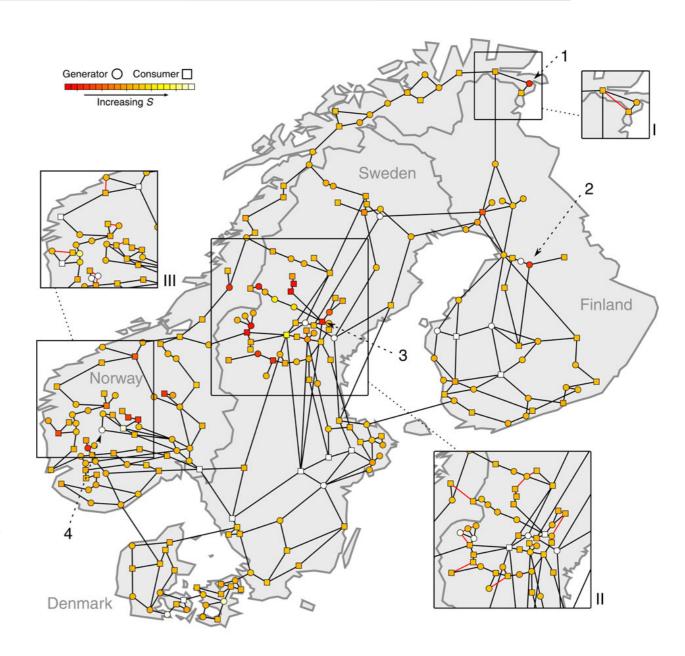


Energy Informatics 03 Network Algorithms

Christian Schindelhauer
Technical Faculty
Computer-Networks and Telematics
University of Freiburg

Graph Theory in a Nutshell

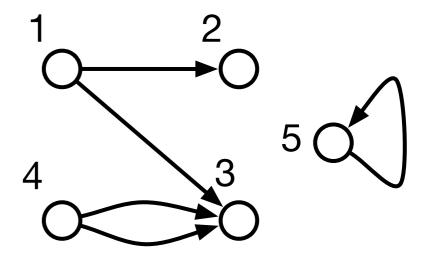
- A graph G=(V,E)
 - nodes/vertices V
 - edges E
 - connecting two nodes
- Variants
 - undirected/directed edgelines/arrows
 - loops
 - edge connecting the node with itself
 - node/edge weights
 - mapping of numbers to the nodes/edges

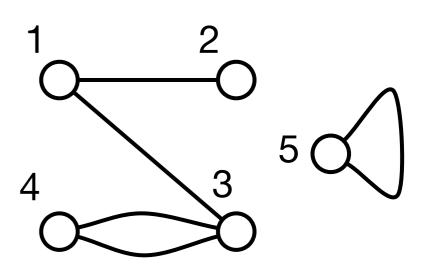


How dead ends undermine power grid stability
Peter J. Menck, Jobst Heitzig, Jürgen Kurths & Hans Joachim Schellnhuber
Nature Communications 5, Article number: 3969

Terms in Graphs

- Degree of a node
 - number of edges at a node u
- Regular graph
 - if the maximum degree = minimum degree in a graph
- Indegree/Out-degree
 - in case of directed graph (digraph), the number of edges pointing to/from a node u
- Two nodes u,v are adjacent
 - if they are connected via an edge
- A graph is simple, if there are no loops or no parallel edges
 - usually only simple graphs are considered

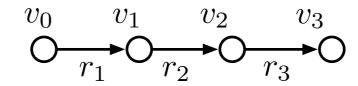




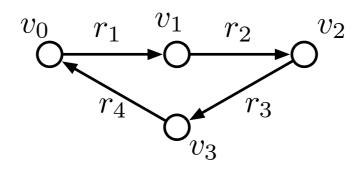
Paths

- A sequence of adjacent nodes is called a path
- Paths with same start and end are called cycles
- The length of a path is the number of edges passed
- A path is simple if no edge occurs twice
 - it is elementary if no node occurs twice

