
Energy Informatics
System Design — Data Modeling

Albert-Ludwigs-Universität Freiburg

Peter Thiemann

30 Jan 2018

Data Modeling I

Thiemann Energy Informatics 30 Jan 2018 2 / 34

Simple Classes

Definition

A class describes compound data that consists of subsidiary data
(called attributes) collected in an instance of the class.
Additionally, it can describe operations on that data (later).

Instances are often called objects.

Operations are often called methods.

Thiemann Energy Informatics 30 Jan 2018 3 / 34

Example for simple class: Tea

Class description for Tea

A tea shop describes a particular brand of tea in stock by its
name; a description of its color, flavor, etc; the weight in stock
(in g); and its price in cent per kg.

Thiemann Energy Informatics 30 Jan 2018 4 / 34

Example for simple class: Tea

Class description for Tea

A tea shop describes a particular brand of tea in stock by its
name; a description of its color, flavor, etc; the weight in stock
(in g); and its price in cent per kg.

Class diagram for Tea

Thiemann Energy Informatics 30 Jan 2018 5 / 34

Simple Classes in Python

A class diagram can be mapped line-by-line to Python code.

Class declaration

>>> class Tea:

... def __init__(self ,name ,desc ,wgt ,price):

... self.name = name

... self.description = desc

... self.weight = wgt

... self.price = price

...

__init__ is a function that is called when a new Tea

instance is created. The self parameter is the new instance,
the paramters name, desc, wgt, and price are used to
initialize the respective attributes as shown.

Thiemann Energy Informatics 30 Jan 2018 6 / 34

Using simple classes

Creating and examining tea

>>> earl_grey = Tea("Earl Grey",

"Flavored black tea",

10000, 4335)

>>> earl_grey

<__main__.Tea instance at 0x1051dd950 >

>>> earl_grey.name # get name attribute

’Earl Grey’

>>> earl_grey.price # get price attribute

4335

Tea() creates a new Tea instance and calls its __init__

method

Access attributes using
instance.attribute

Thiemann Energy Informatics 30 Jan 2018 7 / 34

Simple class with operation

Extended class description for Tea

A tea shop describes a particular brand of tea in stock by its
name; a description of its color, flavor, etc; the weight in stock
(in g); and its price in cent per kg. The shop wants to determine
the stock value. It also wants to be able to print an inventory line.

Two operations

stockPrice(): no parameters, return total value of the tea
brand in stock

inventoryLine(): no parameters, return a string for
printing the tea as an inventory item

Thiemann Energy Informatics 30 Jan 2018 8 / 34

Simple class with operation

Extended class description for Tea

A tea shop describes a particular brand of tea in stock by its
name; a description of its color, flavor, etc; the weight in stock
(in g); and its price in cent per kg. The shop wants to determine
the stock value. It also wants to be able to print an inventory line.

Two operations

stockPrice(): no parameters, return total value of the tea
brand in stock

inventoryLine(): no parameters, return a string for
printing the tea as an inventory item

Thiemann Energy Informatics 30 Jan 2018 8 / 34

Revised class diagram

Thiemann Energy Informatics 30 Jan 2018 9 / 34

Revised class declaration

class Tea:

__init__ omitted (same as before)

def stockPrice(self):

return self.weight * self.price / 1000

def inventoryLine(self):

return (self.name + ’. ’ +

self.description + ’. ’ +

str(self.weight) + ’g. ’ +

str(self.price) + ’ c/kg.’)

Remarks

The implementation of stockPrice and inventoryLine

belongs to the class declaration.

Their first parameter is self and they can access all
attributes.

str() converts a number to a string

Thiemann Energy Informatics 30 Jan 2018 10 / 34

Meter Readings

Reading

A reading of a metering device consists of a reading date and a
reading value.

Class diagram

Thiemann Energy Informatics 30 Jan 2018 11 / 34

Meter Readings

Reading

A reading of a metering device consists of a reading date and a
reading value.

Class diagram

Thiemann Energy Informatics 30 Jan 2018 11 / 34

Meter Readings implemented

Explanation

datetime is a module that contains utilities for
manipulating dates

made available using
import datetime

Thiemann Energy Informatics 30 Jan 2018 12 / 34

Meter Readings implemented

Implementation

import datetime

class Reading:

def __init__(self , date , value):

self.date = date # datetime.date

self.value = value # float

def difference(self , previous):

return self.value - previous.value

def yearly_prediction(self , previous):

value_diff = self.value - previous.value

date_diff = self.date - previous.date

factor = 365.25 / date_diff.days

return value_diff * factor

Thiemann Energy Informatics 30 Jan 2018 13 / 34

Compound Classes

Household

A household has an allocated amount of space (in square meters)
and a number of occupants. Furthermore, a household has meter
readings for several dates in the past.

Class diagram

Thiemann Energy Informatics 30 Jan 2018 14 / 34

Compound Classes

Household

A household has an allocated amount of space (in square meters)
and a number of occupants. Furthermore, a household has meter
readings for several dates in the past.