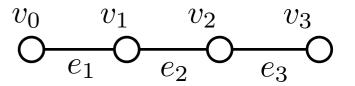
path of length 3



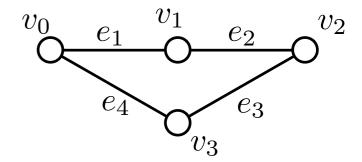
cycle of length 4

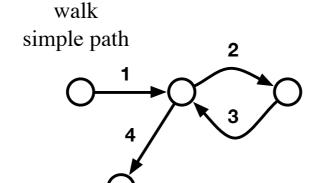


path of length 3



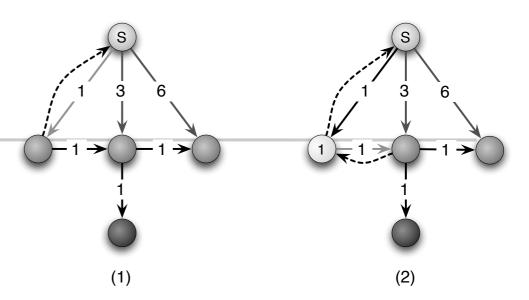
cycle of length 4

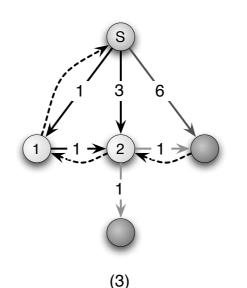


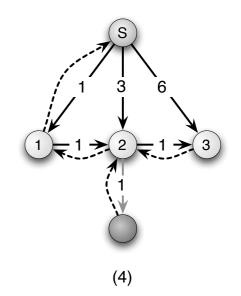


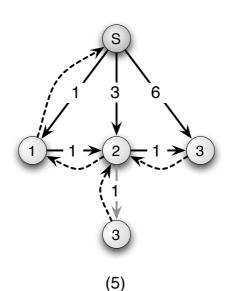
Shortest Paths

- Given
 - a graph G=(V,E)
 - start node s, target node t
- Compute the shortest path
- Dijkstras algorihm
 - Start with set S={s}
 - In each round
 - add the node u of the neighborhood of S
 - which has the shortest distance to s
 - store the edge used to u



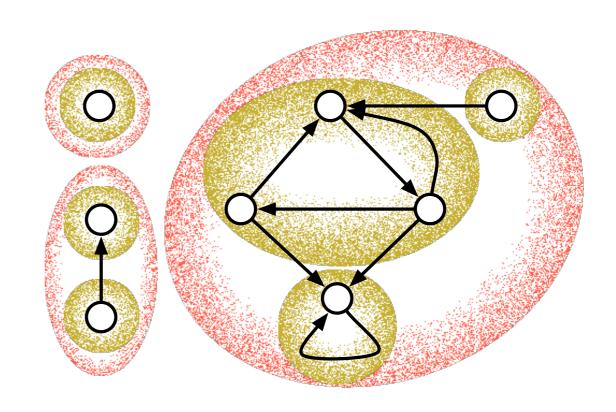


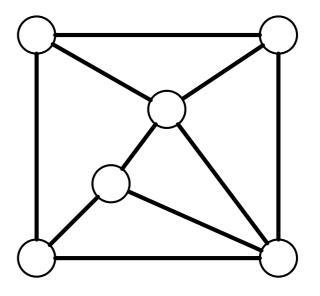




Connectivity

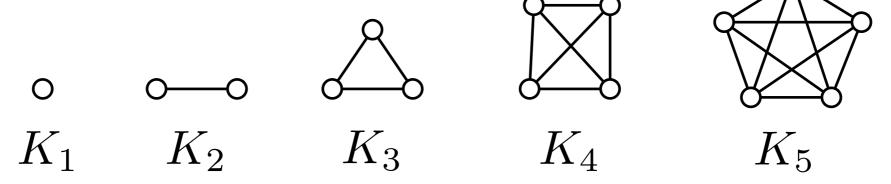
- An undirected graph is connected
 - if for all nodes u,v there exists a path connecting u and v
- A directed graph is weakly connected
 - if the corresponding undirected graph is connected
- A directed graph is strongly connected
 - if for all nodes u,v there exists a directed path connecting u and v
- A graph is k-(vertex)-connected, if there are k node disjoint paths between all nodes
- analog definition for d-edge connected



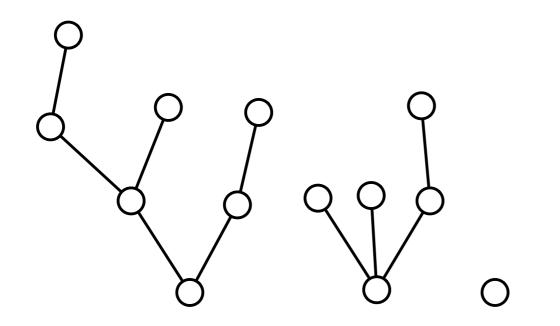


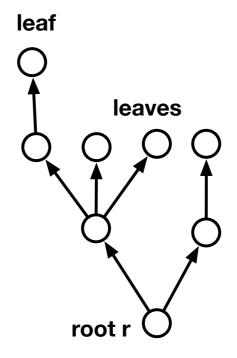
Special Graphs

- Complete (simple) undirected graphs
 - no. of edges is n(n-1)/2



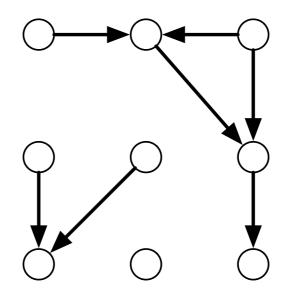
- Trees are connected undirected graphs without cycles
 - sets of graphs are called forests



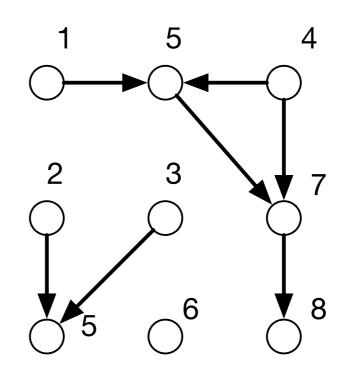


DAG: Directed Acyclic Graph

Directed acyclic graph



- Topologic Sorting
 - mapping f of {1,..,n} to V such that for edge (u,v)
 - f(u) < f(v)



Flows in Networks

Motivation

- Optimize flow from source to target

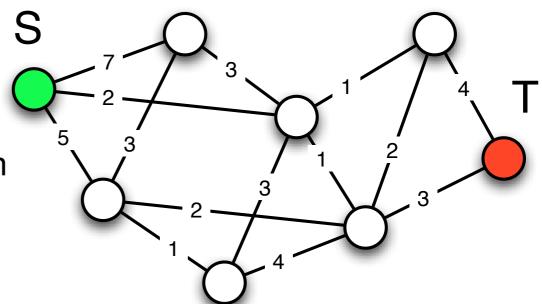
Definition:

- (Single-commodity) maximum flow problem
- Given
 - a graph G=(V,E)
 - a capacity function w:E→R⁺₀,
 - source set S and target set T
- Find a maximum flow from S to T
- A flow is a function $f : E \rightarrow R_0^+$ such that
 - for all $e \in E$: $f(e) \le w(e)$
 - for all $e \notin E$: f(e) = 0