Class diagram

Thiemann Energy Informatics 30 Jan 2018 14 / 34

Association: Household — Reading

The connection between Household and Reading in the
class diagram is an association.

It comes with a direction that indicates the direction in
which it can be traversed with an arrowhead.

We choose to represent the association with a list of
readings stored in the Household instance.

Requires a “housekeeping” method to add new readings.

Thiemann Energy Informatics 30 Jan 2018 15 / 34

Implementing Household

class Household:

def __init__(self , space , occupants):

self.space = space

self.occupants = occupants

self.readings = []

def add_reading(self , reading):

self.readings = [reading] + self.readings

Thiemann Energy Informatics 30 Jan 2018 16 / 34

Further Household Methods

Requirements

For a household, we want to be able to determine the number of
readings taken. If there are multiple readings, we want to give a
statistical yearly prediction.

Implementation

class Household: # __init__ ... as before

def nr_readings(self):

return len(self.readings)

def yearly_average(self):

if len(self.readings) < 2:

return None # more than one reading

first_reading = self.readings [-1]

last_reading = self.readings [0]

return last_reading.yearly_prediction(

first_reading)

Thiemann Energy Informatics 30 Jan 2018 17 / 34

Data Modeling II

Thiemann Energy Informatics 30 Jan 2018 18 / 34

Data Modeling II

Union

Abstraction

Inheritance

Thiemann Energy Informatics 30 Jan 2018 19 / 34

Union of classes

Task

A drawing program wants to manage different geometric shapes
in a coordinate system. Initially, there are three kinds of figures:

squares with reference point upper left and given side length

circles with reference point in the middle and a given radius

points that just consist of the reference point

Approach

Each kind of figure can be represented by a compound class.
The reference point is a separate Point object.

In many languages the instances of these classes could not
be used together. The mix of classes presents no problem in
Python.

Thiemann Energy Informatics 30 Jan 2018 20 / 34

Union of classes

Task

A drawing program wants to manage different geometric shapes
in a coordinate system. Initially, there are three kinds of figures:

squares with reference point upper left and given side length

circles with reference point in the middle and a given radius

points that just consist of the reference point

Approach

Each kind of figure can be represented by a compound class.
The reference point is a separate Point object.

In many languages the instances of these classes could not
be used together. The mix of classes presents no problem in
Python.

Thiemann Energy Informatics 30 Jan 2018 20 / 34

Union of classes

Class diagram

Thiemann Energy Informatics 30 Jan 2018 21 / 34

Python implementation

class Point:

def __init__(self , x, y):

self.x = x

self.y = y

class Square:

def __init__(self , ref , side):

self.ref = ref

self.side = side

and so on

Thiemann Energy Informatics 30 Jan 2018 22 / 34

Functionality for shapes

Task

For each shape, we want to be able to compute the area and we
want to move it around.

Class diagram with operations

Thiemann Energy Informatics 30 Jan 2018 23 / 34

Functionality for shapes

Task

For each shape, we want to be able to compute the area and we
want to move it around.

Class diagram with operations

Thiemann Energy Informatics 30 Jan 2018 23 / 34

Python implementation

Square

def area(self):

return self.side * self.side

def move(self , dx , dy):

self.ref.move (dx , dy)

Circle

def area(self):

return 2 * math.pi * self.radius

def move(self , dx , dy):

self.ref.move (dx , dy)

Dot . . .

Thiemann Energy Informatics 30 Jan 2018 24 / 34

Python implementation

Square

def area(self):

return self.side * self.side

def move(self , dx , dy):

self.ref.move (dx , dy)

Circle

def area(self):

return 2 * math.pi * self.radius

def move(self , dx , dy):

self.ref.move (dx , dy)

Dot . . .

Thiemann Energy Informatics 30 Jan 2018 24 / 34

Python implementation

Square

def area(self):

return self.side * self.side

def move(self , dx , dy):

self.ref.move (dx , dy)

Circle

def area(self):

return 2 * math.pi * self.radius

def move(self , dx , dy):

self.ref.move (dx , dy)

Dot . . .

Thiemann Energy Informatics 30 Jan 2018 24 / 34

Python implementation II

All implementations assume a move method in Point.

Point

def move (self , dx , dy):

self.x += dx

self.y += dy

Observation

the move methods in Square, Circle, and Dot are all
identical

it would be nice to be able to advertise that all shape classes
have methods move and area.

Thiemann Energy Informatics 30 Jan 2018 25 / 34

Python implementation II

All implementations assume a move method in Point.

Point

def move (self , dx , dy):

self.x += dx

self.y += dy

Observation

the move methods in Square, Circle, and Dot are all
identical

it would be nice to be able to advertise that all shape classes
have methods move and area.