$$\forall u \in V \setminus (S \cup T)$$

$$\forall u \in V \setminus (S \cup T)$$

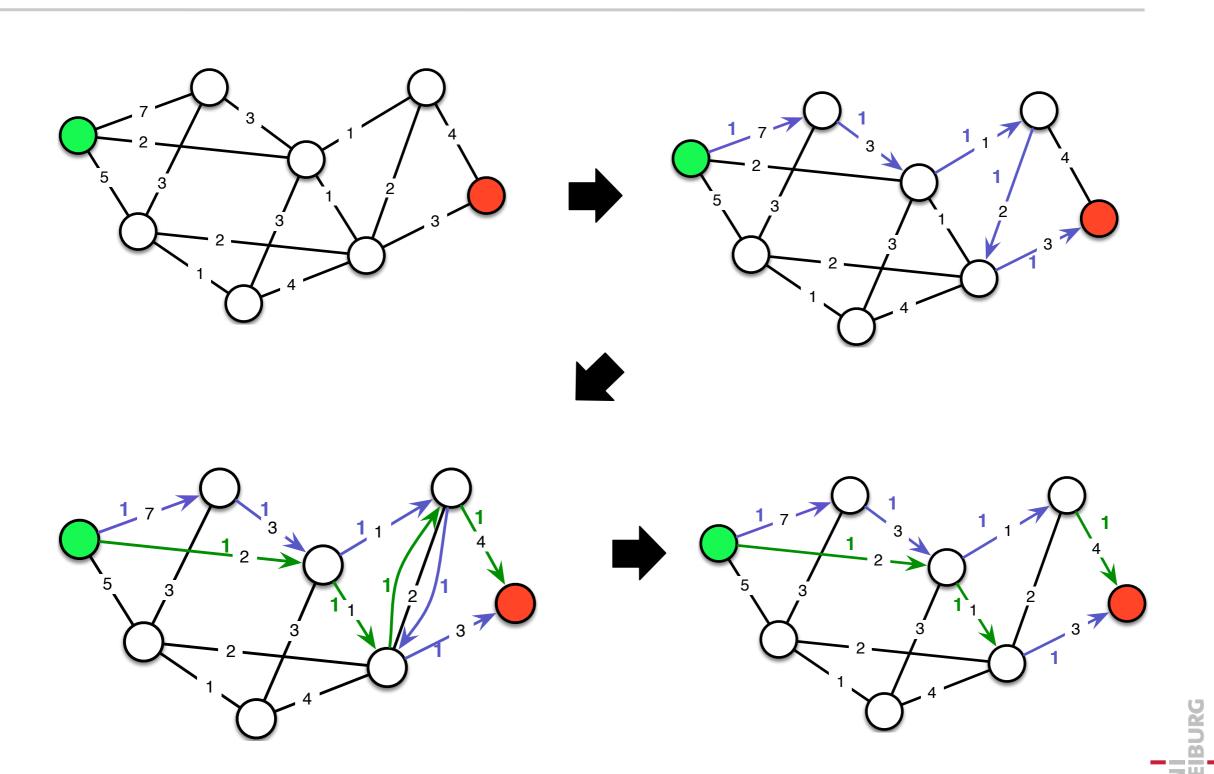
- for all
$$u,v \in V$$
: $f(u,v)≥0$



$$\forall u \in V \setminus (S \cup T)$$

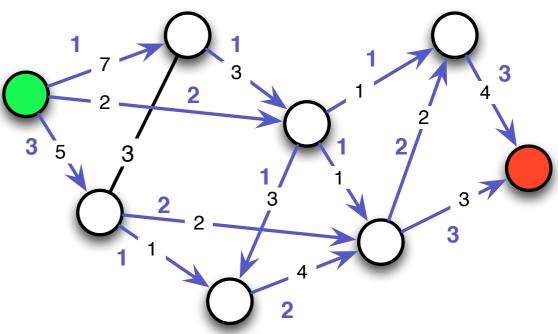
$$\sum_{v \in V} f(v, u) = \sum_{v \in V} f(u, v)$$

Flows in Networks



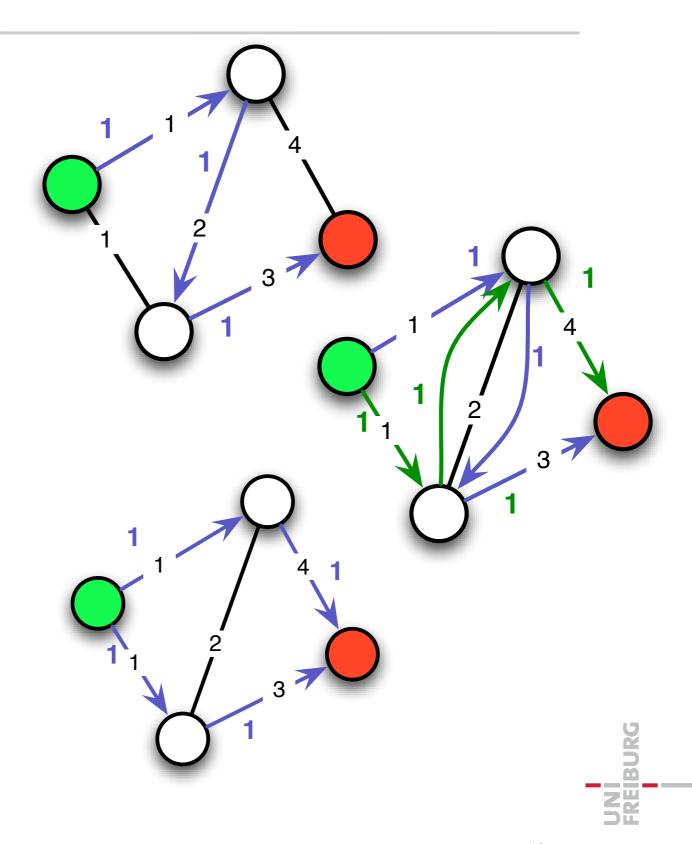
Computation of the Maximum Flow

- Every natural pipe system solves the maximum flow problem
- Algorithms
 - Linear Programming
 - for real numbers
 - the flow is described by equations of a linear optimization problem
 - Simplex algorithm (or Ellipsoid method) can solve any linear equation system
 - Ford-Fulkerson
 - also for integers
 - as long as open paths exist, increase the flow on theses paths
 - open path: path which increases the flow
 - Edmonds-Karp
 - special case of Ford-Fulkerson
 - use BFS (breadth first search) to find open paths



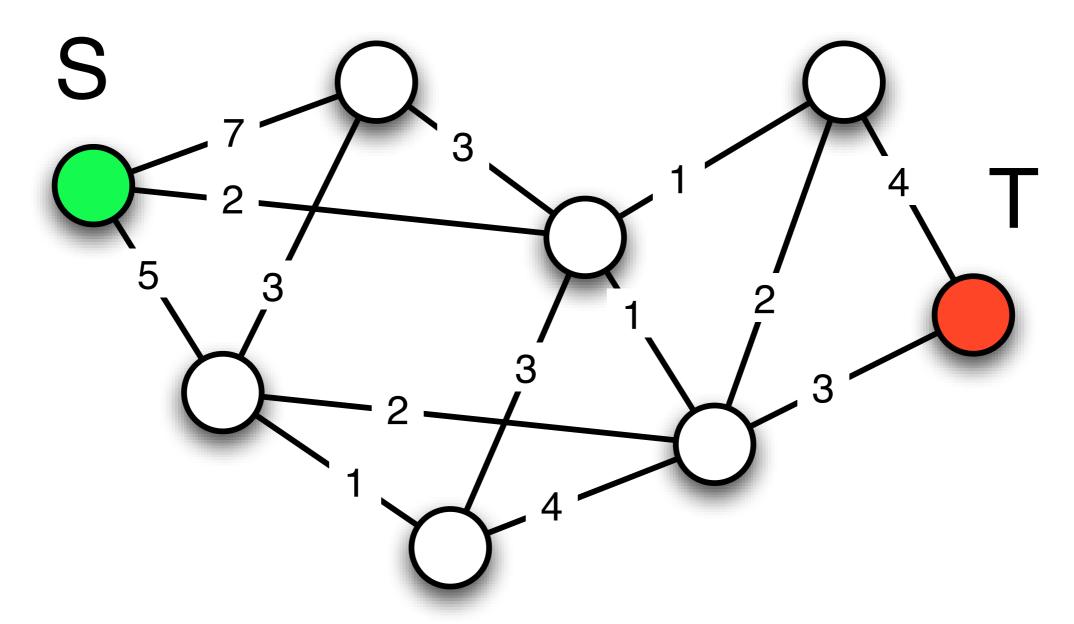
Ford-Fulkerson

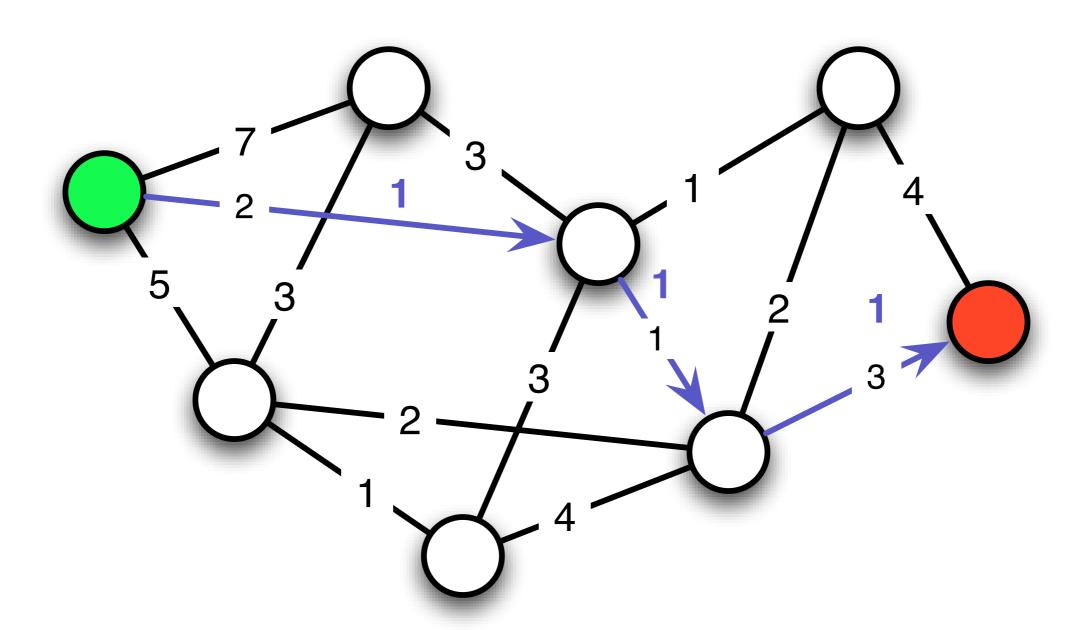
- Find a path from the source node to the target node
 - where the capacity is not fully utilized
 - or which reduces the existing flow
- Compute the maximum flow on this augmenting path
 - by the minimum of the flow that can be added on all paths
- Add the flow on the path to the existing flow
- Repeat this step until no flow can be added anymore