Thiemann Energy Informatics 30 Jan 2018 25 / 34

Abstraction

Abstraction in programming

identify programming patterns
repeated program fragments with similar semantics

generalization
replace specific parts by variables

extraction
give a name to the thus generalized program fragment
invoke in the original places

What does that mean?

generally avoid duplication

look for similarities

try to solve each problem only once

Thiemann Energy Informatics 30 Jan 2018 26 / 34

Abstraction

Abstraction in programming

identify programming patterns
repeated program fragments with similar semantics

generalization
replace specific parts by variables

extraction
give a name to the thus generalized program fragment
invoke in the original places

What does that mean?

generally avoid duplication

look for similarities

try to solve each problem only once

Thiemann Energy Informatics 30 Jan 2018 26 / 34

Similarity among classes

Goal

identify similar field and method declarations

example: Square.move, Circle.move, Dot.move

approach: introduce common super class Shape

indicated by arrow with open triangle head

Thiemann Energy Informatics 30 Jan 2018 27 / 34

Similarity among classes

Goal

identify similar field and method declarations

example: Square.move, Circle.move, Dot.move

approach: introduce common super class Shape

indicated by arrow with open triangle head

Thiemann Energy Informatics 30 Jan 2018 27 / 34

Similarity among classes

Goal

identify similar field and method declarations

example: Square.move, Circle.move, Dot.move

approach: introduce common super class Shape

indicated by arrow with open triangle head

Thiemann Energy Informatics 30 Jan 2018 27 / 34

Similarity among classes

Goal

identify similar field and method declarations

example: Square.move, Circle.move, Dot.move

approach: introduce common super class Shape

indicated by arrow with open triangle head

Thiemann Energy Informatics 30 Jan 2018 27 / 34

Inheritance

Class diagram: the Shape superclass

Italics indicate abstract items

Shape is an abstract class: no instances

Shape.area() is an abstract method: no implementation

Thiemann Energy Informatics 30 Jan 2018 28 / 34

Inheritance

Class diagram: the Shape superclass

Italics indicate abstract items

Shape is an abstract class: no instances

Shape.area() is an abstract method: no implementation

Thiemann Energy Informatics 30 Jan 2018 28 / 34

Inheritance in Python

Super class Shape

class Shape:

def __init__(self , ref):

self.ref = ref

def move(self , dx , dy):

self.ref.move(dx , dy)

def area(self):

return 0

it’s not easily possible to define proper abstract classes in
Python (you can create Shape instances)

it’s not possible to define abstract methods in Python;
the way to do it would be to drop the definition of area()

Thiemann Energy Informatics 30 Jan 2018 29 / 34

Subclasses in Python

Square

class Square (Shape):

def __init__ (self , ref , side):

Shape.__init__(self , ref)

self.side = side

def area(self):

return self.side * self.side

Notes

call __init__ method of the super class Shape

no need to define move(),
its definition is inherited from Shape

override Shape’s definition of area()

Thiemann Energy Informatics 30 Jan 2018 30 / 34

Subclasses in Python

Square

class Square (Shape):

def __init__ (self , ref , side):

Shape.__init__(self , ref)

self.side = side

def area(self):

return self.side * self.side

Notes

call __init__ method of the super class Shape

no need to define move(),
its definition is inherited from Shape

override Shape’s definition of area()

Thiemann Energy Informatics 30 Jan 2018 30 / 34

Exploiting inheritance

Weather data

We want to keep track of various recordings of weather data all
comprising of a high and a low reading. Two examples are
temperature and pressure readings. All should be printable.

Consider this class diagram

Thiemann Energy Informatics 30 Jan 2018 31 / 34

Exploiting inheritance

Weather data

We want to keep track of various recordings of weather data all
comprising of a high and a low reading. Two examples are
temperature and pressure readings. All should be printable.

Consider this class diagram

Thiemann Energy Informatics 30 Jan 2018 31 / 34

Implementing weather data

Printable

If a Python object has a method __str__, then that method is
used to convert the object to a string.

Printable Recording

class Recording:

def __init__(self , low , high):

self.low = low

self.high = high

def __str__(self):

return (str (self.low) + ’ - ’ +

str (self.high) + ’ ’ +

self.unit ())

Thiemann Energy Informatics 30 Jan 2018 32 / 34

Implementing weather data

Printable

If a Python object has a method __str__, then that method is
used to convert the object to a string.

Printable Recording

class Recording:

def __init__(self , low , high):

self.low = low

self.high = high

def __str__(self):

return (str (self.low) + ’ - ’ +

str (self.high) + ’ ’ +

self.unit ())

Thiemann Energy Informatics 30 Jan 2018 32 / 34

Template Method

Printable Temperature recording

Temperature/Pressure can inherit printing from Recording, but
it has to define the unit() method to make printing work!

Implementing concrete recordings

class Temperature (Recording):

def unit ():

return "degrees"

class Pressure (Recording):

def unit ():

return "hPa"

Thiemann Energy Informatics 30 Jan 2018 33 / 34

Template Method

Printable Temperature recording

Temperature/Pressure can inherit printing from Recording, but
it has to define the unit() method to make printing work!

Implementing concrete recordings

class Temperature (Recording):

def unit ():

return "degrees"

class Pressure (Recording):

def unit ():

return "hPa"

Thiemann Energy Informatics 30 Jan 2018 33 / 34

	Classes and Class Diagrams
	Motivation
	Union
	Abstraction