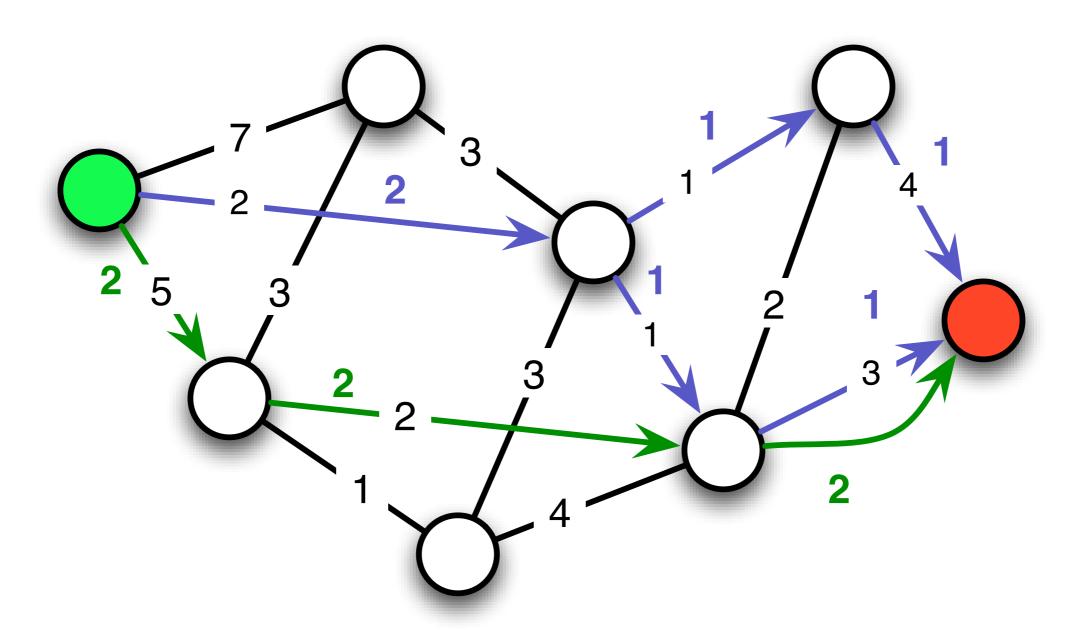
Edmunds-Karp

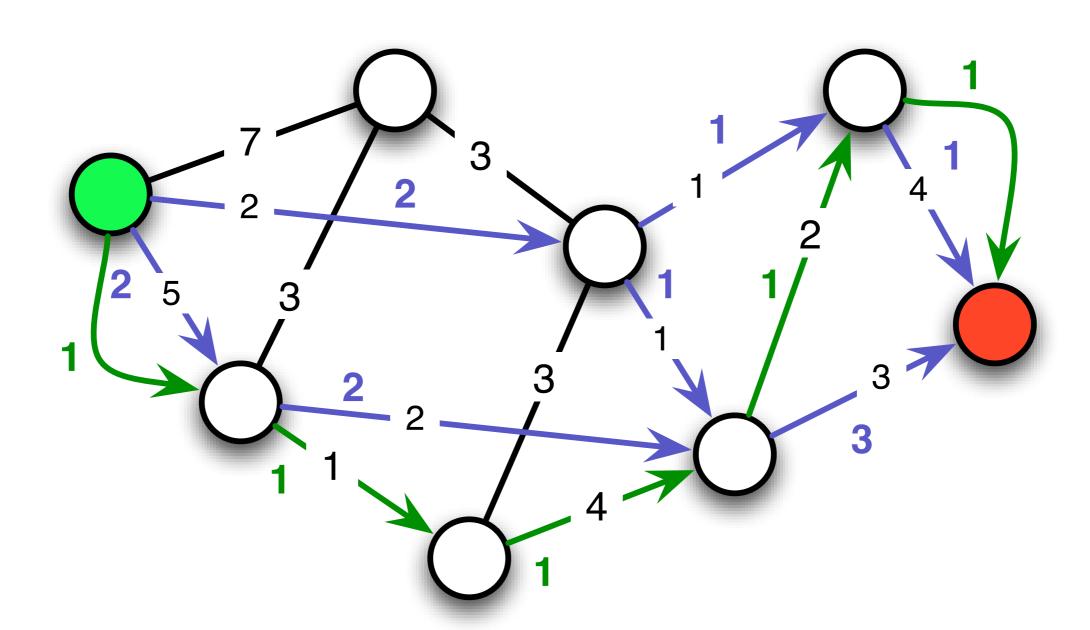
- Search path for Ford-Fulkerson algorithm
- Choose the shortest augmenting path
 - Computation by breadth-first-search
- leads to run-time O(|V| |E|²)
 - whereas Ford-Fulkerson could have exponential run-time

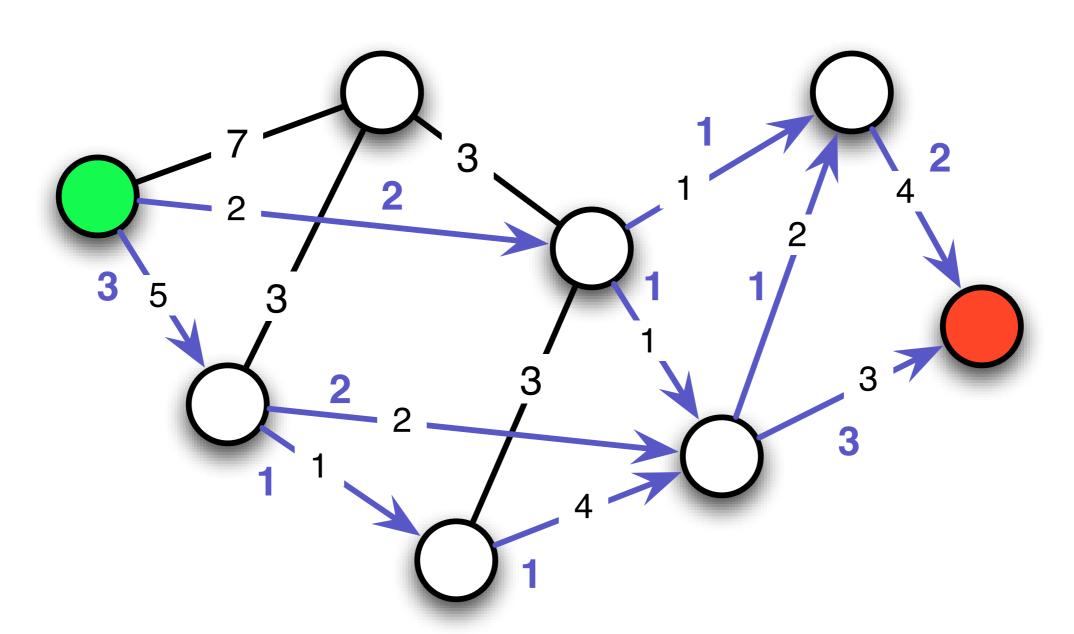


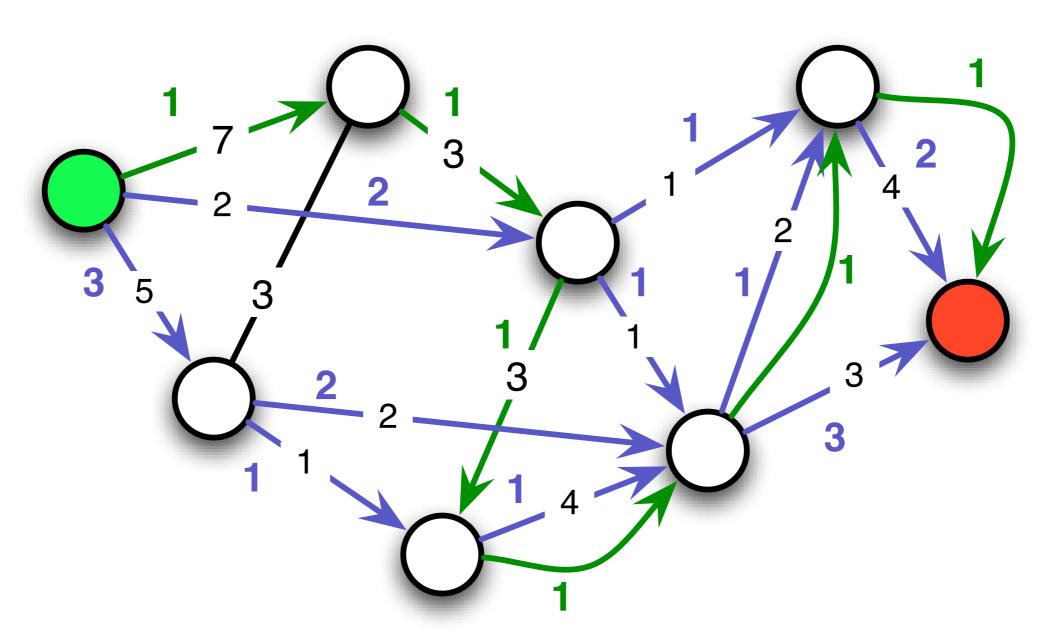


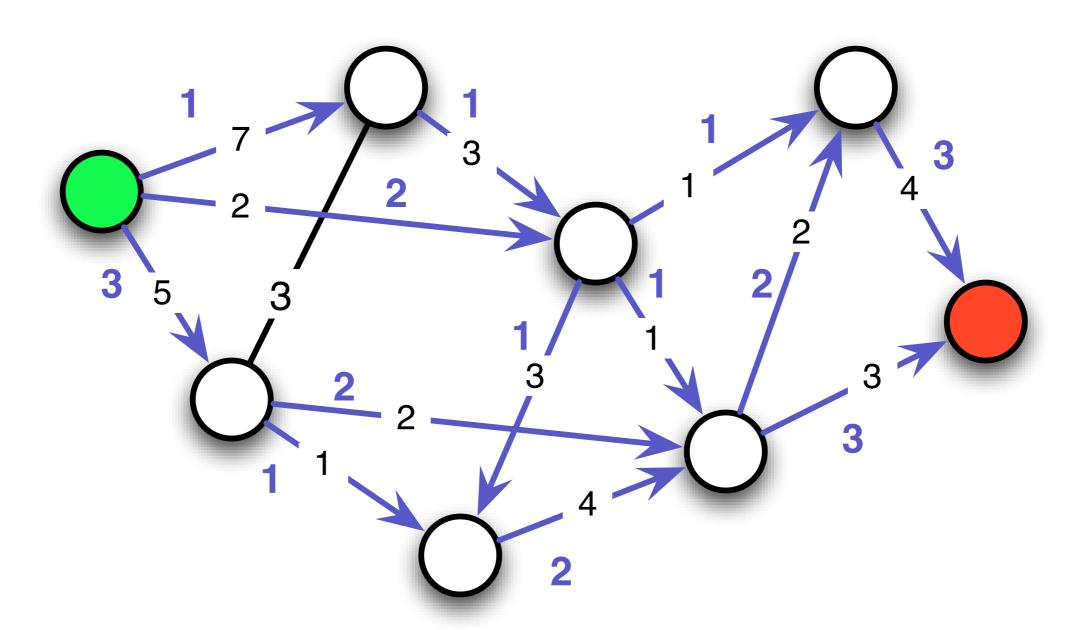












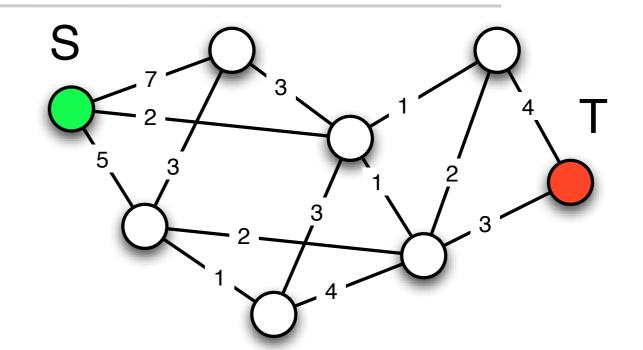
Minimum Cut in Networks

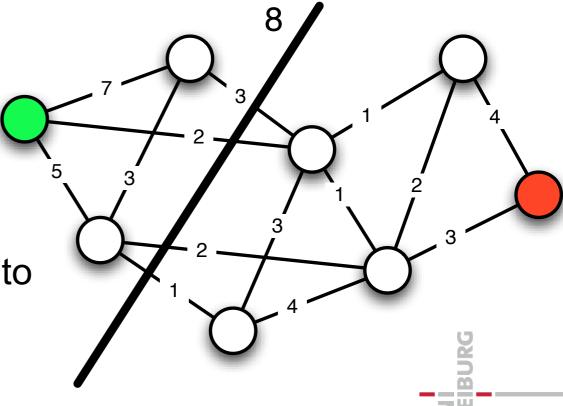
Motivation

- Find bottleneck in networks

Definition

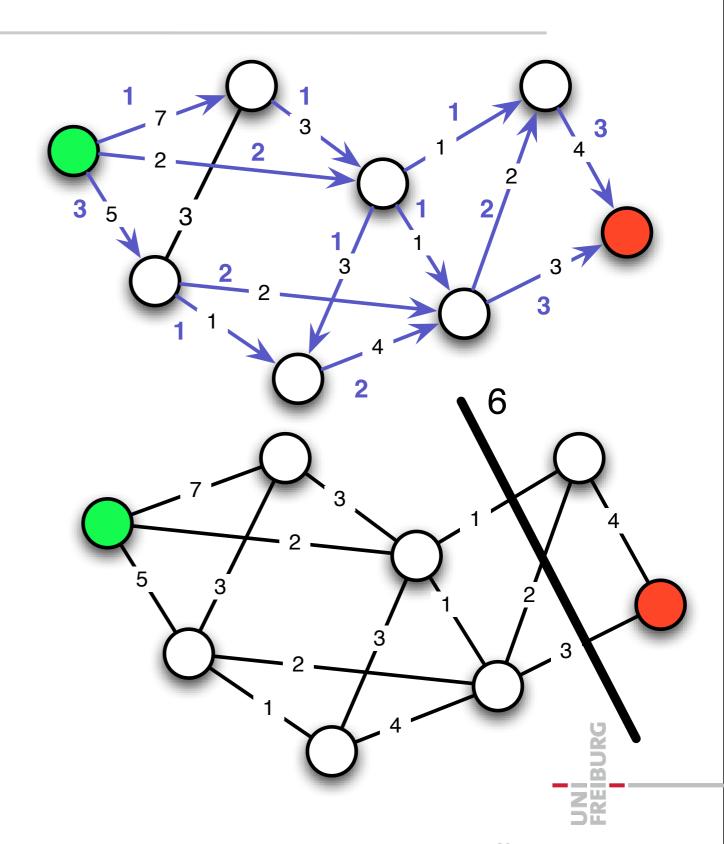
- Min Cut problem
- Given
 - graph G=(V,E)
 - capacity function w: E → R⁺₀,
 - sources S and targets T
- Find minimum cut between S and T
- A cut C is a set of edges
 - such that every path from a node of S to a node of T, contains an edge of C
- The size of a cut is $\sum_{e \in C} w(e)$





Min-Cut-Max-Flow Theorem

- Theorem
 - The minimum cut equals the maximum flow
- Algorithms for minimum cut
 - can be obtained from the maximum flow algorithms



Energy Informatics 03 Network Algorithms

Christian Schindelhauer
Technical Faculty
Computer-Networks and Telematics
University of Freiburg